Abstract

We describe experimental results on label free imaging of striated skeletal muscle using second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy. The complementarity of the SHG and CARS data makes it possible to clearly identify the main sarcomere sub-structures such as actin, myosin, acto-myosin, and the intact T-tubular system as it emanates from the sarcolemma. Owing to sub-micron spatial resolution and the high sensitivity of the CARS microscopy technique we were able to resolve individual myofibrils. In addition, key organelles such as mitochondria, cell nuclei and their structural constituents were observed revealing the entire structure of the muscle functional units. There is a noticeable difference in the CARS response of the muscle structure within actin, myosin and t-tubule areas with respect to laser polarization. We attribute this to a preferential alignment of the probed molecular bonds along certain directions. The combined CARS and SHG microscopy approach yields more extensive and complementary information and has a potential to become an indispensable method for live skeletal muscle characterization.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
    [CrossRef] [PubMed]
  2. M. E. Quinlan, J. N. Forkey, and Y. E. Goldman, “Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy,” Biophys. J. 89(2), 1132–1142 (2005).
    [CrossRef] [PubMed]
  3. E. Savio-Galimberti, J. Frank, M. Inoue, J. I. Goldhaber, M. B. Cannell, J. H. Bridge, and F. B. Sachse, “Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images,” Biophys. J. 95(4), 2053–2062 (2008).
    [CrossRef] [PubMed]
  4. R. M. Murphy, J. P. Mollica, and G. D. Lamb, “Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules,” Exp. Cell Res. 315(6), 1015–1028 (2009).
    [CrossRef] [PubMed]
  5. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  6. C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
    [CrossRef] [PubMed]
  7. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
    [CrossRef] [PubMed]
  8. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
    [CrossRef] [PubMed]
  9. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
    [CrossRef] [PubMed]
  10. D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
    [CrossRef] [PubMed]
  11. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [CrossRef] [PubMed]
  12. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
    [CrossRef] [PubMed]
  13. C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
    [CrossRef] [PubMed]
  14. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
    [CrossRef] [PubMed]
  15. A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto, “On the cyto-toxicity caused by quantum dots,” Microbiol. Immunol. 48(9), 669–675 (2004).
    [PubMed]
  16. S. M. Burrows, R. D. Reif, and D. Pappas, “Investigation of photobleaching and saturation of single molecules by fluorophore recrossing events,” Anal. Chim. Acta 598(1), 135–142 (2007).
    [CrossRef] [PubMed]
  17. J.H. Kim, W.H. Kong, H.J. Kim, S.W. Sco, “Limitation of Q Dot as an In Vivo Cell Tracer,” Tissue Engineering and regenerative medicine 6, 307–312 (2009).
  18. A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
    [CrossRef] [PubMed]
  19. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
    [CrossRef] [PubMed]
  20. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
    [CrossRef] [PubMed]
  21. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  22. T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(37), 14658–14663 (2007).
    [CrossRef] [PubMed]
  23. E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
    [CrossRef] [PubMed]
  24. S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
    [CrossRef] [PubMed]
  25. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
    [CrossRef] [PubMed]
  26. M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image Processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).
  27. G. Okano, H. Matsuzaka, and T. Shimojo, “A comparative study of the lipid composition of white, intermediate, red and heart muscle in rats,” Biochim. Biophys. Acta 619(1), 167–175 (1980).
    [PubMed]
  28. C. Hidalgo, “Lipid phase of transverse tubule membranes from skeletal muscle. An electron paramagnetic resonance study,” Biophys. J. 47(6), 757–764 (1985).
    [CrossRef] [PubMed]
  29. K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in CARS microscopy: effect of the Gouy phase shift,” Opt. Express 19(7), 5902–5911 (2011).
    [CrossRef] [PubMed]
  30. M. D. Levenson, C. Flytzanis, and N. Bloembergen, “Interference of resonant and nonresonant three-wave mixing in diamond,” Phys. Rev. B 6(10), 3962–3965 (1972).
    [CrossRef]
  31. H. M. Warrick and J. A. Spudich, “Myosin structure and function in cell motility,” Annu. Rev. Cell Biol. 3(1), 379–421 (1987).
    [CrossRef] [PubMed]
  32. R. Domunguez and K. C. Holmes, “Actin structure and function,” Ann. Rev. Biophys. 40, 169–186 (2011).

