Abstract

We present a full field laser Doppler imaging instrument, which enables real-time in vivo assessment of blood flow in dermal tissue and skin. This instrument monitors the blood perfusion in an area of about 50 cm2 with 480 × 480 pixels per frame at a rate of 12–14 frames per second. Smaller frames can be monitored at much higher frame rates. We recorded the microcirculation in healthy skin before, during and after arterial occlusion. In initial clinical case studies, we imaged the microcirculation in burned skin and monitored the recovery of blood flow in a skin flap during reconstructive surgery indicating the high potential of LDI for clinical applications. Small animal imaging in mouse ears clearly revealed the network of blood vessels and the corresponding blood perfusion.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
    [CrossRef] [PubMed]
  2. K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40(4), 309–316 (1993).
    [CrossRef] [PubMed]
  3. S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
    [CrossRef] [PubMed]
  4. F. W. H. Kloppenberg, G. I. J. M. Beerthuizen, and H. J. ten Duis, “Perfusion of burn wounds assessed by laser doppler imaging is related to burn depth and healing time,” Burns 27(4), 359–363 (2001).
    [CrossRef] [PubMed]
  5. E. R. La Hei, A. J. A. Holland, and H. C. O. Martin, “Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination,” Burns 32(5), 550–553 (2006).
    [CrossRef] [PubMed]
  6. D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
    [CrossRef] [PubMed]
  7. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
    [CrossRef] [PubMed]
  8. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
    [CrossRef] [PubMed]
  9. J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13(2), 345–350 (1996).
    [CrossRef]
  10. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
    [CrossRef] [PubMed]
  11. P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
    [CrossRef]
  12. H. C. Eun, “Evaluation of skin blood flow by laser Doppler flowmetry,” Clin. Dermatol. 13(4), 337–347 (1995).
    [CrossRef] [PubMed]
  13. B. A. Kingwell, M. Formosa, M. Muhlmann, S. J. Bradley, and G. K. McConell, “Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation,” Diabetes Care 26(3), 899–904 (2003).
    [CrossRef] [PubMed]
  14. C. Pellaton, S. Kubli, F. Feihl, and B. Waeber, “Blunted vasodilatory responses in the cutaneous microcirculation of cigarette smokers,” Am. Heart J. 144(2), 269–274 (2002).
    [PubMed]
  15. A. K. Murray, A. L. Herrick, and T. A. King, “Laser Doppler imaging: a developing technique for application in the rheumatic diseases,” Rheumatology (Oxford) 43(10), 1210–1218 (2004).
    [CrossRef] [PubMed]
  16. M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
    [CrossRef] [PubMed]
  17. J. C. Palmer, S. Baig, P. G. Kehoe, and S. Love, “Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Abeta,” Am. J. Pathol. 175(1), 262–270 (2009).
    [CrossRef] [PubMed]
  18. A. Serov, W. Steenbergen, and F. de Mul, “Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor,” Opt. Lett. 27(5), 300–302 (2002).
    [CrossRef] [PubMed]
  19. A. Serov, B. Steinacher, and T. Lasser, “Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera,” Opt. Express 13(10), 3681–3689 (2005).
    [CrossRef] [PubMed]
  20. A. Serov and T. Lasser, “High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor,” Opt. Express 13(17), 6416–6428 (2005).
    [CrossRef] [PubMed]
  21. A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
    [CrossRef] [PubMed]
  22. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging,” Opt. Express 17(5), 3211–3225 (2009).
    [CrossRef] [PubMed]
  23. S. A. Aïmago, Lausanne, Switzerland, http://www.aimago.com/ (Feb. 2011).
  24. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097–2107 (1981).
    [CrossRef] [PubMed]
  25. A. P. Shepherd and P. Å. Öberg, eds., Laser-Doppler Blood Flowmetry (Kluwer Academic, Boston, 1990).
  26. H. Nilsson, “Photon migration in tissue. Laser induced fluorescence for cancer diagnostics and influence of optical properties on microvascular Doppler spectroscopy,” Ph.D. thesis (Faculty of Health Sciences, Linköpings Universitet, 2002).
  27. A. Serov, W. Steenbergen, and F. de Mul, “Prediction of the photodetector signal generated by Doppler-induced speckle fluctuations: theory and some validations,” J. Opt. Soc. Am. A 18(3), 622–630 (2001).
    [CrossRef]

