Abstract

Epidural injection is commonly used to provide intraoperative anesthesia, postoperative and obstetric analgesia, and to treat acute radicular pain. Identification of the epidural space is typically carried out using the loss of resistance (LOR) technique, but the usefulness of this technique is limited by false LOR and the inability to reliably detect intravascular or subarachnoid needle placement. In this study, we present a novel epidural needle that allows for the acquisition of optical reflectance spectra from tissue close to the beveled surface. This needle has optical fibers embedded in the cannula that deliver and receive light. With two spectrometers, light received from tissue is resolved across the wavelength range of 500 to 1600 nm. To determine the feasibility of optical tissue differentiation, spectra were acquired from porcine tissues during a post mortem laminectomy. The spectra were processed with an algorithm that derives estimates of the hemoglobin and lipid concentrations. The results of this study suggest that the optical epidural needle has the potential to improve the accuracy of epidural space identification.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Neal and J. P. Rathmell, Complications in Regional Anesthesia & Pain Medicine (Saunders, 2006).
  2. M. K. S. Heran, A. D. Smith, and G. M. Legiehn, “Spinal injection procedures: a review of concepts, controversies, and complications,” Radiol. Clin. North Am. 46(3), 487–514, v–vi (2008).
    [CrossRef] [PubMed]
  3. V. L. H. Hoffmann, M. P. Vercauteren, J. P. Vreugde, G. H. Hans, H. C. Coppejans, and H. A. Adriaensen, “Posterior epidural space depth: safety of the loss of resistance and hanging drop techniques,” Br. J. Anaesth. 83(5), 807–809 (1999).
    [PubMed]
  4. T. J. M. Lechner, M. G. F. van Wijk, and A. J. J. Maas, “Clinical results with a new acoustic device to identify the epidural space,” Anaesthesia 57(8), 768–772 (2002).
    [CrossRef] [PubMed]
  5. O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the epidural space using pressure measurement with the compuflo injection pump--a pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
    [PubMed]
  6. H. Kalvoy, O. G. Martinsen, and S. Grimnes, “Determination of tissue type surrounding a needle tip by electrical bioimpedance,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2008), pp. 2285–2286.
  7. W. W. Roberts, O. E. Fugita, L. R. Kavoussi, D. Stoianovici, and S. B. Solomon, “Measurement of needle-tip bioimpedance to facilitate percutaneous access of the urinary and biliary systems: first assessment of an experimental system,” Invest. Radiol. 37(2), 91–94 (2002).
    [CrossRef] [PubMed]
  8. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [CrossRef]
  9. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
    [CrossRef] [PubMed]
  10. S. M. Latyev, D. V. Shpakov, V. A. Volchkov, E. A. Puisha, and O. Mollenkhauer, “The possibility of identifying the epidural space in anesthesiological practice by optical methods,” J. Opt. Technol. 69(4), 292–294 (2002).
    [CrossRef]
  11. C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
    [CrossRef] [PubMed]
  12. G. Kumar and J. M. Schmitt, “Optimal probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36(10), 2286–2293 (1997).
    [CrossRef] [PubMed]
  13. W. J. Cui, N. G. Wang, and B. Chance, “Study of photon migration depths with time-resolved spectroscopy,” Opt. Lett. 16(21), 1632–1634 (1991).
    [CrossRef] [PubMed]
  14. D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
    [CrossRef] [PubMed]
  15. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [CrossRef] [PubMed]
  16. R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
    [CrossRef] [PubMed]
  17. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  18. P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9(2), 314–321 (2003).
    [CrossRef]
  19. K. A. Schenkman, D. R. Marble, E. O. Feigl, and D. H. Burns, “Near-infrared spectroscopic measurement of myoglobin oxygen saturation in the presence of hemoglobin using partial least-squares analysis,” Appl. Spectrosc. 53(3), 325–331 (1999).
    [CrossRef]
  20. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
    [CrossRef] [PubMed]
  21. J. M. Conway, K. H. Norris, and C. E. Bodwell, “A new approach for the estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40(6), 1123–1130 (1984).
    [PubMed]
  22. L. H. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
    [CrossRef] [PubMed]
  23. E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
    [CrossRef]
  24. C. Lubawy and N. Ramanujam, “Endoscopically compatible near-infrared photon migration probe,” Opt. Lett. 29(17), 2022–2024 (2004).
    [CrossRef] [PubMed]
  25. M. A. Reina, C. D. Franco, A. López, J. A. Dé Andrés, and A. van Zundert, “Clinical implications of epidural fat in the spinal canal. A scanning electron microscopic study,” Acta Anaesthesiol. Belg. 60(1), 7–17 (2009).
    [PubMed]
  26. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [CrossRef]
  27. W. G. Zijlstra, A. Buursma, and A. Zwart, “Molar absorptivities of human hemoglobin in the visible spectral range,” J. Appl. Physiol. 54(5), 1287–1291 (1983).
    [PubMed]
  28. W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
    [CrossRef] [PubMed]
  29. D. J. Marcinek, C. E. Amara, K. Matz, K. E. Conley, and K. A. Schenkman, “Wavelength shift analysis: a simple method to determine the contribution of hemoglobin and myoglobin to in vivo optical spectra,” Appl. Spectrosc. 61(6), 665–669 (2007).
    [CrossRef] [PubMed]
  30. R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
    [CrossRef] [PubMed]
  31. N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
    [CrossRef]
  32. J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
    [CrossRef] [PubMed]
  33. D. T. Raphael, C. H. Yang, N. Tresser, J. G. Wu, Y. P. Zhang, and L. Rever, “Images of spinal nerves and adjacent structures with optical coherence tomography: preliminary animal studies,” J. Pain 8(10), 767–773 (2007).
    [CrossRef] [PubMed]

