Abstract

Proper management of diabetes requires the frequent measurement of a patient’s blood glucose level. To create a long-term, minimally-invasive sensor that is sensitive to physiological concentrations of glucose a fluorescent glucose sensing assay using a competitive binding approach between fluorescently tagged Concanavalin-A (Con-A) and glycodendrimer is being developed. Until now, the essential step of effectively encapsulating this aggregative sensing assay while allowing a reversible response has yet to be reported. In this paper, a microporation technique is described in which microspheres are synthesized in a manner that creates fluid-filled pores within a poly (ethylene glycol) hydrogel. This dual-nature technique creates hydrophilic, biocompatible microcapsules in which the aggregative binding kinetics of the sensing assay within the pores are not constrained by spatial fixation in the hydrogel matrix. Confocal images displaying the localization of pockets filled with the assay within the polymeric matrix are presented in this paper. In addition, fluorescent responses to varying glucose concentrations, leaching studies, and long-term functionality of the encapsulated assay are demonstrated. To our knowledge, this is the first time that the Con-A/glycodendrimer assay has been shown to be reversible and repeatable within hydrogel spheres, including the display of functionality up to fourteen days under ambient conditions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” N. Engl. J. Med. 329(14), 977–986 (1993).
    [CrossRef] [PubMed]
  2. D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
    [CrossRef] [PubMed]
  3. American Diabetes Association, “Economic costs of diabetes in the U.S. In 2007,” Diabetes Care 31(3), 596–615 (2008).
    [PubMed]
  4. American Diabetes Association, “Standards of medical care in diabetes--2009,” Diabetes Care 32(Suppl 1), S13–S61 (2009).
    [CrossRef] [PubMed]
  5. C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
    [CrossRef] [PubMed]
  6. J. Pickup, “Diabetic control and its measurements,” Textbook of Diabetes, third ed., 34.1–34.17, Blackwell (2003).
  7. I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
    [CrossRef] [PubMed]
  8. R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
    [CrossRef] [PubMed]
  9. J. Wang, “Glucose biosensors: 40 Years of advances and challenges,” Electroanalysis 13(12), 983–988 (2001).
    [CrossRef]
  10. N. S. Oliver, C. Toumazou, A. E. Cass, D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
    [CrossRef] [PubMed]
  11. J. Lambert, J. Morookian, S. Sirk, M. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
    [CrossRef]
  12. A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
    [CrossRef] [PubMed]
  13. D. Qi, A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy,” Appl. Opt. 46(10), 1726–1734 (2007).
    [CrossRef] [PubMed]
  14. I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
    [CrossRef] [PubMed]
  15. R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
    [CrossRef] [PubMed]
  16. V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
    [PubMed]
  17. H. A. MacKenzie, H. S. Ashton, Y. C. Shen, J. Lindberg, P. Rae, K. M. Quan, and S. Spiers, “Blood glucose measurements by photoacoustics,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. Sevick-Muraca and J. Izatt, eds., Vol. 22 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper BTuC1.
  18. R. Weiss, Y. Yegorchikov, A. Shusterman, I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
    [CrossRef] [PubMed]
  19. L. Zeng, G. Liu, D. Yang, Z. Ren, Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).
  20. R. R. Ansari, S. Böckle, L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
    [CrossRef] [PubMed]
  21. Q. Wan, G. L. Coté, J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
    [CrossRef] [PubMed]
  22. B. Malik, G. Coté, “Real-time dual wavelength polarimetry for glucose sensing,” Proc. SPIE 7186, 718604 (2009).
    [CrossRef]
  23. B. D. Cameron, J. S. Baba, G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
    [CrossRef] [PubMed]
  24. B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006).
    [CrossRef] [PubMed]
  25. J. J. Burmeister, M. A. Arnold, G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
    [CrossRef] [PubMed]
  26. C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011).
    [CrossRef] [PubMed]
  27. L. Tolosa, H. Malak, G. Raob, J. Lakowicz, “Optical assay for glucose based on the luminescnence decay time of the long wavelength dye Cy5,” Sens. Actuators B Chem. 45(2), 93–99 (1997).
    [CrossRef]
  28. R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
    [CrossRef] [PubMed]
  29. S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J. R. Lakowicz, “A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor,” Biochem. Biophys. Res. Commun. 274(3), 727–731 (2000).
    [CrossRef] [PubMed]
  30. M. J. McShane, “Potential for glucose monitoring with nanoengineered fluorescent biosensors,” Diabetes Technol. Ther. 4(4), 533–538 (2002).
    [CrossRef] [PubMed]
  31. R. Ballerstadt, A. Polak, A. Beuhler, J. Frye, “In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring,” Biosens. Bioelectron. 19(8), 905–914 (2004).
    [CrossRef] [PubMed]
  32. J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010).
    [CrossRef]
  33. B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Coté, V. K. Yadavalli, M. V. Pishko, “Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates,” Anal. Chem. 77(21), 7039–7046 (2005).
    [CrossRef] [PubMed]
  34. C. Huet, M. Lonchampt, M. Huet, A. Bernadac, “Temperature effects on the concanavalin A molecule and on concanavalin A binding,” Biochim. Biophys. Acta 365(1), 28–39 (1974).