2009

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

J. C. Palmer, S. Baig, P. G. Kehoe, and S. Love, “Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Abeta,” Am. J. Pathol. 175(1), 262–270 (2009).
[CrossRef] [PubMed]

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging,” Opt. Express 17(5), 3211–3225 (2009).
[CrossRef] [PubMed]

2007

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[CrossRef] [PubMed]

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[CrossRef]

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

2006

E. R. La Hei, A. J. A. Holland, and H. C. O. Martin, “Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination,” Burns 32(5), 550–553 (2006).
[CrossRef] [PubMed]

2005

2004

A. K. Murray, A. L. Herrick, and T. A. King, “Laser Doppler imaging: a developing technique for application in the rheumatic diseases,” Rheumatology (Oxford) 43(10), 1210–1218 (2004).
[CrossRef] [PubMed]

2003

B. A. Kingwell, M. Formosa, M. Muhlmann, S. J. Bradley, and G. K. McConell, “Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation,” Diabetes Care 26(3), 899–904 (2003).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

2002

C. Pellaton, S. Kubli, F. Feihl, and B. Waeber, “Blunted vasodilatory responses in the cutaneous microcirculation of cigarette smokers,” Am. Heart J. 144(2), 269–274 (2002).
[PubMed]

A. Serov, W. Steenbergen, and F. de Mul, “Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor,” Opt. Lett. 27(5), 300–302 (2002).
[CrossRef] [PubMed]

2001

A. Serov, W. Steenbergen, and F. de Mul, “Prediction of the photodetector signal generated by Doppler-induced speckle fluctuations: theory and some validations,” J. Opt. Soc. Am. A 18(3), 622–630 (2001).
[CrossRef]

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef] [PubMed]

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[CrossRef] [PubMed]

F. W. H. Kloppenberg, G. I. J. M. Beerthuizen, and H. J. ten Duis, “Perfusion of burn wounds assessed by laser doppler imaging is related to burn depth and healing time,” Burns 27(4), 359–363 (2001).
[CrossRef] [PubMed]

1996

1995

H. C. Eun, “Evaluation of skin blood flow by laser Doppler flowmetry,” Clin. Dermatol. 13(4), 337–347 (1995).
[CrossRef] [PubMed]

1993

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[CrossRef] [PubMed]

K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40(4), 309–316 (1993).
[CrossRef] [PubMed]

1981

Andermann, M. L.

Baig, S.

J. C. Palmer, S. Baig, P. G. Kehoe, and S. Love, “Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Abeta,” Am. J. Pathol. 175(1), 262–270 (2009).
[CrossRef] [PubMed]

Baker, M. L.

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

Beerthuizen, G. I. J. M.

F. W. H. Kloppenberg, G. I. J. M. Beerthuizen, and H. J. ten Duis, “Perfusion of burn wounds assessed by laser doppler imaging is related to burn depth and healing time,” Burns 27(4), 359–363 (2001).
[CrossRef] [PubMed]

Bernick, C.

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

Black, M. J.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[CrossRef] [PubMed]

Boas, D. A.

Bolay, H.

Bonner, R.

Bradley, S. J.

B. A. Kingwell, M. Formosa, M. Muhlmann, S. J. Bradley, and G. K. McConell, “Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation,” Diabetes Care 26(3), 899–904 (2003).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef] [PubMed]

J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13(2), 345–350 (1996).
[CrossRef]

Byrne, P. O.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[CrossRef] [PubMed]

Dale, A. M.

de Mul, F.

Devor, A.

Draijer, M.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging,” Opt. Express 17(5), 3211–3225 (2009).
[CrossRef] [PubMed]

Dunn, A. K.