2011 (2)

2009 (1)

R. M. Murphy, J. P. Mollica, and G. D. Lamb, “Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules,” Exp. Cell Res. 315(6), 1015–1028 (2009).
[CrossRef] [PubMed]

2008 (5)

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[CrossRef] [PubMed]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

E. Savio-Galimberti, J. Frank, M. Inoue, J. I. Goldhaber, M. B. Cannell, J. H. Bridge, and F. B. Sachse, “Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images,” Biophys. J. 95(4), 2053–2062 (2008).
[CrossRef] [PubMed]

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[CrossRef] [PubMed]

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

2007 (3)

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(37), 14658–14663 (2007).
[CrossRef] [PubMed]

S. M. Burrows, R. D. Reif, and D. Pappas, “Investigation of photobleaching and saturation of single molecules by fluorophore recrossing events,” Anal. Chim. Acta 598(1), 135–142 (2007).
[CrossRef] [PubMed]

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[CrossRef] [PubMed]

2006 (4)

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[CrossRef] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
[CrossRef] [PubMed]

2005 (5)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

M. E. Quinlan, J. N. Forkey, and Y. E. Goldman, “Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy,” Biophys. J. 89(2), 1132–1142 (2005).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

2004 (4)

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto, “On the cyto-toxicity caused by quantum dots,” Microbiol. Immunol. 48(9), 669–675 (2004).
[PubMed]

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image Processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

2003 (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

1987 (1)

H. M. Warrick and J. A. Spudich, “Myosin structure and function in cell motility,” Annu. Rev. Cell Biol. 3(1), 379–421 (1987).
[CrossRef] [PubMed]

1985 (1)

C. Hidalgo, “Lipid phase of transverse tubule membranes from skeletal muscle. An electron paramagnetic resonance study,” Biophys. J. 47(6), 757–764 (1985).
[CrossRef] [PubMed]

1982 (1)

1980 (1)

G. Okano, H. Matsuzaka, and T. Shimojo, “A comparative study of the lipid composition of white, intermediate, red and heart muscle in rats,” Biochim. Biophys. Acta 619(1), 167–175 (1980).
[PubMed]

1972 (1)

M. D. Levenson, C. Flytzanis, and N. Bloembergen, “Interference of resonant and nonresonant three-wave mixing in diamond,” Phys. Rev. B 6(10), 3962–3965 (1972).
[CrossRef]

Abramoff, M. D.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image Processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).

Ajtai, K.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[CrossRef] [PubMed]

Axäng, C.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(37), 14658–14663 (2007).
[CrossRef] [PubMed]

Beaurepaire, E.

D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Bembi, B.

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Bloembergen, N.

M. D. Levenson, C. Flytzanis, and N. Bloembergen, “Interference of resonant and nonresonant three-wave mixing in diamond,” Phys. Rev. B 6(10), 3962–3965 (1972).
[CrossRef]

Brackmann, C.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(37), 14658–14663 (2007).
[CrossRef] [PubMed]

Bridge, J. H.

E. Savio-Galimberti, J. Frank, M. Inoue, J. I. Goldhaber, M. B. Cannell, J. H. Bridge, and F. B. Sachse, “Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images,” Biophys. J. 95(4), 2053–2062 (2008).
[CrossRef] [PubMed]

Burghardt, T. P.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[CrossRef] [PubMed]

Burrows, S. M.

S. M. Burrows, R. D. Reif, and D. Pappas, “Investigation of photobleaching and saturation of single molecules by fluorophore recrossing events,” Anal. Chim. Acta 598(1), 135–142 (2007).
[CrossRef] [PubMed]

Campagnola, P. J.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Cannell, M. B.

