Abstract

The chicken retina is an established animal model for myopia and light-associated growth studies. It has a unique morphology: it is afoveate and avascular; oxygen and nutrition to the inner retina is delivered by a vascular tissue (pecten) that protrudes into the vitreous. Here we present, to the best of our knowledge, the first in vivo, volumetric high-resolution images of the chicken retina. Images were acquired with an ultrahigh-resolution optical coherence tomography (UHROCT) system with 3.5 µm axial resolution in the retina, at the rate of 47,000 A-scans/s. Spatial variations in the thickness of the nerve fiber and ganglion cell layers were mapped by segmenting and measuring the layer thickness with a semi-automatic segmentation algorithm. Volumetric visualization of the morphology and morphometric analysis of the chicken retina could aid significantly studies with chicken retinal models of ophthalmic diseases.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science 201(4362), 1249–1251 (1978).
    [CrossRef] [PubMed]
  2. E. L. Irving, M. G. Callender, and J. G. Sivak, “Inducing myopia, hyperopia, and astigmatism in chicks,” Optom. Vis. Sci. 68(5), 364–368 (1991).
    [CrossRef] [PubMed]
  3. C. F. Wildsoet and J. Wallman, “Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks,” Vision Res. 35(9), 1175–1194 (1995).
    [CrossRef] [PubMed]
  4. V. B. Morris, “An afoveate area centralis in the chick retina,” J. Comp. Neurol. 210(2), 198–203 (1982).
    [CrossRef] [PubMed]
  5. Y. Zhang, J. Xu, M. Garcia, A. Roorda, and C. Wildsoet, “In vivo imaging the photoreceptors in the chicken eye with adaptive optics scanning laser ophthalmoscope,” J. Vis. 9(14), 79–000 (2009).
    [CrossRef]
  6. K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell, in-vivo imaging of chick retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 51, Abstract 2321 (2010).
  7. M. L. Kisilak, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “In vivo imaging of photoreceptors in the alert chicken,” Invest. Ophthalmol. Vis. Sci. 48, Abstract 1191 (2007).
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  9. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–000 (1996).
    [CrossRef]
  10. Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998).
    [PubMed]
  11. M. Ruggeri, J. C. Major, C. McKeown, R. W. Knighton, C. A. Puliafito, and S. Jiao, “Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(11), 5789–5795 (2010).
    [CrossRef] [PubMed]
  12. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett. 33(21), 2479–2481 (2008).
    [PubMed]
  13. S. Hariri, A. A. Moayed, A. Dracopoulos, C. Hyun, S. Boyd, and K. Bizheva, “Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060 nm wavelength range,” Opt. Express 17(26), 24304–24316 (2009).
    [CrossRef] [PubMed]
  14. E. L. Irving, J. G. Sivak, T. A. Curry, and M. G. Callender, “Chick eye optics: zero to fourteen days,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 179(2), 185–194 (1996).
    [CrossRef] [PubMed]
  15. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  16. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009).
    [CrossRef] [PubMed]
  17. I. G. Morgan, “Intraocular colchicine selectively destroys immature ganglion cells in chicken retina,” Neurosci. Lett. 24(3), 255–260 (1981).
    [CrossRef] [PubMed]
  18. V. Choh, J. Banh, and C. F. Wildsoet, “Thickness and histological changes in optic nerve-sectioned chick retina,” Invest. Ophthalmol. Vis. Sci. 45, E-Abstract 47 (2004).

2010

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell, in-vivo imaging of chick retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 51, Abstract 2321 (2010).

M. Ruggeri, J. C. Major, C. McKeown, R. W. Knighton, C. A. Puliafito, and S. Jiao, “Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(11), 5789–5795 (2010).
[CrossRef] [PubMed]

2009

2008

2007

M. L. Kisilak, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “In vivo imaging of photoreceptors in the alert chicken,” Invest. Ophthalmol. Vis. Sci. 48, Abstract 1191 (2007).

