Abstract

Near infrared spectroscopy (NIRS) is regarded as a potential medical diagnostic technique for investigation of hemodynamic changes. However, uncertainties pertaining to the origin of NIRS signals have hampered its clinical interpretation. The uncertainities in NIRS measurements especially in case of living tissues are due to lack of rigorous combined theoretical-experimental studies resulting in clear understanding of the origin of NIRS signals. For their reliable interpretation it is important to understand the relationship between spatial changes in optical properties and corresponding changes in the NIRS signal. We investigated spatial sensitivity of near infrared optical measurements using an experimental approach. It uses a liquid optical phantom as tissue equivalent, which is explored under robot-control by a small, approximately point like perturbation of desired optical properties, and a NIRS instrument for trans-illumination/reflection measurements. The experimentally obtained sensitivity has been analyzed and compared with numerical simulations. In preliminary experiments we investigated the influence of various optical properties of the medium and of source/detector distances on the spatial sensitivity distribution. The acquired sensitivity maps can be used to define characteristic parameters. As an example, we used a 25% threshold to define a penetration depth measure which provides values in good accordance with published ones. To the best of our knowledge this is the first experimental study of NIRS spatial sensitivity. The presented method will allow in depth experimental investigation of the influence of various conditions pertaining to medium such as optical properties of tissue (scattering and absorption) and of the source/detector configuration.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial sensitivity and penetration depth of three cerebral oxygenation monitors

Sonny Gunadi, Terence S. Leung, Clare E. Elwell, and Ilias Tachtsidis
Biomed. Opt. Express 5(9) 2896-2912 (2014)

Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS

Daniel Milej, Androu Abdalmalak, Peter McLachlan, Mamadou Diop, Adam Liebert, and Keith. St. Lawrence
Biomed. Opt. Express 7(11) 4514-4526 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43, 858–872 (1977).
  2. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (nirs): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).
    [Crossref] [PubMed]
  3. T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood. Flow Metab. 13, 516–520 (1993).
  4. T. Näsi, K. Kotilahti, T. Noponen, I. Nissilä, L. Lipiäinen, and P. Meriläinen, “Correlation of visual-evoked hemodynamic responses and potentials in human brain,” Exp. Brain Res. 202(3), 561–570 (2010).
    [Crossref] [PubMed]
  5. K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229–236 (1999).
    [Crossref] [PubMed]
  6. H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34, 407–415 (2007).
    [Crossref]
  7. C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
    [Crossref] [PubMed]
  8. S. Boden, H. Obrig, C. Köhncke, H. Benav, S. P. Koch, and J. Steinbrink, “The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters,” Neuroimage 36, 100–107 (2007).
    [Crossref] [PubMed]
  9. M. Morihiro, T. Tsubone, and Y. Wada, “Relation between nirs signal and motor capability,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2009, 3991–3994 (2009).
  10. A. J. Fallgatter and W. K. Strik, “Frontal brain activation during the wisconsin card sorting test assessed with two-channel near-infrared spectroscopy,” Eur. Arch. Psychiatry Clin. Neurosci. 248, 245–249 (1998).
    [Crossref] [PubMed]
  11. K. Matsuo, N. Kato, and T. Kato, “Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy,” Psychol. Med. 32, 1029–1037 (2002).
    [Crossref] [PubMed]
  12. T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry 55, 501–511 (2004).
    [Crossref] [PubMed]
  13. M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
    [Crossref] [PubMed]
  14. S. D. Power, T. H. Falk, and T. Chau, “Classification of prefrontal activity due to mental arithmetic and music imagery using hidden markov models and frequency domain near-infrared spectroscopy,” J. Neural Eng. 7, 26002 (2010).
    [Crossref] [PubMed]
  15. K. Sahlin, “Non-invasive measurements of O2 availability in human skeletal muscle with near-infrared spectroscopy,” Int. J. Sports Med. 13(1), S157–S160 (1992).
    [Crossref] [PubMed]
  16. F. Costes, J. C. Barthelemy, L. Feasson, T. Busso, A. Geyssant, and C. Denis, “Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans,” J. Appl. Physiol. 80, 1345–1350 (1996).
  17. L. M. K. Chin, G. J. F. Heigenhauser, D. H. Paterson, and J. M. Kowalchuk, “Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis,” J. Appl. Physiol. 108(6), 1641–1650 (2010).
    [Crossref] [PubMed]
  18. H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
    [Crossref] [PubMed]
  19. M. Xia, V. Kodibagkar, H. Liu, and R. P. Mason, “Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19f magnetic resonance imaging in rats,” Phys. Med. Biol. 51, 45–60 (2006).
    [Crossref]
  20. S. Nioka and B. Chance, “Nir spectroscopic detection of breast cancer,” Technol. Cancer Res. Treat. 4, 497–512 (2005).
  21. M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
    [Crossref] [PubMed]
  22. M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
    [Crossref] [PubMed]
  23. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
    [Crossref] [PubMed]
  24. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. ii. effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).
    [Crossref] [PubMed]
  25. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
    [Crossref] [PubMed]
  26. S. R. Arridge, “Optical tomography in medical imaging,” Inv. Probl. 15, R41 (1999).
    [Crossref]
  27. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
    [Crossref] [PubMed]
  28. M. Tomita, M. Ohtomo, and N. Suzuki, “Contribution of the flow effect caused by shear-dependent rbc aggregation to nir spectroscopic signals,” Neuroimage 33, 1–10 (2006).
    [Crossref] [PubMed]
  29. M. Tomita, “Flow effect impacts nirs, jeopardizing quantification of tissue hemoglobin,” Neuroimage 33, 13–16 (2006).
    [Crossref] [PubMed]
  30. H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48, D137–D143 (2009).
    [Crossref] [PubMed]
  31. T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54, 6277–6286 (2009).
    [Crossref] [PubMed]
  32. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
    [Crossref] [PubMed]
  33. F. Faris, M. Thorniley, Y. Wickramasinghe, R. Houston, P. Rolfe, N. Livera, and A. Spencer, “Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head,” Clin. Phys. Physiol. Meas. 12, 353–358 (1991).
    [Crossref] [PubMed]
  34. R. Liu, X. Liu, F. Scopesi, G. Serra, J. W. Sun, and P. Rolfe, “Spatial sensitivity of nirs tissue oxygenation measurement using a simplified instrument,” in “7th Asian-Pacific Conference on Medical and Biological Engineering,” vol. 19 of IFMBE Proceedings (2008), vol. 19 of IFMBE Proceedings, pp. 377–380.
  35. G. Taga, F. Homae, and H. Watanabe, “Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants,” Neuroimage 38, 452–460 (2007).
    [Crossref] [PubMed]
  36. T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).