Essex, T. J.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[CrossRef] [PubMed]

Eun, H. C.

H. C. Eun, “Evaluation of skin blood flow by laser Doppler flowmetry,” Clin. Dermatol. 13(4), 337–347 (1995).
[CrossRef] [PubMed]

Feihl, F.

C. Pellaton, S. Kubli, F. Feihl, and B. Waeber, “Blunted vasodilatory responses in the cutaneous microcirculation of cigarette smokers,” Am. Heart J. 144(2), 269–274 (2002).
[PubMed]

Formosa, M.

B. A. Kingwell, M. Formosa, M. Muhlmann, S. J. Bradley, and G. K. McConell, “Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation,” Diabetes Care 26(3), 899–904 (2003).
[CrossRef] [PubMed]

Gerlach, R.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Hattingen, E.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Hauger, C.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Herrick, A. L.

A. K. Murray, A. L. Herrick, and T. A. King, “Laser Doppler imaging: a developing technique for application in the rheumatic diseases,” Rheumatology (Oxford) 43(10), 1210–1218 (2004).
[CrossRef] [PubMed]

Holland, A. J. A.

E. R. La Hei, A. J. A. Holland, and H. C. O. Martin, “Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination,” Burns 32(5), 550–553 (2006).
[CrossRef] [PubMed]

Hondebrink, E.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging,” Opt. Express 17(5), 3211–3225 (2009).
[CrossRef] [PubMed]

Jakobsson, A.

K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40(4), 309–316 (1993).
[CrossRef] [PubMed]

Kehoe, P. G.

J. C. Palmer, S. Baig, P. G. Kehoe, and S. Love, “Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Abeta,” Am. J. Pathol. 175(1), 262–270 (2009).
[CrossRef] [PubMed]

King, T. A.

A. K. Murray, A. L. Herrick, and T. A. King, “Laser Doppler imaging: a developing technique for application in the rheumatic diseases,” Rheumatology (Oxford) 43(10), 1210–1218 (2004).
[CrossRef] [PubMed]

Kingwell, B. A.

B. A. Kingwell, M. Formosa, M. Muhlmann, S. J. Bradley, and G. K. McConell, “Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation,” Diabetes Care 26(3), 899–904 (2003).
[CrossRef] [PubMed]

Klein, B. E. K.

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

Klein, R.

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

Kloppenberg, F. W. H.

F. W. H. Kloppenberg, G. I. J. M. Beerthuizen, and H. J. ten Duis, “Perfusion of burn wounds assessed by laser doppler imaging is related to burn depth and healing time,” Burns 27(4), 359–363 (2001).
[CrossRef] [PubMed]

Kubli, S.

C. Pellaton, S. Kubli, F. Feihl, and B. Waeber, “Blunted vasodilatory responses in the cutaneous microcirculation of cigarette smokers,” Am. Heart J. 144(2), 269–274 (2002).
[PubMed]

Kuller, L. H.

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

La Hei, E. R.

E. R. La Hei, A. J. A. Holland, and H. C. O. Martin, “Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination,” Burns 32(5), 550–553 (2006).
[CrossRef] [PubMed]

Lasser, T.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

A. Serov, B. Steinacher, and T. Lasser, “Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera,” Opt. Express 13(10), 3681–3689 (2005).
[CrossRef] [PubMed]

A. Serov and T. Lasser, “High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor,” Opt. Express 13(17), 6416–6428 (2005).
[CrossRef] [PubMed]

Leitgeb, R.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Leutenegger, M.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Lindken, R.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[CrossRef]

Lopez, A.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Love, S.

J. C. Palmer, S. Baig, P. G. Kehoe, and S. Love, “Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Abeta,” Am. J. Pathol. 175(1), 262–270 (2009).
[CrossRef] [PubMed]

MacKay, I. R.

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[CrossRef] [PubMed]

Manolio, T. A.

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

Marino Larsen, E. K.

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

Martin, H. C. O.