2010 (3)

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[CrossRef] [PubMed]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[CrossRef] [PubMed]

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[CrossRef] [PubMed]

2009 (1)

M. A. Reina, C. D. Franco, A. López, J. A. Dé Andrés, and A. van Zundert, “Clinical implications of epidural fat in the spinal canal. A scanning electron microscopic study,” Acta Anaesthesiol. Belg. 60(1), 7–17 (2009).
[PubMed]

2008 (2)

M. K. S. Heran, A. D. Smith, and G. M. Legiehn, “Spinal injection procedures: a review of concepts, controversies, and complications,” Radiol. Clin. North Am. 46(3), 487–514, v–vi (2008).
[CrossRef] [PubMed]

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the epidural space using pressure measurement with the compuflo injection pump--a pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

2007 (2)

D. J. Marcinek, C. E. Amara, K. Matz, K. E. Conley, and K. A. Schenkman, “Wavelength shift analysis: a simple method to determine the contribution of hemoglobin and myoglobin to in vivo optical spectra,” Appl. Spectrosc. 61(6), 665–669 (2007).
[CrossRef] [PubMed]

D. T. Raphael, C. H. Yang, N. Tresser, J. G. Wu, Y. P. Zhang, and L. Rever, “Images of spinal nerves and adjacent structures with optical coherence tomography: preliminary animal studies,” J. Pain 8(10), 767–773 (2007).
[CrossRef] [PubMed]

2006 (3)

J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[CrossRef] [PubMed]

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[CrossRef] [PubMed]

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

2005 (2)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[CrossRef]

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[CrossRef]

2004 (1)

2003 (2)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9(2), 314–321 (2003).
[CrossRef]

2002 (3)

T. J. M. Lechner, M. G. F. van Wijk, and A. J. J. Maas, “Clinical results with a new acoustic device to identify the epidural space,” Anaesthesia 57(8), 768–772 (2002).
[CrossRef] [PubMed]

W. W. Roberts, O. E. Fugita, L. R. Kavoussi, D. Stoianovici, and S. B. Solomon, “Measurement of needle-tip bioimpedance to facilitate percutaneous access of the urinary and biliary systems: first assessment of an experimental system,” Invest. Radiol. 37(2), 91–94 (2002).
[CrossRef] [PubMed]