2004

1998

Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998).
[PubMed]

1996

E. L. Irving, J. G. Sivak, T. A. Curry, and M. G. Callender, “Chick eye optics: zero to fourteen days,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 179(2), 185–194 (1996).
[CrossRef] [PubMed]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–000 (1996).
[CrossRef]

1995

C. F. Wildsoet and J. Wallman, “Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks,” Vision Res. 35(9), 1175–1194 (1995).
[CrossRef] [PubMed]

1991

E. L. Irving, M. G. Callender, and J. G. Sivak, “Inducing myopia, hyperopia, and astigmatism in chicks,” Optom. Vis. Sci. 68(5), 364–368 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1982

V. B. Morris, “An afoveate area centralis in the chick retina,” J. Comp. Neurol. 210(2), 198–203 (1982).
[CrossRef] [PubMed]

1981

I. G. Morgan, “Intraocular colchicine selectively destroys immature ganglion cells in chicken retina,” Neurosci. Lett. 24(3), 255–260 (1981).
[CrossRef] [PubMed]

1978

J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science 201(4362), 1249–1251 (1978).
[CrossRef] [PubMed]

Banh, J.

V. Choh, J. Banh, and C. F. Wildsoet, “Thickness and histological changes in optic nerve-sectioned chick retina,” Invest. Ophthalmol. Vis. Sci. 45, E-Abstract 47 (2004).

Banin, E.

Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998).
[PubMed]

Bizheva, K.

Boyd, S.

Callender, M. G.

E. L. Irving, J. G. Sivak, T. A. Curry, and M. G. Callender, “Chick eye optics: zero to fourteen days,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 179(2), 185–194 (1996).
[CrossRef] [PubMed]

E. L. Irving, M. G. Callender, and J. G. Sivak, “Inducing myopia, hyperopia, and astigmatism in chicks,” Optom. Vis. Sci. 68(5), 364–368 (1991).
[CrossRef] [PubMed]

Campbell, M. C. W.

M. L. Kisilak, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “In vivo imaging of photoreceptors in the alert chicken,” Invest. Ophthalmol. Vis. Sci. 48, Abstract 1191 (2007).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Choh, V.

V. Choh, J. Banh, and C. F. Wildsoet, “Thickness and histological changes in optic nerve-sectioned chick retina,” Invest. Ophthalmol. Vis. Sci. 45, E-Abstract 47 (2004).

Choi, S. S.

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell, in-vivo imaging of chick retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 51, Abstract 2321 (2010).

Cideciyan, A. V.

Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998).
[PubMed]

Clausi, D. A.

Curry, T. A.

E. L. Irving, J. G. Sivak, T. A. Curry, and M. G. Callender, “Chick eye optics: zero to fourteen days,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 179(2), 185–194 (1996).
[CrossRef] [PubMed]

Doble, N.

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell, in-vivo imaging of chick retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 51, Abstract 2321 (2010).

Dracopoulos, A.

Duker, J. S.

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–000 (1996).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Forbes, P.

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Garcia, M.

Y. Zhang, J. Xu, M. Garcia, A. Roorda, and C. Wildsoet, “In vivo imaging the photoreceptors in the chicken eye with adaptive optics scanning laser ophthalmoscope,” J. Vis. 9(14), 79–000 (2009).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hariri, S.

Headington, K.

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell, in-vivo imaging of chick retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 51, Abstract 2321 (2010).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998).
[PubMed]

Hunter, J. J.

M. L. Kisilak, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “In vivo imaging of photoreceptors in the alert chicken,” Invest. Ophthalmol. Vis. Sci. 48, Abstract 1191 (2007).

Hyun, C.

Irving, E. L.

M. L. Kisilak, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “In vivo imaging of photoreceptors in the alert chicken,” Invest. Ophthalmol. Vis. Sci. 48, Abstract 1191 (2007).

E. L. Irving, J. G. Sivak, T. A. Curry, and M. G. Callender, “Chick eye optics: zero to fourteen days,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 179(2), 185–194 (1996).
[CrossRef] [PubMed]

E. L. Irving, M. G. Callender, and J. G. Sivak, “Inducing myopia, hyperopia, and astigmatism in chicks,” Optom. Vis. Sci. 68(5), 364–368 (1991).
[CrossRef] [PubMed]

Jacobson, S. G.

Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998).
[PubMed]

Jiao, S.

M. Ruggeri, J. C. Major, C. McKeown, R. W. Knighton, C. A. Puliafito, and S. Jiao, “Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(11), 5789–5795 (2010).
[CrossRef] [PubMed]

Kisilak, M. L.