2010 (4)

T. Näsi, K. Kotilahti, T. Noponen, I. Nissilä, L. Lipiäinen, and P. Meriläinen, “Correlation of visual-evoked hemodynamic responses and potentials in human brain,” Exp. Brain Res. 202(3), 561–570 (2010).
[Crossref] [PubMed]

L. M. K. Chin, G. J. F. Heigenhauser, D. H. Paterson, and J. M. Kowalchuk, “Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis,” J. Appl. Physiol. 108(6), 1641–1650 (2010).
[Crossref] [PubMed]

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

S. D. Power, T. H. Falk, and T. Chau, “Classification of prefrontal activity due to mental arithmetic and music imagery using hidden markov models and frequency domain near-infrared spectroscopy,” J. Neural Eng. 7, 26002 (2010).
[Crossref] [PubMed]

2009 (2)

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48, D137–D143 (2009).
[Crossref] [PubMed]

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54, 6277–6286 (2009).
[Crossref] [PubMed]

2007 (3)

G. Taga, F. Homae, and H. Watanabe, “Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants,” Neuroimage 38, 452–460 (2007).
[Crossref] [PubMed]

H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34, 407–415 (2007).
[Crossref]

S. Boden, H. Obrig, C. Köhncke, H. Benav, S. P. Koch, and J. Steinbrink, “The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters,” Neuroimage 36, 100–107 (2007).
[Crossref] [PubMed]

2006 (4)

M. Xia, V. Kodibagkar, H. Liu, and R. P. Mason, “Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19f magnetic resonance imaging in rats,” Phys. Med. Biol. 51, 45–60 (2006).
[Crossref]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

M. Tomita, M. Ohtomo, and N. Suzuki, “Contribution of the flow effect caused by shear-dependent rbc aggregation to nir spectroscopic signals,” Neuroimage 33, 1–10 (2006).
[Crossref] [PubMed]

M. Tomita, “Flow effect impacts nirs, jeopardizing quantification of tissue hemoglobin,” Neuroimage 33, 13–16 (2006).
[Crossref] [PubMed]

2005 (1)

S. Nioka and B. Chance, “Nir spectroscopic detection of breast cancer,” Technol. Cancer Res. Treat. 4, 497–512 (2005).

2004 (2)

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry 55, 501–511 (2004).
[Crossref] [PubMed]

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

K. Matsuo, N. Kato, and T. Kato, “Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy,” Psychol. Med. 32, 1029–1037 (2002).
[Crossref] [PubMed]

2001 (1)

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[Crossref] [PubMed]

1999 (2)

S. R. Arridge, “Optical tomography in medical imaging,” Inv. Probl. 15, R41 (1999).
[Crossref]

K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229–236 (1999).
[Crossref] [PubMed]

1998 (1)

A. J. Fallgatter and W. K. Strik, “Frontal brain activation during the wisconsin card sorting test assessed with two-channel near-infrared spectroscopy,” Eur. Arch. Psychiatry Clin. Neurosci. 248, 245–249 (1998).
[Crossref] [PubMed]

1997 (2)

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[Crossref] [PubMed]

M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
[Crossref] [PubMed]

1996 (2)

F. Costes, J. C. Barthelemy, L. Feasson, T. Busso, A. Geyssant, and C. Denis, “Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans,” J. Appl. Physiol. 80, 1345–1350 (1996).