S. M. Latyev, D. V. Shpakov, V. A. Volchkov, E. A. Puisha, and O. Mollenkhauer, “The possibility of identifying the epidural space in anesthesiological practice by optical methods,” J. Opt. Technol. 69(4), 292–294 (2002).
[CrossRef]

1999 (3)

1997 (2)

G. Kumar and J. M. Schmitt, “Optimal probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36(10), 2286–2293 (1997).
[CrossRef] [PubMed]

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[CrossRef] [PubMed]

1996 (1)

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[CrossRef]

1993 (1)

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

1984 (1)

J. M. Conway, K. H. Norris, and C. E. Bodwell, “A new approach for the estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40(6), 1123–1130 (1984).
[PubMed]

1983 (1)

W. G. Zijlstra, A. Buursma, and A. Zwart, “Molar absorptivities of human hemoglobin in the visible spectral range,” J. Appl. Physiol. 54(5), 1287–1291 (1983).
[PubMed]

Adriaensen, H. A.

V. L. H. Hoffmann, M. P. Vercauteren, J. P. Vreugde, G. H. Hans, H. C. Coppejans, and H. A. Adriaensen, “Posterior epidural space depth: safety of the loss of resistance and hanging drop techniques,” Br. J. Anaesth. 83(5), 807–809 (1999).
[PubMed]

Amara, C. E.

Anderson, R. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Arifler, D.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[CrossRef] [PubMed]

Backman, V. M.

Bargo, P. R.

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9(2), 314–321 (2003).
[CrossRef]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[CrossRef]

Benson, S. V.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Bodwell, C. E.

J. M. Conway, K. H. Norris, and C. E. Bodwell, “A new approach for the estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40(6), 1123–1130 (1984).
[PubMed]

Bouma, B. E.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[CrossRef]

Bressner, J.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[CrossRef]

Burns, D. H.

Buursma, A.

W. G. Zijlstra, A. Buursma, and A. Zwart, “Molar absorptivities of human hemoglobin in the visible spectral range,” J. Appl. Physiol. 54(5), 1287–1291 (1983).
[PubMed]

Chan, E. K.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[CrossRef]

Chan, K. H.

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[CrossRef] [PubMed]

Chance, B.

Chandler, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Chang, K. Y.

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[CrossRef] [PubMed]

Chang, Y.

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[CrossRef] [PubMed]

Chen, P. T.

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Chylek, P.

Conley, K. E.

Conry, M.

Conway, J. M.

J. M. Conway, K. H. Norris, and C. E. Bodwell, “A new approach for the estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40(6), 1123–1130 (1984).
[PubMed]

Coppejans, H. C.

V. L. H. Hoffmann, M. P. Vercauteren, J. P. Vreugde, G. H. Hans, H. C. Coppejans, and H. A. Adriaensen, “Posterior epidural space depth: safety of the loss of resistance and hanging drop techniques,” Br. J. Anaesth. 83(5), 807–809 (1999).
[PubMed]

Cui, W. J.

Dé Andrés, J. A.

M. A. Reina, C. D. Franco, A. López, J. A. Dé Andrés, and A. van Zundert, “Clinical implications of epidural fat in the spinal canal. A scanning electron microscopic study,” Acta Anaesthesiol. Belg. 60(1), 7–17 (2009).
[PubMed]

de Boer, J. F.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[CrossRef] [PubMed]

Desjardins, A. E.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[CrossRef] [PubMed]

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[CrossRef] [PubMed]

Douglas, D. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Dylla, H. F.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Farinelli, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Feigl, E. O.

Feld, M. S.

Fitzmaurice, M.

Follen, M.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[CrossRef] [PubMed]

Franco, C. D.

M. A. Reina, C. D. Franco, A. López, J. A. Dé Andrés, and A. van Zundert, “Clinical implications of epidural fat in the spinal canal. A scanning electron microscopic study,” Acta Anaesthesiol. Belg. 60(1), 7–17 (2009).
[PubMed]

Fugita, O. E.

W. W. Roberts, O. E. Fugita, L. R. Kavoussi, D. Stoianovici, and S. B. Solomon, “Measurement of needle-tip bioimpedance to facilitate percutaneous access of the urinary and biliary systems: first assessment of an experimental system,” Invest. Radiol. 37(2), 91–94 (2002).
[CrossRef] [PubMed]

Gebhard, R. E.