E. R. La Hei, A. J. A. Holland, and H. C. O. Martin, “Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination,” Burns 32(5), 550–553 (2006).
[CrossRef] [PubMed]

Martin-Williams, E. J.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

McConell, G. K.

B. A. Kingwell, M. Formosa, M. Muhlmann, S. J. Bradley, and G. K. McConell, “Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation,” Diabetes Care 26(3), 899–904 (2003).
[CrossRef] [PubMed]

McGill, D. J.

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[CrossRef] [PubMed]

McLean, N. R.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[CrossRef] [PubMed]

Moskowitz, M. A.

Muhlmann, M.

B. A. Kingwell, M. Formosa, M. Muhlmann, S. J. Bradley, and G. K. McConell, “Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation,” Diabetes Care 26(3), 899–904 (2003).
[CrossRef] [PubMed]

Murray, A. K.

A. K. Murray, A. L. Herrick, and T. A. King, “Laser Doppler imaging: a developing technique for application in the rheumatic diseases,” Rheumatology (Oxford) 43(10), 1210–1218 (2004).
[CrossRef] [PubMed]

Niazi, Z. B.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[CrossRef] [PubMed]

Nilsson, G. E.

K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40(4), 309–316 (1993).
[CrossRef] [PubMed]

Nossal, R.

Palmer, J. C.

J. C. Palmer, S. Baig, P. G. Kehoe, and S. Love, “Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Abeta,” Am. J. Pathol. 175(1), 262–270 (2009).
[CrossRef] [PubMed]

Pape, S. A.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[CrossRef] [PubMed]

Papini, R.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[CrossRef] [PubMed]

Pellaton, C.

C. Pellaton, S. Kubli, F. Feihl, and B. Waeber, “Blunted vasodilatory responses in the cutaneous microcirculation of cigarette smokers,” Am. Heart J. 144(2), 269–274 (2002).
[PubMed]

Raabe, A.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Scott, D.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[CrossRef] [PubMed]

Seifert, V.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Serov, A.

Siscovick, D. S.

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

Skouras, C. A.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[CrossRef] [PubMed]

Sørensen, K.

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[CrossRef] [PubMed]

Steenbergen, W.

Steinacher, B.

Szelényi, A.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Taggart, I.

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[CrossRef] [PubMed]

ten Duis, H. J.

F. W. H. Kloppenberg, G. I. J. M. Beerthuizen, and H. J. ten Duis, “Perfusion of burn wounds assessed by laser doppler imaging is related to burn depth and healing time,” Burns 27(4), 359–363 (2001).
[CrossRef] [PubMed]

Unser, M.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Van De Ville, D.

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

van Leeuwen, T.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging,” Opt. Express 17(5), 3211–3225 (2009).
[CrossRef] [PubMed]

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

Vennemann, P.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[CrossRef]

Waeber, B.

C. Pellaton, S. Kubli, F. Feihl, and B. Waeber, “Blunted vasodilatory responses in the cutaneous microcirculation of cigarette smokers,” Am. Heart J. 144(2), 269–274 (2002).
[PubMed]

Wårdell, K.

K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40(4), 309–316 (1993).
[CrossRef] [PubMed]

Watson, S. B.

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[CrossRef] [PubMed]

Westerweel, J.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[CrossRef]

Wong, T. Y.

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

Am. Heart J.

C. Pellaton, S. Kubli, F. Feihl, and B. Waeber, “Blunted vasodilatory responses in the cutaneous microcirculation of cigarette smokers,” Am. Heart J. 144(2), 269–274 (2002).
[PubMed]

Am. J. Pathol.

J. C. Palmer, S. Baig, P. G. Kehoe, and S. Love, “Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Abeta,” Am. J. Pathol. 175(1), 262–270 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Burns

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[CrossRef] [PubMed]

F. W. H. Kloppenberg, G. I. J. M. Beerthuizen, and H. J. ten Duis, “Perfusion of burn wounds assessed by laser doppler imaging is related to burn depth and healing time,” Burns 27(4), 359–363 (2001).
[CrossRef] [PubMed]

E. R. La Hei, A. J. A. Holland, and H. C. O. Martin, “Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination,” Burns 32(5), 550–553 (2006).
[CrossRef] [PubMed]

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[CrossRef] [PubMed]

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993).
[CrossRef] [PubMed]

Clin. Dermatol.