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

1995 (2)

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[Crossref] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

1993 (2)

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (nirs): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).
[Crossref] [PubMed]

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood. Flow Metab. 13, 516–520 (1993).

1992 (1)

K. Sahlin, “Non-invasive measurements of O2 availability in human skeletal muscle with near-infrared spectroscopy,” Int. J. Sports Med. 13(1), S157–S160 (1992).
[Crossref] [PubMed]

1991 (1)

F. Faris, M. Thorniley, Y. Wickramasinghe, R. Houston, P. Rolfe, N. Livera, and A. Spencer, “Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head,” Clin. Phys. Physiol. Meas. 12, 353–358 (1991).
[Crossref] [PubMed]

1977 (1)

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43, 858–872 (1977).

Arridge, S. R.

Athanasopoulos, D.

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

Banga, A.

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54, 6277–6286 (2009).
[Crossref] [PubMed]

Barnett, N. J.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).

Barthelemy, J. C.

F. Costes, J. C. Barthelemy, L. Feasson, T. Busso, A. Geyssant, and C. Denis, “Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans,” J. Appl. Physiol. 80, 1345–1350 (1996).

Benav, H.

S. Boden, H. Obrig, C. Köhncke, H. Benav, S. P. Koch, and J. Steinbrink, “The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters,” Neuroimage 36, 100–107 (2007).
[Crossref] [PubMed]

Bernarding, J.

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

Boas, D. A.

H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34, 407–415 (2007).
[Crossref]

Boden, S.

S. Boden, H. Obrig, C. Köhncke, H. Benav, S. P. Koch, and J. Steinbrink, “The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters,” Neuroimage 36, 100–107 (2007).
[Crossref] [PubMed]

Bortfeld, H.

H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34, 407–415 (2007).
[Crossref]

Busso, T.

F. Costes, J. C. Barthelemy, L. Feasson, T. Busso, A. Geyssant, and C. Denis, “Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans,” J. Appl. Physiol. 80, 1345–1350 (1996).

Chance, B.

S. Nioka and B. Chance, “Nir spectroscopic detection of breast cancer,” Technol. Cancer Res. Treat. 4, 497–512 (2005).

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Chau, T.

S. D. Power, T. H. Falk, and T. Chau, “Classification of prefrontal activity due to mental arithmetic and music imagery using hidden markov models and frequency domain near-infrared spectroscopy,” J. Neural Eng. 7, 26002 (2010).
[Crossref] [PubMed]

Chen, S.

K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229–236 (1999).
[Crossref] [PubMed]

Chin, L. M. K.

L. M. K. Chin, G. J. F. Heigenhauser, D. H. Paterson, and J. M. Kowalchuk, “Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis,” J. Appl. Physiol. 108(6), 1641–1650 (2010).
[Crossref] [PubMed]

Cope, M.

Correia, T.

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54, 6277–6286 (2009).
[Crossref] [PubMed]

Costes, F.

F. Costes, J. C. Barthelemy, L. Feasson, T. Busso, A. Geyssant, and C. Denis, “Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans,” J. Appl. Physiol. 80, 1345–1350 (1996).

Cubeddu, R.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[Crossref] [PubMed]

Culver, J. P.

Dehghani, H.

Delpy, D. T.

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. ii. effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt. 42, 2915–2922 (2003).
[Crossref] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[Crossref] [PubMed]

M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
[Crossref] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[Crossref] [PubMed]

Denis, C.

F. Costes, J. C. Barthelemy, L. Feasson, T. Busso, A. Geyssant, and C. Denis, “Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans,” J. Appl. Physiol. 80, 1345–1350 (1996).

Dirnagl, U.

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (nirs): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).
[Crossref] [PubMed]

Evans, P. D.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).

Everdell, N. L.

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54, 6277–6286 (2009).
[Crossref] [PubMed]

Falk, T. H.

S. D. Power, T. H. Falk, and T. Chau, “Classification of prefrontal activity due to mental arithmetic and music imagery using hidden markov models and frequency domain near-infrared spectroscopy,” J. Neural Eng. 7, 26002 (2010).
[Crossref] [PubMed]

Fallgatter, A. J.

A. J. Fallgatter and W. K. Strik, “Frontal brain activation during the wisconsin card sorting test assessed with two-channel near-infrared spectroscopy,” Eur. Arch. Psychiatry Clin. Neurosci. 248, 245–249 (1998).
[Crossref] [PubMed]

Faris, F.