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the epidural space using pressure measurement with the compuflo injection pump--a pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[CrossRef]

Ghelber, O.

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the epidural space using pressure measurement with the compuflo injection pump--a pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Goldberg, B.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[CrossRef]

Gu, C. H.

Gubeli, J.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Hagberg, C. A.

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the epidural space using pressure measurement with the compuflo injection pump--a pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Hans, G. H.

V. L. H. Hoffmann, M. P. Vercauteren, J. P. Vreugde, G. H. Hans, H. C. Coppejans, and H. A. Adriaensen, “Posterior epidural space depth: safety of the loss of resistance and hanging drop techniques,” Br. J. Anaesth. 83(5), 807–809 (1999).
[PubMed]

Hendriks, B. H.

Hendriks, B. H. W.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[CrossRef] [PubMed]

Heran, M. K. S.

M. K. S. Heran, A. D. Smith, and G. M. Legiehn, “Spinal injection procedures: a review of concepts, controversies, and complications,” Radiol. Clin. North Am. 46(3), 487–514, v–vi (2008).
[CrossRef] [PubMed]

Hoffmann, V. L. H.

V. L. H. Hoffmann, M. P. Vercauteren, J. P. Vreugde, G. H. Hans, H. C. Coppejans, and H. A. Adriaensen, “Posterior epidural space depth: safety of the loss of resistance and hanging drop techniques,” Br. J. Anaesth. 83(5), 807–809 (1999).
[PubMed]

Iftimia, N. V.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[CrossRef]

Jacques, S. L.

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9(2), 314–321 (2003).
[CrossRef]

Jordan, K.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Kavoussi, L. R.

W. W. Roberts, O. E. Fugita, L. R. Kavoussi, D. Stoianovici, and S. B. Solomon, “Measurement of needle-tip bioimpedance to facilitate percutaneous access of the urinary and biliary systems: first assessment of an experimental system,” Invest. Radiol. 37(2), 91–94 (2002).
[CrossRef] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[CrossRef]

Kou, L. H.

Kumar, G.

Labrie, D.

Latyev, S. M.

Laubach, H.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Lechner, T. J. M.

T. J. M. Lechner, M. G. F. van Wijk, and A. J. J. Maas, “Clinical results with a new acoustic device to identify the epidural space,” Anaesthesia 57(8), 768–772 (2002).
[CrossRef] [PubMed]

Legiehn, G. M.

M. K. S. Heran, A. D. Smith, and G. M. Legiehn, “Spinal injection procedures: a review of concepts, controversies, and complications,” Radiol. Clin. North Am. 46(3), 487–514, v–vi (2008).
[CrossRef] [PubMed]

López, A.

M. A. Reina, C. D. Franco, A. López, J. A. Dé Andrés, and A. van Zundert, “Clinical implications of epidural fat in the spinal canal. A scanning electron microscopic study,” Acta Anaesthesiol. Belg. 60(1), 7–17 (2009).
[PubMed]

Lubawy, C.

Lucassen, G. W.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[CrossRef] [PubMed]

Maas, A. J. J.

T. J. M. Lechner, M. G. F. van Wijk, and A. J. J. Maas, “Clinical results with a new acoustic device to identify the epidural space,” Anaesthesia 57(8), 768–772 (2002).
[CrossRef] [PubMed]

MacAulay, C.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[CrossRef] [PubMed]

Mandell, M. S.

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[CrossRef] [PubMed]

Manoharan, R.

Manstein, D.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Marble, D. R.

Marcinek, D. J.

Matz, K.

Mollenkhauer, O.

Motamedi, M.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[CrossRef]

Nachabé, R.

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[CrossRef] [PubMed]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[CrossRef] [PubMed]

Neil, G. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Nelson, J. S.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[CrossRef] [PubMed]

Norris, K. H.

J. M. Conway, K. H. Norris, and C. E. Bodwell, “A new approach for the estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40(6), 1123–1130 (1984).
[PubMed]

O’Neil, M.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[CrossRef]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Perelman, L. T.