E. Savio-Galimberti, J. Frank, M. Inoue, J. I. Goldhaber, M. B. Cannell, J. H. Bridge, and F. B. Sachse, “Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images,” Biophys. J. 95(4), 2053–2062 (2008).
[CrossRef] [PubMed]

Carrasco, S.

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

Chan, D. K.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[CrossRef] [PubMed]

Chen, S.-Y.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Chen, Y.-C.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Cheng, J. X.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

Chern, G.-W.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Chien, Y.-H.

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Chu, S.-W.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Combettes, L.

D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Czapiga, M.

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Débarre, D.

D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Dombeck, D. A.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[CrossRef] [PubMed]

Domunguez, R.

R. Domunguez and K. C. Holmes, “Actin structure and function,” Ann. Rev. Biophys. 40, 169–186 (2011).

Duncan, M. D.

Ebner, F. F.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[CrossRef] [PubMed]

Enejder, A.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(37), 14658–14663 (2007).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Fabre, A. M.

D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Fachima, R.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Flytzanis, C.

M. D. Levenson, C. Flytzanis, and N. Bloembergen, “Interference of resonant and nonresonant three-wave mixing in diamond,” Phys. Rev. B 6(10), 3962–3965 (1972).
[CrossRef]

Forkey, J. N.

M. E. Quinlan, J. N. Forkey, and Y. E. Goldman, “Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy,” Biophys. J. 89(2), 1132–1142 (2005).
[CrossRef] [PubMed]

Frank, J.

E. Savio-Galimberti, J. Frank, M. Inoue, J. I. Goldhaber, M. B. Cannell, J. H. Bridge, and F. B. Sachse, “Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images,” Biophys. J. 95(4), 2053–2062 (2008).
[CrossRef] [PubMed]

Friedman, B.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[CrossRef] [PubMed]

Fu, Y.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

Ganikhanov, F.

Goldhaber, J. I.

E. Savio-Galimberti, J. Frank, M. Inoue, J. I. Goldhaber, M. B. Cannell, J. H. Bridge, and F. B. Sachse, “Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images,” Biophys. J. 95(4), 2053–2062 (2008).
[CrossRef] [PubMed]

Goldman, Y. E.

M. E. Quinlan, J. N. Forkey, and Y. E. Goldman, “Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy,” Biophys. J. 89(2), 1132–1142 (2005).
[CrossRef] [PubMed]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

Halstead, M. F.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[CrossRef] [PubMed]

Hanaki, K.

A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto, “On the cyto-toxicity caused by quantum dots,” Microbiol. Immunol. 48(9), 669–675 (2004).
[PubMed]

Hellerer, T.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(37), 14658–14663 (2007).
[CrossRef] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Hidalgo, C.

C. Hidalgo, “Lipid phase of transverse tubule membranes from skeletal muscle. An electron paramagnetic resonance study,” Biophys. J. 47(6), 757–764 (1985).
[CrossRef] [PubMed]

Hillertz, P.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(37), 14658–14663 (2007).
[CrossRef] [PubMed]

Holmes, K. C.

R. Domunguez and K. C. Holmes, “Actin structure and function,” Ann. Rev. Biophys. 40, 169–186 (2011).

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Hoshino, A.

A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto, “On the cyto-toxicity caused by quantum dots,” Microbiol. Immunol. 48(9), 669–675 (2004).
[PubMed]

Hwu, W.-L.

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Inoue, M.

E. Savio-Galimberti, J. Frank, M. Inoue, J. I. Goldhaber, M. B. Cannell, J. H. Bridge, and F. B. Sachse, “Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images,” Biophys. J. 95(4), 2053–2062 (2008).
[CrossRef] [PubMed]

Katz, M.

Kleinfeld, D.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[CrossRef] [PubMed]

Kopf, D.

Kwan, A. C.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[CrossRef] [PubMed]

Lamb, G. D.

R. M. Murphy, J. P. Mollica, and G. D. Lamb, “Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules,” Exp. Cell Res. 315(6), 1015–1028 (2009).
[CrossRef] [PubMed]

Légaré, F.

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[CrossRef] [PubMed]

Levenson, M. D.