F. Faris, M. Thorniley, Y. Wickramasinghe, R. Houston, P. Rolfe, N. Livera, and A. Spencer, “Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head,” Clin. Phys. Physiol. Meas. 12, 353–358 (1991).
[Crossref] [PubMed]

Feasson, L.

F. Costes, J. C. Barthelemy, L. Feasson, T. Busso, A. Geyssant, and C. Denis, “Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans,” J. Appl. Physiol. 80, 1345–1350 (1996).

Firbank, M.

M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
[Crossref] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).
[Crossref] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[Crossref] [PubMed]

Flor, H.

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

Fukuda, M.

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry 55, 501–511 (2004).
[Crossref] [PubMed]

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

Germon, T. J.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).

Geyssant, A.

F. Costes, J. C. Barthelemy, L. Feasson, T. Busso, A. Geyssant, and C. Denis, “Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans,” J. Appl. Physiol. 80, 1345–1350 (1996).

Giambattistelli, E.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[Crossref] [PubMed]

Gibson, A. P.

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54, 6277–6286 (2009).
[Crossref] [PubMed]

Habazettl, H.

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

Hebden, J. C.

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54, 6277–6286 (2009).
[Crossref] [PubMed]

Heigenhauser, G. J. F.

L. M. K. Chin, G. J. F. Heigenhauser, D. H. Paterson, and J. M. Kowalchuk, “Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis,” J. Appl. Physiol. 108(6), 1641–1650 (2010).
[Crossref] [PubMed]

Hielscher, A. H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Hirth, C.

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

Hock, C.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (nirs): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).
[Crossref] [PubMed]

Homae, F.

G. Taga, F. Homae, and H. Watanabe, “Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants,” Neuroimage 38, 452–460 (2007).
[Crossref] [PubMed]

Houston, R.

F. Faris, M. Thorniley, Y. Wickramasinghe, R. Houston, P. Rolfe, N. Livera, and A. Spencer, “Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head,” Clin. Phys. Physiol. Meas. 12, 353–358 (1991).
[Crossref] [PubMed]

Ito, M.

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry 55, 501–511 (2004).
[Crossref] [PubMed]

Jacques, S. L.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Jöbsis, F. F.

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43, 858–872 (1977).

Kamei, A.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood. Flow Metab. 13, 516–520 (1993).

Kameyama, M.

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

Kato, N.

K. Matsuo, N. Kato, and T. Kato, “Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy,” Psychol. Med. 32, 1029–1037 (2002).
[Crossref] [PubMed]

Kato, T.

K. Matsuo, N. Kato, and T. Kato, “Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy,” Psychol. Med. 32, 1029–1037 (2002).
[Crossref] [PubMed]

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood. Flow Metab. 13, 516–520 (1993).

Keizer, J. H.

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43, 858–872 (1977).

Koch, S. P.

S. Boden, H. Obrig, C. Köhncke, H. Benav, S. P. Koch, and J. Steinbrink, “The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters,” Neuroimage 36, 100–107 (2007).
[Crossref] [PubMed]

Kodibagkar, V.

M. Xia, V. Kodibagkar, H. Liu, and R. P. Mason, “Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19f magnetic resonance imaging in rats,” Phys. Med. Biol. 51, 45–60 (2006).
[Crossref]

Köhncke, C.

S. Boden, H. Obrig, C. Köhncke, H. Benav, S. P. Koch, and J. Steinbrink, “The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters,” Neuroimage 36, 100–107 (2007).
[Crossref] [PubMed]

Kotilahti, K.

T. Näsi, K. Kotilahti, T. Noponen, I. Nissilä, L. Lipiäinen, and P. Meriläinen, “Correlation of visual-evoked hemodynamic responses and potentials in human brain,” Exp. Brain Res. 202(3), 561–570 (2010).
[Crossref] [PubMed]

Kowalchuk, J. M.

L. M. K. Chin, G. J. F. Heigenhauser, D. H. Paterson, and J. M. Kowalchuk, “Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis,” J. Appl. Physiol. 108(6), 1641–1650 (2010).
[Crossref] [PubMed]

Kuebler, W. M.

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

LaManna, J. C.

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43, 858–872 (1977).

Lichty, W.

K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229–236 (1999).
[Crossref] [PubMed]

Lipiäinen, L.

T. Näsi, K. Kotilahti, T. Noponen, I. Nissilä, L. Lipiäinen, and P. Meriläinen, “Correlation of visual-evoked hemodynamic responses and potentials in human brain,” Exp. Brain Res. 202(3), 561–570 (2010).
[Crossref] [PubMed]

Liu, H.

M. Xia, V. Kodibagkar, H. Liu, and R. P. Mason, “Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19f magnetic resonance imaging in rats,” Phys. Med. Biol. 51, 45–60 (2006).
[Crossref]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Liu, R.