Pitman, M. B.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[CrossRef]

Prahl, S. A.

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9(2), 314–321 (2003).
[CrossRef]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Protsenko, D.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[CrossRef]

Puisha, E. A.

Ramanujam, N.

Raphael, D. T.

D. T. Raphael, C. H. Yang, N. Tresser, J. G. Wu, Y. P. Zhang, and L. Rever, “Images of spinal nerves and adjacent structures with optical coherence tomography: preliminary animal studies,” J. Pain 8(10), 767–773 (2007).
[CrossRef] [PubMed]

Reina, M. A.

M. A. Reina, C. D. Franco, A. López, J. A. Dé Andrés, and A. van Zundert, “Clinical implications of epidural fat in the spinal canal. A scanning electron microscopic study,” Acta Anaesthesiol. Belg. 60(1), 7–17 (2009).
[PubMed]

Rever, L.

D. T. Raphael, C. H. Yang, N. Tresser, J. G. Wu, Y. P. Zhang, and L. Rever, “Images of spinal nerves and adjacent structures with optical coherence tomography: preliminary animal studies,” J. Pain 8(10), 767–773 (2007).
[CrossRef] [PubMed]

Richards-Kortum, R.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Roberts, W. W.

W. W. Roberts, O. E. Fugita, L. R. Kavoussi, D. Stoianovici, and S. B. Solomon, “Measurement of needle-tip bioimpedance to facilitate percutaneous access of the urinary and biliary systems: first assessment of an experimental system,” Invest. Radiol. 37(2), 91–94 (2002).
[CrossRef] [PubMed]

Schenkman, K. A.

Schmitt, J. M.

Shinn, M.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Shpakov, D. V.

Smith, A. D.

M. K. S. Heran, A. D. Smith, and G. M. Legiehn, “Spinal injection procedures: a review of concepts, controversies, and complications,” Radiol. Clin. North Am. 46(3), 487–514, v–vi (2008).
[CrossRef] [PubMed]

Smithies, D. J.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[CrossRef] [PubMed]

Solomon, S. B.

W. W. Roberts, O. E. Fugita, L. R. Kavoussi, D. Stoianovici, and S. B. Solomon, “Measurement of needle-tip bioimpedance to facilitate percutaneous access of the urinary and biliary systems: first assessment of an experimental system,” Invest. Radiol. 37(2), 91–94 (2002).
[CrossRef] [PubMed]

Sorg, B.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[CrossRef]

Sterenborg, H. J. C. M.

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[CrossRef] [PubMed]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[CrossRef] [PubMed]

Stoianovici, D.

W. W. Roberts, O. E. Fugita, L. R. Kavoussi, D. Stoianovici, and S. B. Solomon, “Measurement of needle-tip bioimpedance to facilitate percutaneous access of the urinary and biliary systems: first assessment of an experimental system,” Invest. Radiol. 37(2), 91–94 (2002).
[CrossRef] [PubMed]

Szmuk, P.

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the epidural space using pressure measurement with the compuflo injection pump--a pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Tearney, G. J.

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[CrossRef]

Ting, C. K.

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[CrossRef] [PubMed]

Tresser, N.

D. T. Raphael, C. H. Yang, N. Tresser, J. G. Wu, Y. P. Zhang, and L. Rever, “Images of spinal nerves and adjacent structures with optical coherence tomography: preliminary animal studies,” J. Pain 8(10), 767–773 (2007).
[CrossRef] [PubMed]

Tsou, M. Y.

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[CrossRef] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[CrossRef]

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Van Dam, J.

van der Mark, M. B.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[CrossRef] [PubMed]

van der Voort, M.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[CrossRef] [PubMed]

R. Nachabé, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[CrossRef] [PubMed]

van Gemert, M. J. C.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[CrossRef] [PubMed]

van Wijk, M. G. F.

T. J. M. Lechner, M. G. F. van Wijk, and A. J. J. Maas, “Clinical results with a new acoustic device to identify the epidural space,” Anaesthesia 57(8), 768–772 (2002).
[CrossRef] [PubMed]

van Zundert, A.