M. D. Levenson, C. Flytzanis, and N. Bloembergen, “Interference of resonant and nonresonant three-wave mixing in diamond,” Phys. Rev. B 6(10), 3962–3965 (1972).
[CrossRef]

Li, J.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[CrossRef] [PubMed]

Lin, B.-L.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Lyden, P. D.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[CrossRef] [PubMed]

Magelhaes, P. J.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image Processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).

Manuccia, T. J.

Matsuzaka, H.

G. Okano, H. Matsuzaka, and T. Shimojo, “A comparative study of the lipid composition of white, intermediate, red and heart muscle in rats,” Biochim. Biophys. Acta 619(1), 167–175 (1980).
[PubMed]

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

Mohler, W. A.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

Mollica, J. P.

R. M. Murphy, J. P. Mollica, and G. D. Lamb, “Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules,” Exp. Cell Res. 315(6), 1015–1028 (2009).
[CrossRef] [PubMed]

Murphy, R. M.

R. M. Murphy, J. P. Mollica, and G. D. Lamb, “Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules,” Exp. Cell Res. 315(6), 1015–1028 (2009).
[CrossRef] [PubMed]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

Nishimura, N.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[CrossRef] [PubMed]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

Okano, G.

G. Okano, H. Matsuzaka, and T. Shimojo, “A comparative study of the lipid composition of white, intermediate, red and heart muscle in rats,” Biochim. Biophys. Acta 619(1), 167–175 (1980).
[PubMed]

Olsen, B. R.

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[CrossRef] [PubMed]

Oron, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Pappas, D.

S. M. Burrows, R. D. Reif, and D. Pappas, “Investigation of photobleaching and saturation of single molecules by fluorophore recrossing events,” Anal. Chim. Acta 598(1), 135–142 (2007).
[CrossRef] [PubMed]

Pegoraro, A. F.

Pena, A. M.

D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Pfeffer, C. P.

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[CrossRef] [PubMed]

Pilon, M.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(37), 14658–14663 (2007).
[CrossRef] [PubMed]

Pittis, M. G.

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Plotnikov, S. V.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

Plotz, P.

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Popov, K. I.

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Quinlan, M. E.

M. E. Quinlan, J. N. Forkey, and Y. E. Goldman, “Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy,” Biophys. J. 89(2), 1132–1142 (2005).
[CrossRef] [PubMed]

Raben, N.

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Ralston, E.

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Ram, S. J.

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image Processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).

Ramunno, L.

Raz, S.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Reif, R. D.

S. M. Burrows, R. D. Reif, and D. Pappas, “Investigation of photobleaching and saturation of single molecules by fluorophore recrossing events,” Anal. Chim. Acta 598(1), 135–142 (2007).
[CrossRef] [PubMed]

Reintjes, J.

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

Sachse, F. B.

E. Savio-Galimberti, J. Frank, M. Inoue, J. I. Goldhaber, M. B. Cannell, J. H. Bridge, and F. B. Sachse, “Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images,” Biophys. J. 95(4), 2053–2062 (2008).
[CrossRef] [PubMed]

Savio-Galimberti, E.

E. Savio-Galimberti, J. Frank, M. Inoue, J. I. Goldhaber, M. B. Cannell, J. H. Bridge, and F. B. Sachse, “Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images,” Biophys. J. 95(4), 2053–2062 (2008).
[CrossRef] [PubMed]

Schaffer, C. B.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[CrossRef] [PubMed]

Schanne-Klein, M. C.

D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Schroeder, L. F.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[CrossRef] [PubMed]

Schwartz, O.

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Seitz, W.

Shi, R.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

Shimojo, T.

G. Okano, H. Matsuzaka, and T. Shimojo, “A comparative study of the lipid composition of white, intermediate, red and heart muscle in rats,” Biochim. Biophys. Acta 619(1), 167–175 (1980).
[PubMed]

Shiohara, A.

A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto, “On the cyto-toxicity caused by quantum dots,” Microbiol. Immunol. 48(9), 669–675 (2004).
[PubMed]

Silberberg, Y.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Spudich, J. A.

