Abstract

Correcting spherical and chromatic aberrations in vitro in human eyes provides substantial visual acuity and contrast sensitivity improvements. We found the same improvement in the retinal images using a model eye with/without correction of longitudinal chromatic aberrations (LCAs) and spherical aberrations (SAs). The model eye included an intraocular lens (IOL) and artificial cornea with human ocular LCAs and average human SAs. The optotypes were illuminated using a D65 light source, and the images were obtained using two-dimensional luminance colorimeter. The contrast improvement from the SA correction was higher than the LCA correction, indicating the benefit of an aspheric achromatic IOL.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. N. Thibos and A. Bradley, Wavefront Customized Visual Correction. The Quest for Super Vision II (SLACK Inc., Thorofare, N.J., 2003), Chap. 10.
  2. S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
    [CrossRef] [PubMed]
  3. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
    [CrossRef] [PubMed]
  4. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16(11), 7748–7755 (2008).
    [CrossRef] [PubMed]
  5. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
    [CrossRef] [PubMed]
  6. J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24(9), 965–969 (2008).
    [PubMed]
  7. A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract Refract. Surg. 33(3), 497–509 (2007).
    [CrossRef] [PubMed]
  8. N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
    [CrossRef] [PubMed]
  9. P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
    [CrossRef] [PubMed]
  10. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20(24), 4152–4155 (1981).
    [CrossRef] [PubMed]
  11. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [CrossRef] [PubMed]
  12. T. Terwee, H. Weeber, M. van der Mooren, and P. Piers, “Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses,” J. Refract. Surg. 24(3), 223–232 (2008).
    [PubMed]
  13. J. Choi and J. Schwiegerling, “Optical performance measurement and night driving simulation of ReSTOR, ReZoom, and Tecnis multifocal intraocular lenses in a model eye,” J. Refract. Surg. 24(3), 218–222 (2008).
    [PubMed]
  14. P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
    [CrossRef] [PubMed]
  15. S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
    [CrossRef] [PubMed]
  16. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2000), Chap. 17.
  17. Handbook of Optics Vols, I and II, M. Bass, ed. (McGraw-Hill, New York, NY, 1994), Chaps. 34 and 35.
  18. Y. Le Grand, Optique Physiologique. Vol. 3: L’Espace Visual (Editions de la Revue d’Optique, Paris, France, 1956).
  19. M. Uematsu, Y. Goto, and Y. Kadowaki, “The new CA-2000 two-dimensional luminance colorimeter for impulse-type displays,” Konica Minolta Technol. Rep. 4, 65–68 (2007).
  20. K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
    [PubMed]

2010 (1)

2008 (5)

S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16(11), 7748–7755 (2008).
[CrossRef] [PubMed]

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[CrossRef] [PubMed]

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24(9), 965–969 (2008).
[PubMed]

T. Terwee, H. Weeber, M. van der Mooren, and P. Piers, “Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses,” J. Refract. Surg. 24(3), 223–232 (2008).
[PubMed]

J. Choi and J. Schwiegerling, “Optical performance measurement and night driving simulation of ReSTOR, ReZoom, and Tecnis multifocal intraocular lenses in a model eye,” J. Refract. Surg. 24(3), 218–222 (2008).
[PubMed]

2007 (4)

M. Uematsu, Y. Goto, and Y. Kadowaki, “The new CA-2000 two-dimensional luminance colorimeter for impulse-type displays,” Konica Minolta Technol. Rep. 4, 65–68 (2007).

A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract Refract. Surg. 33(3), 497–509 (2007).
[CrossRef] [PubMed]

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[CrossRef] [PubMed]

S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
[CrossRef] [PubMed]

2006 (1)

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

2002 (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

1999 (1)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

1992 (1)

1985 (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
[PubMed]

1981 (1)

Artal, P.

Bozza, S.

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

Bradley, A.

Brancato, R.

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

Burns, S. A.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Campbell, C.

Canovas, C.

Choi, J.

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24(9), 965–969 (2008).
[PubMed]

J. Choi and J. Schwiegerling, “Optical performance measurement and night driving simulation of ReSTOR, ReZoom, and Tecnis multifocal intraocular lenses in a model eye,” J. Refract. Surg. 24(3), 218–222 (2008).
[PubMed]

Fasce, F.

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

Franchini, A.

A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract Refract. Surg. 33(3), 497–509 (2007).
[CrossRef] [PubMed]

Gobbi, P. G.

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

Goto, Y.

M. Uematsu, Y. Goto, and Y. Kadowaki, “The new CA-2000 two-dimensional luminance colorimeter for impulse-type displays,” Konica Minolta Technol. Rep. 4, 65–68 (2007).

Kadowaki, Y.

M. Uematsu, Y. Goto, and Y. Kadowaki, “The new CA-2000 two-dimensional luminance colorimeter for impulse-type displays,” Konica Minolta Technol. Rep. 4, 65–68 (2007).

López-Gil, N.

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[CrossRef] [PubMed]

Manzanera, S.

Marcos, S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

McLellan, J. S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

Montés-Micó, R.

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[CrossRef] [PubMed]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Mullen, K. T.

