Abstract

We compare the accuracy of TIM-OS and MMCM in response to the recent analysis made by Fang [Biomed. Opt. Express 2, 1258 (2011)]. Our results show that the tetrahedron-based energy deposition algorithm used in TIM-OS is more accurate than the node-based energy deposition algorithm used in MMCM.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010).
    [CrossRef] [PubMed]
  2. H. Shen and G. Wang, “A study on tetrahedron-based inhomogeneous Monte Carlo optical simulation,” Biomed. Opt. Express 2(1), 44–57 (2011).
    [CrossRef] [PubMed]
  3. J. Havel and A. Herout, “Yet faster ray-triangle intersection (using SSE4),” IEEE Trans. Vis. Comput. Graph. 16(3), 434–438 (2010).
    [CrossRef] [PubMed]
  4. E. Alerstam, W. C. Yip Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1(2), 658–675 (2010).
    [CrossRef] [PubMed]
  5. Q. Fang, “Comment on ‘A study on tetrahedron-based inhomogeneous Monte-Carlo optical simulation’,” Biomed. Opt. Express 2, 1258–1264 (2011).

2011 (2)

2010 (3)

H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010).
[CrossRef] [PubMed]

J. Havel and A. Herout, “Yet faster ray-triangle intersection (using SSE4),” IEEE Trans. Vis. Comput. Graph. 16(3), 434–438 (2010).
[CrossRef] [PubMed]

E. Alerstam, W. C. Yip Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1(2), 658–675 (2010).
[CrossRef] [PubMed]

Alerstam, E.

Andersson-Engels, S.

Fang, Q.

Han, T. D.

Havel, J.

J. Havel and A. Herout, “Yet faster ray-triangle intersection (using SSE4),” IEEE Trans. Vis. Comput. Graph. 16(3), 434–438 (2010).
[CrossRef] [PubMed]

Herout, A.

J. Havel and A. Herout, “Yet faster ray-triangle intersection (using SSE4),” IEEE Trans. Vis. Comput. Graph. 16(3), 434–438 (2010).
[CrossRef] [PubMed]

Lilge, L.

Rose, J.

Shen, H.

H. Shen and G. Wang, “A study on tetrahedron-based inhomogeneous Monte Carlo optical simulation,” Biomed. Opt. Express 2(1), 44–57 (2011).
[CrossRef] [PubMed]

H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010).
[CrossRef] [PubMed]

Wang, G.

H. Shen and G. Wang, “A study on tetrahedron-based inhomogeneous Monte Carlo optical simulation,” Biomed. Opt. Express 2(1), 44–57 (2011).
[CrossRef] [PubMed]

H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010).
[CrossRef] [PubMed]

Yip Lo, W. C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Illustration of the problem in Dr. Fang’s Comment.

Fig. 2
Fig. 2

Comparison of MMCM and TIM-OS in terms of the relative error.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y t r u t h = f ( x ) = 1 / x y m m c = ( ( i 1 ) Δ x ( i + 1 ) Δ x f ( x ) φ i ( x ) d x ) / Δ x = ( ( i + 1 ) ln ( i + 1 ) + ( i 1 ) ln ( i 1 ) 2 i ln ( i ) ) / Δ x y t i m o s = ( ( i 1 / 2 ) Δ x ( i + 1 / 2 ) Δ x f ( x ) d x ) / Δ x = ( ln ( i + 1 / 2 ) ln ( i 1 / 2 ) ) / Δ x
e r r o r m m c = ( y m m c 1 / i Δ x ) i Δ x = i ( i + 1 ) ln ( ( i + 1 ) / i ) i ( i 1 ) ln ( i / ( i 1 ) ) 1 e r r o r t i m o s = ( y t i m o s 1 / i Δ x ) i Δ x = i ( ln ( i + 1 / 2 ) ln ( i 1 / 2 ) ) 1

Metrics