R. Liu, X. Liu, F. Scopesi, G. Serra, J. W. Sun, and P. Rolfe, “Spatial sensitivity of nirs tissue oxygenation measurement using a simplified instrument,” in “7th Asian-Pacific Conference on Medical and Biological Engineering,” vol. 19 of IFMBE Proceedings (2008), vol. 19 of IFMBE Proceedings, pp. 377–380.

Liu, X.

R. Liu, X. Liu, F. Scopesi, G. Serra, J. W. Sun, and P. Rolfe, “Spatial sensitivity of nirs tissue oxygenation measurement using a simplified instrument,” in “7th Asian-Pacific Conference on Medical and Biological Engineering,” vol. 19 of IFMBE Proceedings (2008), vol. 19 of IFMBE Proceedings, pp. 377–380.

Livera, N.

F. Faris, M. Thorniley, Y. Wickramasinghe, R. Houston, P. Rolfe, N. Livera, and A. Spencer, “Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head,” Clin. Phys. Physiol. Meas. 12, 353–358 (1991).
[Crossref] [PubMed]

Manara, A. R.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).

Mason, R. P.

M. Xia, V. Kodibagkar, H. Liu, and R. P. Mason, “Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19f magnetic resonance imaging in rats,” Phys. Med. Biol. 51, 45–60 (2006).
[Crossref]

Matsuo, K.

K. Matsuo, N. Kato, and T. Kato, “Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy,” Psychol. Med. 32, 1029–1037 (2002).
[Crossref] [PubMed]

Meriläinen, P.

T. Näsi, K. Kotilahti, T. Noponen, I. Nissilä, L. Lipiäinen, and P. Meriläinen, “Correlation of visual-evoked hemodynamic responses and potentials in human brain,” Exp. Brain Res. 202(3), 561–570 (2010).
[Crossref] [PubMed]

Mikuni, M.

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry 55, 501–511 (2004).
[Crossref] [PubMed]

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

Morihiro, M.

M. Morihiro, T. Tsubone, and Y. Wada, “Relation between nirs signal and motor capability,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2009, 3991–3994 (2009).

Mühlnickel, W.

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

Näsi, T.

T. Näsi, K. Kotilahti, T. Noponen, I. Nissilä, L. Lipiäinen, and P. Meriläinen, “Correlation of visual-evoked hemodynamic responses and potentials in human brain,” Exp. Brain Res. 202(3), 561–570 (2010).
[Crossref] [PubMed]

Nelson, R. J.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).

Nioka, S.

S. Nioka and B. Chance, “Nir spectroscopic detection of breast cancer,” Technol. Cancer Res. Treat. 4, 497–512 (2005).

Nissilä, I.

T. Näsi, K. Kotilahti, T. Noponen, I. Nissilä, L. Lipiäinen, and P. Meriläinen, “Correlation of visual-evoked hemodynamic responses and potentials in human brain,” Exp. Brain Res. 202(3), 561–570 (2010).
[Crossref] [PubMed]

Noponen, T.

T. Näsi, K. Kotilahti, T. Noponen, I. Nissilä, L. Lipiäinen, and P. Meriläinen, “Correlation of visual-evoked hemodynamic responses and potentials in human brain,” Exp. Brain Res. 202(3), 561–570 (2010).
[Crossref] [PubMed]

Obrig, H.

S. Boden, H. Obrig, C. Köhncke, H. Benav, S. P. Koch, and J. Steinbrink, “The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters,” Neuroimage 36, 100–107 (2007).
[Crossref] [PubMed]

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

Oda, M.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[Crossref] [PubMed]

Ohtomo, M.

M. Tomita, M. Ohtomo, and N. Suzuki, “Contribution of the flow effect caused by shear-dependent rbc aggregation to nir spectroscopic signals,” Neuroimage 33, 1–10 (2006).
[Crossref] [PubMed]

Okada, E.

Ozaki, T.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood. Flow Metab. 13, 516–520 (1993).

Paterson, D. H.

L. M. K. Chin, G. J. F. Heigenhauser, D. H. Paterson, and J. M. Kowalchuk, “Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis,” J. Appl. Physiol. 108(6), 1641–1650 (2010).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

Pifferi, A.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[Crossref] [PubMed]

Planck, J.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (nirs): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).
[Crossref] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

Power, S. D.

S. D. Power, T. H. Falk, and T. Chau, “Classification of prefrontal activity due to mental arithmetic and music imagery using hidden markov models and frequency domain near-infrared spectroscopy,” J. Neural Eng. 7, 26002 (2010).
[Crossref] [PubMed]

Rolfe, P.