M. L. Kisilak, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “In vivo imaging of photoreceptors in the alert chicken,” Invest. Ophthalmol. Vis. Sci. 48, Abstract 1191 (2007).

Knighton, R. W.

M. Ruggeri, J. C. Major, C. McKeown, R. W. Knighton, C. A. Puliafito, and S. Jiao, “Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(11), 5789–5795 (2010).
[CrossRef] [PubMed]

Ko, T. H.

Kowalczyk, A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Major, J. C.

M. Ruggeri, J. C. Major, C. McKeown, R. W. Knighton, C. A. Puliafito, and S. Jiao, “Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(11), 5789–5795 (2010).
[CrossRef] [PubMed]

Malchow, D.

McKeown, C.

M. Ruggeri, J. C. Major, C. McKeown, R. W. Knighton, C. A. Puliafito, and S. Jiao, “Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(11), 5789–5795 (2010).
[CrossRef] [PubMed]

Milam, A. H.

Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998).
[PubMed]

Mishra, A.

Moayed, A. A.

Morgan, I. G.

I. G. Morgan, “Intraocular colchicine selectively destroys immature ganglion cells in chicken retina,” Neurosci. Lett. 24(3), 255–260 (1981).
[CrossRef] [PubMed]

Morris, V. B.

V. B. Morris, “An afoveate area centralis in the chick retina,” J. Comp. Neurol. 210(2), 198–203 (1982).
[CrossRef] [PubMed]

Nickla, D.

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell, in-vivo imaging of chick retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 51, Abstract 2321 (2010).

Papastergiou, G. I.

Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998).
[PubMed]

Puliafito, C. A.

M. Ruggeri, J. C. Major, C. McKeown, R. W. Knighton, C. A. Puliafito, and S. Jiao, “Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(11), 5789–5795 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Puvanathasan, P.

Ren, Z.

Roorda, A.

Y. Zhang, J. Xu, M. Garcia, A. Roorda, and C. Wildsoet, “In vivo imaging the photoreceptors in the chicken eye with adaptive optics scanning laser ophthalmoscope,” J. Vis. 9(14), 79–000 (2009).
[CrossRef]

Ruggeri, M.

M. Ruggeri, J. C. Major, C. McKeown, R. W. Knighton, C. A. Puliafito, and S. Jiao, “Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(11), 5789–5795 (2010).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Semple-Rowland, S. L.

Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998).
[PubMed]

Sivak, J. G.

E. L. Irving, J. G. Sivak, T. A. Curry, and M. G. Callender, “Chick eye optics: zero to fourteen days,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 179(2), 185–194 (1996).
[CrossRef] [PubMed]

E. L. Irving, M. G. Callender, and J. G. Sivak, “Inducing myopia, hyperopia, and astigmatism in chicks,” Optom. Vis. Sci. 68(5), 364–368 (1991).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Trachtman, J.

J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science 201(4362), 1249–1251 (1978).
[CrossRef] [PubMed]

Turkel, J.

J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science 201(4362), 1249–1251 (1978).
[CrossRef] [PubMed]

Wallman, J.

C. F. Wildsoet and J. Wallman, “Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks,” Vision Res. 35(9), 1175–1194 (1995).
[CrossRef] [PubMed]

J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science 201(4362), 1249–1251 (1978).
[CrossRef] [PubMed]

Wildsoet, C.

Y. Zhang, J. Xu, M. Garcia, A. Roorda, and C. Wildsoet, “In vivo imaging the photoreceptors in the chicken eye with adaptive optics scanning laser ophthalmoscope,” J. Vis. 9(14), 79–000 (2009).
[CrossRef]

Wildsoet, C. F.

V. Choh, J. Banh, and C. F. Wildsoet, “Thickness and histological changes in optic nerve-sectioned chick retina,” Invest. Ophthalmol. Vis. Sci. 45, E-Abstract 47 (2004).

C. F. Wildsoet and J. Wallman, “Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks,” Vision Res. 35(9), 1175–1194 (1995).
[CrossRef] [PubMed]

Wojtkowski, M.

Wong, A.

Xu, J.