H. M. Warrick and J. A. Spudich, “Myosin structure and function in cell motility,” Annu. Rev. Cell Biol. 3(1), 379–421 (1987).
[CrossRef] [PubMed]

Stolow, A.

Sun, C.-K.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Sunney Xie, X.

Supatto, W.

D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Suzuki, K.

A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto, “On the cyto-toxicity caused by quantum dots,” Microbiol. Immunol. 48(9), 669–675 (2004).
[PubMed]

Swaim, B.

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Tal, E.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Tordjmann, T.

D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Tsai, P. S.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[CrossRef] [PubMed]

Tsai, T.-H.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Wang, H.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

Warrick, H. M.

H. M. Warrick and J. A. Spudich, “Myosin structure and function in cell motility,” Annu. Rev. Cell Biol. 3(1), 379–421 (1987).
[CrossRef] [PubMed]

Webb, W. W.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

Xie, X. S.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Yamamoto, K.

A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto, “On the cyto-toxicity caused by quantum dots,” Microbiol. Immunol. 48(9), 669–675 (2004).
[PubMed]

Yelin, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Zheng, Y.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[CrossRef] [PubMed]

Zickmund, P.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Anal. Chim. Acta (1)

S. M. Burrows, R. D. Reif, and D. Pappas, “Investigation of photobleaching and saturation of single molecules by fluorophore recrossing events,” Anal. Chim. Acta 598(1), 135–142 (2007).
[CrossRef] [PubMed]

Ann. Rev. Biophys. (1)

R. Domunguez and K. C. Holmes, “Actin structure and function,” Ann. Rev. Biophys. 40, 169–186 (2011).

Annu. Rev. Cell Biol. (1)

H. M. Warrick and J. A. Spudich, “Myosin structure and function in cell motility,” Annu. Rev. Cell Biol. 3(1), 379–421 (1987).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (1)

G. Okano, H. Matsuzaka, and T. Shimojo, “A comparative study of the lipid composition of white, intermediate, red and heart muscle in rats,” Biochim. Biophys. Acta 619(1), 167–175 (1980).
[PubMed]

Biophotonics Int. (1)

M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image Processing with ImageJ,” Biophotonics Int. 11(7), 36–42 (2004).

Biophys. J. (8)

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

C. Hidalgo, “Lipid phase of transverse tubule membranes from skeletal muscle. An electron paramagnetic resonance study,” Biophys. J. 47(6), 757–764 (1985).
[CrossRef] [PubMed]

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[CrossRef] [PubMed]

M. E. Quinlan, J. N. Forkey, and Y. E. Goldman, “Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy,” Biophys. J. 89(2), 1132–1142 (2005).
[CrossRef] [PubMed]

E. Savio-Galimberti, J. Frank, M. Inoue, J. I. Goldhaber, M. B. Cannell, J. H. Bridge, and F. B. Sachse, “Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images,” Biophys. J. 95(4), 2053–2062 (2008).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).
[CrossRef] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

Exp. Cell Res. (1)

R. M. Murphy, J. P. Mollica, and G. D. Lamb, “Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules,” Exp. Cell Res. 315(6), 1015–1028 (2009).
[CrossRef] [PubMed]

J. Struct. Biol. (3)

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[CrossRef] [PubMed]

E. Ralston, B. Swaim, M. Czapiga, W.-L. Hwu, Y.-H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Microbiol. Immunol. (1)

A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto, “On the cyto-toxicity caused by quantum dots,” Microbiol. Immunol. 48(9), 669–675 (2004).
[PubMed]

Nat. Biotechnol. (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Nat. Methods (3)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. M. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

M. D. Levenson, C. Flytzanis, and N. Bloembergen, “Interference of resonant and nonresonant three-wave mixing in diamond,” Phys. Rev. B 6(10), 3962–3965 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

PLoS Biol. (1)

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(37), 14658–14663 (2007).
[CrossRef] [PubMed]

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[CrossRef] [PubMed]

Other (1)

J.H. Kim, W.H. Kong, H.J. Kim, S.W. Sco, “Limitation of Q Dot as an In Vivo Cell Tracer,” Tissue Engineering and regenerative medicine 6, 307–312 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