F. Faris, M. Thorniley, Y. Wickramasinghe, R. Houston, P. Rolfe, N. Livera, and A. Spencer, “Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head,” Clin. Phys. Physiol. Meas. 12, 353–358 (1991).
[Crossref] [PubMed]

R. Liu, X. Liu, F. Scopesi, G. Serra, J. W. Sun, and P. Rolfe, “Spatial sensitivity of nirs tissue oxygenation measurement using a simplified instrument,” in “7th Asian-Pacific Conference on Medical and Biological Engineering,” vol. 19 of IFMBE Proceedings (2008), vol. 19 of IFMBE Proceedings, pp. 377–380.

Rosenthal, M.

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43, 858–872 (1977).

Roussos, C.

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

Sahlin, K.

K. Sahlin, “Non-invasive measurements of O2 availability in human skeletal muscle with near-infrared spectroscopy,” Int. J. Sports Med. 13(1), S157–S160 (1992).
[Crossref] [PubMed]

Sakatani, K.

K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229–236 (1999).
[Crossref] [PubMed]

Schleinkofer, L.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (nirs): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).
[Crossref] [PubMed]

Schweiger, M.

Scopesi, F.

R. Liu, X. Liu, F. Scopesi, G. Serra, J. W. Sun, and P. Rolfe, “Spatial sensitivity of nirs tissue oxygenation measurement using a simplified instrument,” in “7th Asian-Pacific Conference on Medical and Biological Engineering,” vol. 19 of IFMBE Proceedings (2008), vol. 19 of IFMBE Proceedings, pp. 377–380.

Serra, G.

R. Liu, X. Liu, F. Scopesi, G. Serra, J. W. Sun, and P. Rolfe, “Spatial sensitivity of nirs tissue oxygenation measurement using a simplified instrument,” in “7th Asian-Pacific Conference on Medical and Biological Engineering,” vol. 19 of IFMBE Proceedings (2008), vol. 19 of IFMBE Proceedings, pp. 377–380.

Spencer, A.

F. Faris, M. Thorniley, Y. Wickramasinghe, R. Houston, P. Rolfe, N. Livera, and A. Spencer, “Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head,” Clin. Phys. Physiol. Meas. 12, 353–358 (1991).
[Crossref] [PubMed]

Steinbrink, J.

S. Boden, H. Obrig, C. Köhncke, H. Benav, S. P. Koch, and J. Steinbrink, “The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters,” Neuroimage 36, 100–107 (2007).
[Crossref] [PubMed]

Strik, W. K.

A. J. Fallgatter and W. K. Strik, “Frontal brain activation during the wisconsin card sorting test assessed with two-channel near-infrared spectroscopy,” Eur. Arch. Psychiatry Clin. Neurosci. 248, 245–249 (1998).
[Crossref] [PubMed]

Sun, J. W.

R. Liu, X. Liu, F. Scopesi, G. Serra, J. W. Sun, and P. Rolfe, “Spatial sensitivity of nirs tissue oxygenation measurement using a simplified instrument,” in “7th Asian-Pacific Conference on Medical and Biological Engineering,” vol. 19 of IFMBE Proceedings (2008), vol. 19 of IFMBE Proceedings, pp. 377–380.

Suto, T.

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry 55, 501–511 (2004).
[Crossref] [PubMed]

Suzuki, N.

M. Tomita, M. Ohtomo, and N. Suzuki, “Contribution of the flow effect caused by shear-dependent rbc aggregation to nir spectroscopic signals,” Neuroimage 33, 1–10 (2006).
[Crossref] [PubMed]

Taga, G.

G. Taga, F. Homae, and H. Watanabe, “Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants,” Neuroimage 38, 452–460 (2007).
[Crossref] [PubMed]

Takashima, S.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood. Flow Metab. 13, 516–520 (1993).

Taroni, P.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[Crossref] [PubMed]

Thiel, A.

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

Thorniley, M.

F. Faris, M. Thorniley, Y. Wickramasinghe, R. Houston, P. Rolfe, N. Livera, and A. Spencer, “Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head,” Clin. Phys. Physiol. Meas. 12, 353–358 (1991).
[Crossref] [PubMed]

Tittel, F. K.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Tizzard, A.

Tomita, M.

M. Tomita, “Flow effect impacts nirs, jeopardizing quantification of tissue hemoglobin,” Neuroimage 33, 13–16 (2006).
[Crossref] [PubMed]

M. Tomita, M. Ohtomo, and N. Suzuki, “Contribution of the flow effect caused by shear-dependent rbc aggregation to nir spectroscopic signals,” Neuroimage 33, 1–10 (2006).
[Crossref] [PubMed]

Torricelli, A.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[Crossref] [PubMed]

Tsubone, T.

M. Morihiro, T. Tsubone, and Y. Wada, “Relation between nirs signal and motor capability,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2009, 3991–3994 (2009).

Uehara, T.

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry 55, 501–511 (2004).
[Crossref] [PubMed]

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

Ungruhe, J.

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

Villringer, A.

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (nirs): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).
[Crossref] [PubMed]

Villringer, K.

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

Vogiatzis, I.

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

Wada, Y.