Y. Zhang, J. Xu, M. Garcia, A. Roorda, and C. Wildsoet, “In vivo imaging the photoreceptors in the chicken eye with adaptive optics scanning laser ophthalmoscope,” J. Vis. 9(14), 79–000 (2009).
[CrossRef]

Zhang, Y.

Y. Zhang, J. Xu, M. Garcia, A. Roorda, and C. Wildsoet, “In vivo imaging the photoreceptors in the chicken eye with adaptive optics scanning laser ophthalmoscope,” J. Vis. 9(14), 79–000 (2009).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell, in-vivo imaging of chick retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 51, Abstract 2321 (2010).

M. L. Kisilak, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “In vivo imaging of photoreceptors in the alert chicken,” Invest. Ophthalmol. Vis. Sci. 48, Abstract 1191 (2007).

Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998).
[PubMed]

M. Ruggeri, J. C. Major, C. McKeown, R. W. Knighton, C. A. Puliafito, and S. Jiao, “Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(11), 5789–5795 (2010).
[CrossRef] [PubMed]

V. Choh, J. Banh, and C. F. Wildsoet, “Thickness and histological changes in optic nerve-sectioned chick retina,” Invest. Ophthalmol. Vis. Sci. 45, E-Abstract 47 (2004).

J. Biomed. Opt.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–000 (1996).
[CrossRef]

J. Comp. Neurol.

V. B. Morris, “An afoveate area centralis in the chick retina,” J. Comp. Neurol. 210(2), 198–203 (1982).
[CrossRef] [PubMed]

J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.

E. L. Irving, J. G. Sivak, T. A. Curry, and M. G. Callender, “Chick eye optics: zero to fourteen days,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 179(2), 185–194 (1996).
[CrossRef] [PubMed]

J. Vis.

Y. Zhang, J. Xu, M. Garcia, A. Roorda, and C. Wildsoet, “In vivo imaging the photoreceptors in the chicken eye with adaptive optics scanning laser ophthalmoscope,” J. Vis. 9(14), 79–000 (2009).
[CrossRef]

Neurosci. Lett.

I. G. Morgan, “Intraocular colchicine selectively destroys immature ganglion cells in chicken retina,” Neurosci. Lett. 24(3), 255–260 (1981).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Optom. Vis. Sci.

E. L. Irving, M. G. Callender, and J. G. Sivak, “Inducing myopia, hyperopia, and astigmatism in chicks,” Optom. Vis. Sci. 68(5), 364–368 (1991).
[CrossRef] [PubMed]

Science

J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science 201(4362), 1249–1251 (1978).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res.

C. F. Wildsoet and J. Wallman, “Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks,” Vision Res. 35(9), 1175–1194 (1995).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: AVI (5219 KB)     
» Media 2: AVI (2335 KB)     
» Media 3: AVI (3269 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Representative UHROCT tomograms of the chicken retina acquired from locations away (A) and near (C) the ONH, compared with H&E stained histology (B and D). Individual retinal layers observed in the UHROCT tomograms match well with corresponding layers in the histological cross-sections. The black arrows in C and D mark the termination of the cartilaginous sclera layer near the optical nerve head.

Fig. 2
Fig. 2

Selected frames from rendered volumetric image stacks of the chicken retina acquired at wide (A, B and C) and narrow (D) scanning angles. Different views of the pecten layer are presented in A (Media 1), B and C (Media 2) and marked with white arrows. An area in the retina with significantly thinner NFL is marked with yellow arrows in A and B. A view of the choroidal vasculature is shown in D (Media 3).

Fig. 3
Fig. 3

Selected B-scans from the volumetric data set presented in Fig. 2A. Thickening of the NFL, thinning of the choroid and termination of the sclera cartilage are observed close to the pecten in the vicinity of the ONH (A). Progressive thinning of the NFL and thickening of the GCL and the choroid at a certain area in the retina are shown in B, C and D (black arrow). Image dimensions are 1000 x 512 (A-scans x pixels).

Fig. 4
Fig. 4

Original UHROCT cross-section of the chicken retina (A); the same image with segmented NFL and GCL (C, red lines); thickness maps of the NFL (B) and the GCL (D). Black arrows mark locations close to the pecten and the ONH, while white arrows mark a location with significantly thinner NFL.

Metrics