M. A. Reina, C. D. Franco, A. López, J. A. Dé Andrés, and A. van Zundert, “Clinical implications of epidural fat in the spinal canal. A scanning electron microscopic study,” Acta Anaesthesiol. Belg. 60(1), 7–17 (2009).
[PubMed]

Vercauteren, M. P.

V. L. H. Hoffmann, M. P. Vercauteren, J. P. Vreugde, G. H. Hans, H. C. Coppejans, and H. A. Adriaensen, “Posterior epidural space depth: safety of the loss of resistance and hanging drop techniques,” Br. J. Anaesth. 83(5), 807–809 (1999).
[PubMed]

Verkruysse, W.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[CrossRef] [PubMed]

Volchkov, V. A.

Vora, S.

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the epidural space using pressure measurement with the compuflo injection pump--a pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Vreugde, J. P.

V. L. H. Hoffmann, M. P. Vercauteren, J. P. Vreugde, G. H. Hans, H. C. Coppejans, and H. A. Adriaensen, “Posterior epidural space depth: safety of the loss of resistance and hanging drop techniques,” Br. J. Anaesth. 83(5), 807–809 (1999).
[PubMed]

Wang, F.

Wang, N. G.

Welch, A. J.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[CrossRef]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Williams, G. P.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Wu, J. G.

D. T. Raphael, C. H. Yang, N. Tresser, J. G. Wu, Y. P. Zhang, and L. Rever, “Images of spinal nerves and adjacent structures with optical coherence tomography: preliminary animal studies,” J. Pain 8(10), 767–773 (2007).
[CrossRef] [PubMed]

J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[CrossRef] [PubMed]

Yang, C. H.

D. T. Raphael, C. H. Yang, N. Tresser, J. G. Wu, Y. P. Zhang, and L. Rever, “Images of spinal nerves and adjacent structures with optical coherence tomography: preliminary animal studies,” J. Pain 8(10), 767–773 (2007).
[CrossRef] [PubMed]

J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[CrossRef] [PubMed]

Yaqoob, Z.

Yaroslavsky, A. N.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Zhang, Y. P.

D. T. Raphael, C. H. Yang, N. Tresser, J. G. Wu, Y. P. Zhang, and L. Rever, “Images of spinal nerves and adjacent structures with optical coherence tomography: preliminary animal studies,” J. Pain 8(10), 767–773 (2007).
[CrossRef] [PubMed]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and A. Zwart, “Molar absorptivities of human hemoglobin in the visible spectral range,” J. Appl. Physiol. 54(5), 1287–1291 (1983).
[PubMed]

Zonios, G.

Zwart, A.

W. G. Zijlstra, A. Buursma, and A. Zwart, “Molar absorptivities of human hemoglobin in the visible spectral range,” J. Appl. Physiol. 54(5), 1287–1291 (1983).
[PubMed]

Acta Anaesthesiol. Belg. (1)

M. A. Reina, C. D. Franco, A. López, J. A. Dé Andrés, and A. van Zundert, “Clinical implications of epidural fat in the spinal canal. A scanning electron microscopic study,” Acta Anaesthesiol. Belg. 60(1), 7–17 (2009).
[PubMed]

Am. J. Clin. Nutr. (1)

J. M. Conway, K. H. Norris, and C. E. Bodwell, “A new approach for the estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40(6), 1123–1130 (1984).
[PubMed]

Anaesthesia (1)

T. J. M. Lechner, M. G. F. van Wijk, and A. J. J. Maas, “Clinical results with a new acoustic device to identify the epidural space,” Anaesthesia 57(8), 768–772 (2002).
[CrossRef] [PubMed]

Anesthesiology (1)

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (2)

Biomed. Opt. Express (1)

Br. J. Anaesth. (1)

V. L. H. Hoffmann, M. P. Vercauteren, J. P. Vreugde, G. H. Hans, H. C. Coppejans, and H. A. Adriaensen, “Posterior epidural space depth: safety of the loss of resistance and hanging drop techniques,” Br. J. Anaesth. 83(5), 807–809 (1999).
[PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[CrossRef]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9(2), 314–321 (2003).
[CrossRef]