H. C. Eun, “Evaluation of skin blood flow by laser Doppler flowmetry,” Clin. Dermatol. 13(4), 337–347 (1995).
[CrossRef] [PubMed]

Diabetes Care

B. A. Kingwell, M. Formosa, M. Muhlmann, S. J. Bradley, and G. K. McConell, “Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation,” Diabetes Care 26(3), 899–904 (2003).
[CrossRef] [PubMed]

Exp. Fluids

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[CrossRef]

IEEE Trans. Biomed. Eng.

K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40(4), 309–316 (1993).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Lasers Med. Sci.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

Neuroimage

A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Physiol. Meas.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef] [PubMed]

Rheumatology (Oxford)

A. K. Murray, A. L. Herrick, and T. A. King, “Laser Doppler imaging: a developing technique for application in the rheumatic diseases,” Rheumatology (Oxford) 43(10), 1210–1218 (2004).
[CrossRef] [PubMed]

Stroke

M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007).
[CrossRef] [PubMed]

Other

S. A. Aïmago, Lausanne, Switzerland, http://www.aimago.com/ (Feb. 2011).

A. P. Shepherd and P. Å. Öberg, eds., Laser-Doppler Blood Flowmetry (Kluwer Academic, Boston, 1990).

H. Nilsson, “Photon migration in tissue. Laser induced fluorescence for cancer diagnostics and influence of optical properties on microvascular Doppler spectroscopy,” Ph.D. thesis (Faculty of Health Sciences, Linköpings Universitet, 2002).

Supplementary Material (1)

» Media 1: AVI (10107 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Outline of the LDI instrument and the signal processing. The research instrument is controlled via a notebook whereas the embedded instrument integrates the user interface.

Fig. 2
Fig. 2

Color image of fingertips and color-coded blood perfusion map. (Media 1: captured video sequences showing the start of the arterial occlusion and the overshoot after release. The video frames were resized to 50% of the captured images to reduce the file size.)

Fig. 3
Fig. 3

Blood perfusion in the encircled regions on the fingers (14 fps; see Fig. 2). During the arterial occlusion, the blood perfusion drops and motion artifacts (spikes) become more clearly visible. The heartbeat is shown for a 10 s interval when the blood perfusion returned to normal.

Fig. 4
Fig. 4

Hot water burn on the skin of the abdominal wall of a patient on the third day. Outline of the burn wound (A) and deep burned areas showing low perfusion (B and C). Image area ~50 cm2.

Fig. 5
Fig. 5

Reperfusion of a free flap of ~40 cm2 area. The image center corresponds to the perforator location, where arterial blood flow was reinitiated at time point zero. Within ~30s the microcirculation in the central region was restored. A final check after 15 min showed that the entire flap was sufficiently well perfused for the final flap insertion. The least-perfused region in the bottom-center of the perfusion maps corresponds to the position of a staple holding the tissue in place.

Fig. 6
Fig. 6

Blood perfusion shows the vessel network in a mouse ear. The ear had been slightly fixed to suppress motion artifacts due to breathing that show up in the free region of the ear.

Tables (1)

Tables Icon

Table 1 Image sizes and corresponding frame rates achieved with our LDI instrument

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sinc ( υ τ ) = 1 τ τ / 2 τ / 2 cos ( 2 π υ t ) d t
S ' ( υ ) = max ( 0 , S ( υ ) S wn ) sinc 2 ( υ τ )
M n = f / 128 f / 2 υ n S ' ( υ ) d υ
SNR = i AC 2 i noise 2 = γ ( 2 γ ) A s i DC 2 2 A p 2 q e ( i DC + i d + i q ) f < γ ( 2 γ ) 4 f k s Φ p 4 π π λ 2 M t 2 A p η

Metrics