CARS images of different areas of intact skeletal muscle. The laser frequencies were tuned to target the CH2 group vibration frequency at 2845 cm−1. The size bar in each subfigure represents 2 µm. a) Mitochondrion (M) within the striated muscle membrane (sarcolemma) that was identified based on size, shape and clearly discernible cristae outlines. Capillaries (C) between 2 muscle fibers filled with red blood cells (RBC). The image size is 8.9 µm × 22.9 µm. b) Image of a nucleus (N) that was identified based on its size, shape and location within the muscle cell. The image size is 20.1 µm × 38.6 µm. c) Representative image of a characteristic striated pattern which is similar to the striated pattern seen with conventional light microscopy. The space between two high contrast bands is ~2.6 µm which corresponds to the length of a sarcomere. The image size is 15 µm × 22.5 µm. The laser beams’ polarizations were perpendicular to the muscle fiber axis. The fiber axis on parts (a) and (b) is along the vertical direction of the figure whereas for part (c) it is along the horizontal direction.

Fig. 2
Fig. 2

Images of the skeletal muscle combining SHG (a) and CARS (b) microscopy data. The laser frequencies were tuned to target the CH2 group vibration frequency at 2845 cm−1. The image area is 7.1 μm × 7.1 μm. The SHG (c) and CARS (d) signal profiles along muscle axis showing the corresponding substructures. Nomenclature for the abbreviations is the following: Z-T indicates T-tubules overlapping with Z-lines, A-actin, AM-acto-myosin, M-myosin.

Fig. 3
Fig. 3

(a) CARS image of a larger skeletal muscle area (38.5 μm × 38.5 μm), (b) expanded view of the sarcomere structures. Z-line region overlapping with T-tubules, actin band, acto-myosin overlap region, and myosin band can be well identified. The corresponding image area (b) is ~7.5 μm × 7.5 μm and rotated counterclockwise by 90° with respect to image (a). (c) The cross-sectional signal data demonstrate periodic CARS signal modulation along Z-T line. This clearly indicates that a single myofibril is resolved in our experiment. The cross-sectional line is drawn along the selected Z-T line that is located within the dashed rectangle on part (a) of the figure.

Fig. 4
Fig. 4

CARS images obtained for targeted Raman shift frequencies of 2845 cm−1 (a) and 2970 cm−1 (b). The image size is 10.8 μm × 27 μm. The bottom part of the images represents the area that is occupied by the buffer solution. The PMT detector gain and the laser beam intensities were increased for the image obtained at Δω = 2970 cm−1 to better highlight the part that outlines the sarcomere structure. Part (c) represents the averaged (over multiple bands) CARS spectrum of the muscle area. The resonant CARS signal enhancement ratios (i.e. SCARS(Δω = 2845 cm-1)/SCARS(Δω = 2970 cm−1)) for each sarcomere sub-structure are quantified in part (d). The corresponding signal ratios at the two different vibration frequencies are shown in part (e). The laser beams' polarization condition is the same as for the data presented in Fig. 1 (c).

Fig. 5
Fig. 5

CARS data for the striated skeletal muscle that show a different response of sarcomere components to different laser electric field polarization thus highlighting their alignment with respect to the muscle fiber axis. CARS images were obtained for the muscle fiber area interfacing with buffer solution. Both images on (a) and (b) have been acquired when the targeted Raman shift frequency was 2845 cm-1. For the image on part (a), the laser polarization for both beams where parallel to each other and also parallel to the fibrillar muscle axis (thus being perpendicular to the Z-T lines). For the image on part (b), the laser polarizations were again parallel to each other but perpendicular to the fibrillar muscle axis (thus being parallel to ZT-lines). Part (c) of the figure represents post-processed data (differential signal) that was derived from the two images above. Namely, CARS signal that corresponds to the data on part (b) was subtracted from the CARS signal on part (a) and normalized to the sum of both signals. Part (d) of the figure represents the differential signal change along the cross-sectional dashed line drawn throughout the center of the image on part (c).

Metrics