M. Morihiro, T. Tsubone, and Y. Wada, “Relation between nirs signal and motor capability,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2009, 3991–3994 (2009).

Wagner, H. E.

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

Wagner, P. D.

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

Wall, P.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).

Wang, Y. P.

K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229–236 (1999).
[Crossref] [PubMed]

Watanabe, H.

G. Taga, F. Homae, and H. Watanabe, “Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants,” Neuroimage 38, 452–460 (2007).
[Crossref] [PubMed]

White, B. R.

Wickramasinghe, Y.

F. Faris, M. Thorniley, Y. Wickramasinghe, R. Houston, P. Rolfe, N. Livera, and A. Spencer, “Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head,” Clin. Phys. Physiol. Meas. 12, 353–358 (1991).
[Crossref] [PubMed]

Wruck, E.

H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34, 407–415 (2007).
[Crossref]

Xia, M.

M. Xia, V. Kodibagkar, H. Liu, and R. P. Mason, “Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19f magnetic resonance imaging in rats,” Phys. Med. Biol. 51, 45–60 (2006).
[Crossref]

Zakynthinos, S. G.

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

Zeff, B. W.

Zuo, H.

K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229–236 (1999).
[Crossref] [PubMed]

Appl. Opt. (3)

Biol. Psychiatry (1)

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry 55, 501–511 (2004).
[Crossref] [PubMed]

Clin. Phys. Physiol. Meas. (1)

F. Faris, M. Thorniley, Y. Wickramasinghe, R. Houston, P. Rolfe, N. Livera, and A. Spencer, “Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head,” Clin. Phys. Physiol. Meas. 12, 353–358 (1991).
[Crossref] [PubMed]

Early Hum. Dev. (1)

K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229–236 (1999).
[Crossref] [PubMed]

Eur. Arch. Psychiatry Clin. Neurosci. (1)

A. J. Fallgatter and W. K. Strik, “Frontal brain activation during the wisconsin card sorting test assessed with two-channel near-infrared spectroscopy,” Eur. Arch. Psychiatry Clin. Neurosci. 248, 245–249 (1998).
[Crossref] [PubMed]

Exp. Brain Res. (1)

T. Näsi, K. Kotilahti, T. Noponen, I. Nissilä, L. Lipiäinen, and P. Meriläinen, “Correlation of visual-evoked hemodynamic responses and potentials in human brain,” Exp. Brain Res. 202(3), 561–570 (2010).
[Crossref] [PubMed]

Int. J. Sports Med. (1)

K. Sahlin, “Non-invasive measurements of O2 availability in human skeletal muscle with near-infrared spectroscopy,” Int. J. Sports Med. 13(1), S157–S160 (1992).
[Crossref] [PubMed]

Inv. Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inv. Probl. 15, R41 (1999).
[Crossref]

J. Appl. Physiol. (4)

F. Costes, J. C. Barthelemy, L. Feasson, T. Busso, A. Geyssant, and C. Denis, “Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans,” J. Appl. Physiol. 80, 1345–1350 (1996).

L. M. K. Chin, G. J. F. Heigenhauser, D. H. Paterson, and J. M. Kowalchuk, “Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis,” J. Appl. Physiol. 108(6), 1641–1650 (2010).
[Crossref] [PubMed]

H. Habazettl, D. Athanasopoulos, W. M. Kuebler, H. E. Wagner, C. Roussos, P. D. Wagner, J. Ungruhe, S. G. Zakynthinos, and I. Vogiatzis, “Near-infrared spectroscopy and indocyanine green derived blood flow index for non-invasive measurement of muscle perfusion during exercise,” J. Appl. Physiol. 108(4), 962–967 (2010).
[Crossref] [PubMed]

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43, 858–872 (1977).

J. Biomed. Opt. (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

J. Cereb. Blood. Flow Metab. (1)

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood. Flow Metab. 13, 516–520 (1993).

J. Neural Eng. (1)

S. D. Power, T. H. Falk, and T. Chau, “Classification of prefrontal activity due to mental arithmetic and music imagery using hidden markov models and frequency domain near-infrared spectroscopy,” J. Neural Eng. 7, 26002 (2010).
[Crossref] [PubMed]

Med. Phys. (1)

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Neuroimage (6)

M. Tomita, M. Ohtomo, and N. Suzuki, “Contribution of the flow effect caused by shear-dependent rbc aggregation to nir spectroscopic signals,” Neuroimage 33, 1–10 (2006).
[Crossref] [PubMed]

M. Tomita, “Flow effect impacts nirs, jeopardizing quantification of tissue hemoglobin,” Neuroimage 33, 13–16 (2006).
[Crossref] [PubMed]

G. Taga, F. Homae, and H. Watanabe, “Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants,” Neuroimage 38, 452–460 (2007).
[Crossref] [PubMed]