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
[PubMed]

Navarro, R.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Norrby, S.

Piers, P.

Powell, I.

Prieto, P. M.

S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16(11), 7748–7755 (2008).
[CrossRef] [PubMed]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

Ravikumar, S.

Schwiegerling, J.

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24(9), 965–969 (2008).
[PubMed]

J. Choi and J. Schwiegerling, “Optical performance measurement and night driving simulation of ReSTOR, ReZoom, and Tecnis multifocal intraocular lenses in a model eye,” J. Refract. Surg. 24(3), 218–222 (2008).
[PubMed]

Terwee, T.

T. Terwee, H. Weeber, M. van der Mooren, and P. Piers, “Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses,” J. Refract. Surg. 24(3), 223–232 (2008).
[PubMed]

Thibos, L. N.

Uematsu, M.

M. Uematsu, Y. Goto, and Y. Kadowaki, “The new CA-2000 two-dimensional luminance colorimeter for impulse-type displays,” Konica Minolta Technol. Rep. 4, 65–68 (2007).

van der Mooren, M.

T. Terwee, H. Weeber, M. van der Mooren, and P. Piers, “Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses,” J. Refract. Surg. 24(3), 223–232 (2008).
[PubMed]

S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
[CrossRef] [PubMed]

Weeber, H.

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[CrossRef] [PubMed]

T. Terwee, H. Weeber, M. van der Mooren, and P. Piers, “Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses,” J. Refract. Surg. 24(3), 223–232 (2008).
[PubMed]

Ye, M.

Zhang, X.

Appl. Opt. (3)

J. Cataract Refract. Surg. (3)

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract Refract. Surg. 33(3), 497–509 (2007).
[CrossRef] [PubMed]

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Physiol. (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
[PubMed]

J. Refract. Surg. (3)

T. Terwee, H. Weeber, M. van der Mooren, and P. Piers, “Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses,” J. Refract. Surg. 24(3), 223–232 (2008).
[PubMed]

J. Choi and J. Schwiegerling, “Optical performance measurement and night driving simulation of ReSTOR, ReZoom, and Tecnis multifocal intraocular lenses in a model eye,” J. Refract. Surg. 24(3), 218–222 (2008).
[PubMed]

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24(9), 965–969 (2008).
[PubMed]

Konica Minolta Technol. Rep. (1)

M. Uematsu, Y. Goto, and Y. Kadowaki, “The new CA-2000 two-dimensional luminance colorimeter for impulse-type displays,” Konica Minolta Technol. Rep. 4, 65–68 (2007).

Nature (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Vision Res. (1)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Other (4)

L. N. Thibos and A. Bradley, Wavefront Customized Visual Correction. The Quest for Super Vision II (SLACK Inc., Thorofare, N.J., 2003), Chap. 10.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2000), Chap. 17.

Handbook of Optics Vols, I and II, M. Bass, ed. (McGraw-Hill, New York, NY, 1994), Chaps. 34 and 35.

Y. Le Grand, Optique Physiologique. Vol. 3: L’Espace Visual (Editions de la Revue d’Optique, Paris, France, 1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Comparison of the displacement of focal position between the model cornea and the modified Gullstrand model. The 546.07-nm (e-ray) wavelength is used for reference.

Fig. 2
Fig. 2

Diagram of the whole model eye including the 2-D luminance colorimeter CA-2000 (Konica Minolta, Tokyo, Japan). The images of the model eye are magnified to 50/16 = 3.1 times by two camera lenses: L1 with a 16-mm and L2 with a 50-mm focal length.

Fig. 3
Fig. 3

Photograph of the optical arrangement.

Fig. 4
Fig. 4

Color images of the optotypes of the Landolt C chart at 5, 2.5, 1.66, 1.25, and 1.0 m in four cases: case 1, correction of both the LCA and the SA; case 2, correction of only the SA; case 3, correction of only the LCA; and case 4, no correction of the LCA or the SA.

Fig. 5
Fig. 5

Enlarged images of the Landolt Cs of logMAR 0.4, 0.3, 0.2, and 0.1 at 2.5, 1.66, and 1.25 m in case 2 (correction of only the SA). This shows no transverse chromatic aberration in the center of the images.

Fig. 6
Fig. 6

The X, Y, and Z images of the optotypes of the focus position for all cases.

Fig. 7
Fig. 7

The contrasts of the brightest point and the darkest point around the gap of the Landolt Cs of logMAR 0.4, 0.2, 0, and −0.2 for four cases. (a) Case 1, (b) case 2, (c) case 3, and (d) case 4.

Fig. 8
Fig. 8

The L, M, and S cones images. These images are obtained by substituting the X, Y, and Z images of the optotypes at 5 m into Eq. (1) in four cases. (a) Case 1, (b) case 2, (c) case 3, and (d) case 4.

Tables (2)

Tables Icon

Table 1 Model Eye Design

Tables Icon

Table 2 Design of the Modified Gullstrand Model

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ L M S ] = [ 0.4002 0.7076 0.0808 0.2263 1.1653 0.0457 0 0 0.9182 ] [ X Y Z ]

Metrics