Invest. Radiol. (1)

W. W. Roberts, O. E. Fugita, L. R. Kavoussi, D. Stoianovici, and S. B. Solomon, “Measurement of needle-tip bioimpedance to facilitate percutaneous access of the urinary and biliary systems: first assessment of an experimental system,” Invest. Radiol. 37(2), 91–94 (2002).
[CrossRef] [PubMed]

J. Appl. Physiol. (1)

W. G. Zijlstra, A. Buursma, and A. Zwart, “Molar absorptivities of human hemoglobin in the visible spectral range,” J. Appl. Physiol. 54(5), 1287–1291 (1983).
[PubMed]

J. Biomed. Opt. (3)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[CrossRef] [PubMed]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[CrossRef] [PubMed]

J. Opt. Technol. (1)

J. Pain (1)

D. T. Raphael, C. H. Yang, N. Tresser, J. G. Wu, Y. P. Zhang, and L. Rever, “Images of spinal nerves and adjacent structures with optical coherence tomography: preliminary animal studies,” J. Pain 8(10), 767–773 (2007).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[CrossRef]

Lasers Surg. Med. (1)

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Med. Biol. (1)

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42(1), 51–65 (1997).
[CrossRef] [PubMed]

Radiol. Clin. North Am. (1)

M. K. S. Heran, A. D. Smith, and G. M. Legiehn, “Spinal injection procedures: a review of concepts, controversies, and complications,” Radiol. Clin. North Am. 46(3), 487–514, v–vi (2008).
[CrossRef] [PubMed]

Reg. Anesth. Pain Med. (1)

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the epidural space using pressure measurement with the compuflo injection pump--a pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Rev. Sci. Instrum. (1)

N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[CrossRef]

Other (2)

H. Kalvoy, O. G. Martinsen, and S. Grimnes, “Determination of tissue type surrounding a needle tip by electrical bioimpedance,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2008), pp. 2285–2286.

J. M. Neal and J. P. Rathmell, Complications in Regional Anesthesia & Pain Medicine (Saunders, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spinal needle with integrated optical fibers and stylet (S). Proximal to the needle cannula (NC), optical fibers exit via a port (OFP) beneath the female Luer Lock connector (LLC). A sheath splitter (SS) separates the sheath connected to the proximal end into three individual sheaths; the optical fibers (OF) contained individually within the latter sheaths ultimately terminate at connectors (OFC). A close-up, en face view of the beveled surface (figure insert) shows the distal ends of the optical fibers that deliver light to tissue (blue solid arrow) and receive light from tissue (yellow dashed arrows), and the junction between the tip and the proximal part of the cannula (red solid arrow).

Fig. 2
Fig. 2

Laminectomy performed at the L1-L2 level of a swine, in which optical spectra were acquired with the needle/optical probe. After retracting subcutaneous fat (SCF) and muscle (M) layers (A), the smooth white surface of the ligamentum flavum (LF) was exposed (B). With the ligamentum flavum retracted (C), epidural fat (EF) with a yellow appearance was visible above the dura mater (DM). Beneath the dura mater, the surface of the spinal cord (SC) and the associated vascular plexus was visible. The needle is identified in (A) and (B) with dashed arrows.

Fig. 3
Fig. 3

Spectra acquired from tissues exposed during the laminectomy: (A) subcutaneous fat; (B) muscle; (C) ligamentum flavum; (D) epidural fat; (E) dura mater; (F) spinal cord surface. From each location, 10 spectra were acquired; they are displayed as mean (blue) ± SD (red). Specific wavelengths corresponding to selected absorption peaks are indicated with dashed lines. Oxy-hemoglobin: 542 and 576 nm; deoxy-hemoglobin: 557 and 757 nm; lipids: 930 and 1210 nm; water: 976, 1197, and 1455 nm.

Fig. 4
Fig. 4

Blood and lipid fractions obtained with the spectral processing algorithm from tissues exposed during the laminectomy. From each tissue, 10 spectra were acquired; the corresponding blood and lipid fractions are displayed as mean ± SD.

Metrics