H. Bortfeld, E. Wruck, and D. A. Boas, “Assessing infants’ cortical response to speech using near-infrared spectroscopy,” Neuroimage 34, 407–415 (2007).
[Crossref]

S. Boden, H. Obrig, C. Köhncke, H. Benav, S. P. Koch, and J. Steinbrink, “The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters,” Neuroimage 36, 100–107 (2007).
[Crossref] [PubMed]

M. Kameyama, M. Fukuda, T. Uehara, and M. Mikuni, “Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study,” Neuroimage 22, 1715–1721 (2004).
[Crossref] [PubMed]

Neuroreport (1)

C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Mühlnickel, H. Flor, U. Dirnagl, and A. Villringer, “Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy,” Neuroreport 7, 1977–1981 (1996).
[Crossref] [PubMed]

Neurosci. Lett. (1)

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (nirs): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).
[Crossref] [PubMed]

Phys. Med. Biol. (5)

M. Xia, V. Kodibagkar, H. Liu, and R. P. Mason, “Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19f magnetic resonance imaging in rats,” Phys. Med. Biol. 51, 45–60 (2006).
[Crossref]

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54, 6277–6286 (2009).
[Crossref] [PubMed]

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001).
[Crossref] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[Crossref] [PubMed]

M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
[Crossref] [PubMed]

Psychol. Med. (1)

K. Matsuo, N. Kato, and T. Kato, “Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy,” Psychol. Med. 32, 1029–1037 (2002).
[Crossref] [PubMed]

Technol. Cancer Res. Treat. (1)

S. Nioka and B. Chance, “Nir spectroscopic detection of breast cancer,” Technol. Cancer Res. Treat. 4, 497–512 (2005).

Other (3)

M. Morihiro, T. Tsubone, and Y. Wada, “Relation between nirs signal and motor capability,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2009, 3991–3994 (2009).

R. Liu, X. Liu, F. Scopesi, G. Serra, J. W. Sun, and P. Rolfe, “Spatial sensitivity of nirs tissue oxygenation measurement using a simplified instrument,” in “7th Asian-Pacific Conference on Medical and Biological Engineering,” vol. 19 of IFMBE Proceedings (2008), vol. 19 of IFMBE Proceedings, pp. 377–380.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Principle idea of the experimental setup to determine NIRS sensitivity.
Fig. 3
Fig. 3 The experimental setup.
Fig. 2
Fig. 2 Principal components of the experimental setup:
Fig. 4
Fig. 4 Scanning trajectory for a plane in Y–Z plane.
Fig. 5
Fig. 5 Part view of raw scan data after detrending (’. . . .’ Front marker, ’- - -’ Depth marker).
Fig. 7
Fig. 7 Sensitivity map creation: elimination of glass holder effect exemplary demonstrated with slice y=0.
Fig. 8
Fig. 8 Surfaces of photon iso-activity for a source detector distance of 20 mm.
Fig. 9
Fig. 9 Comparison of results from experiments (solid thin lines) and simulations (thick dashed lines). Experiments have been carried out in a background medium of ’normal’ scattering and absorption. According parameter values have been entered in the simulation (emitter-detector distance: 20mm).
Fig. 10
Fig. 10 Comparison of results from experiments with different background medium: upper row ’normal’ scattering and low (half normal) absorption, lower row ’normal’ scattering and high (doubled) absorption. The left hand side gives the lower topview, the right the middle cross section. The distance between emitter and detector has been 20mm.
Fig. 11
Fig. 11 Sensitivity maps for different source-detector distances with the same scattering and absorption of the background.
Fig. 12
Fig. 12 Penetration depth measure for emitter-detector distances of 20, 30 and 40mm. Shown are the cross sections of the sensitivity map in the bisector plane of emitter-detector connection for experiments with low absorbing medium. From top to bottom are given: local sensitivity, sensitivity normalized to the individual total sensitivity, accumulated relative sensitivity. The 75% line of cumulated activity defines the penetration depth measure.
Fig. 6
Fig. 6 Volume scan presented as sequence of x–z slices for a control scan with y=0 at the source-detector connection line.
Fig. 13
Fig. 13 Penetration depth measure as function of source-detector distance.

Tables (1)

Tables Icon

Table 1 Penetration Depth Measure as Function of Source-Detector Distance

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D ( r ) Φ ( r , ω ) + ( μ a ( r ) + j ω c ) Φ ( r , ω ) = f ( r , ω ) ,
Φ ( r , ω ) 2 A n D ( r ) Φ ( r , ω ) = 0.
I d λ = I s λ exp ( ( μ a λ + μ s λ ) P L ) ,
μ a λ = ɛ H b O λ [ H b O ] + ɛ H b R λ [ H b R . ]
I d λ = I s λ exp ( μ a λ l D P F ) ,
μ a * λ = 1 l D P F ln ( I s λ I d λ ) = 1 l D P F O D λ .

Metrics