    [PubMed]
  35. H. Bittiger and H. Schnebli, Concanavalin A as a Tool, John Wiley & Sons, (1976).
  36. J. S. Schultz, S. Mansouri, I. J. Goldstein, “Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites,” Diabetes Care 5(3), 245–253 (1982).
    [CrossRef] [PubMed]
  37. S. Mansouri and J. Schultz, “Optical glucose sensor based on reversible competitive binding,” IEEE, 112–115 (1984).
  38. R. Ballerstadt, J. S. Schultz, “A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring,” Anal. Chem. 72(17), 4185–4192 (2000).
    [CrossRef] [PubMed]
  39. R. Ballerstadt, C. Evans, R. McNichols, A. Gowda, “Concanavalin A for in vivo glucose sensing: a biotoxicity review,” Biosens. Bioelectron. 22(2), 275–284 (2006).
    [CrossRef] [PubMed]
  40. C. Kojima, K. Kono, K. Maruyama, T. Takagishi, “Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs,” Bioconjug. Chem. 11(6), 910–917 (2000).
    [CrossRef] [PubMed]
  41. D. A. Tomalia, L. A. Reyna, S. Svenson, “Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging,” Biochem. Soc. Trans. 35(1), 61–67 (2007).
    [CrossRef] [PubMed]
  42. M. Liu, K. Kono, J. M. Fréchet, “Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents,” J. Control. Release 65(1-2), 121–131 (2000).
    [CrossRef] [PubMed]
  43. M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003).
    [CrossRef] [PubMed]
  44. H. T. Chen, M. F. Neerman, A. R. Parrish, E. E. Simanek, “Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery,” J. Am. Chem. Soc. 126(32), 10044–10048 (2004).
    [CrossRef] [PubMed]
  45. M. F. Neerman, W. Zhang, A. R. Parrish, E. E. Simanek, “In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery,” Int. J. Pharm. 281(1-2), 129–132 (2004).
    [CrossRef] [PubMed]
  46. E. R. Gillies, J. M. Fréchet, “Dendrimers and dendritic polymers in drug delivery,” Drug Discov. Today 10(1), 35–43 (2005).
    [CrossRef] [PubMed]
  47. A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett, M. W. Grinstaff, T. Kim, “New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair,” Arch. Ophthalmol. 122(6), 867–870 (2004).
    [CrossRef] [PubMed]
  48. M. W. Grinstaff, “Biodendrimers: new polymeric biomaterials for tissue engineering,” Chemistry 8(13), 2838–2846 (2002).
    [CrossRef] [PubMed]
  49. P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008).
    [CrossRef] [PubMed]
  50. W. Turnbull, J. Stoddart, “Design and synthesis of glycodendrimer,” Rev. Mol. Biotechnol. 90(3–4), 231–255 (2002).
    [CrossRef]
  51. C. C. Lee, J. A. MacKay, J. M. Fréchet, F. C. Szoka, “Designing dendrimers for biological applications,” Nat. Biotechnol. 23(12), 1517–1526 (2005).
    [CrossRef] [PubMed]
  52. U. Gupta, H. B. Agashe, A. Asthana, N. K. Jain, “Dendrimers: novel polymeric nanoarchitectures for solubility enhancement,” Biomacromolecules 7(3), 649–658 (2006).
    [CrossRef] [PubMed]
  53. B. Ibey, H. Beier, R. Rounds, M. Pishko, and G. Coté, “Dendrimer based fluorescent glucose sensor for diabetic monitoring,” Progress in Biomedical Optics and Imaging - Proceedings of SPIE, (2006).
  54. S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, R. Langer, “Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres,” Pharm. Res. 08(6), 713–720 (1991).
    [CrossRef] [PubMed]
  55. W. R. Gombotz, S. Wee, “Protein release from alginate matrices,” Adv. Drug Deliv. Rev. 31(3), 267–285 (1998).
    [CrossRef] [PubMed]
  56. S. Freiberg, X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282(1-2), 1–18 (2004).
    [CrossRef] [PubMed]
  57. A. A. Antipov, G. B. Sukhorukov, “Polyelectrolyte multilayer capsules as vehicles with tunable permeability,” Adv. Colloid Interface Sci. 111(1-2), 49–61 (2004).
    [CrossRef] [PubMed]
  58. C. S. Peyratout, L. Dähne, “Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers,” Angew. Chem. Int. Ed. Engl. 43(29), 3762–3783 (2004).
    [CrossRef] [PubMed]
  59. Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005).
    [CrossRef] [PubMed]
  60. M. McShane and Y. Lvov, “Layer-by-Layer Electrostatic Self-Assembly,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition, ed. J. Schwarz, C. Contescu, K. Putyera, Eds.; Taylor & Francis, 1823–1840, (2009).
  61. O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, “Polymer microcapsules as mobile local pH-sensors,” J. Mater. Chem. 17(42), 4471–4476 (2007).
    [CrossRef]
  62. C. Gao, S. Moya, E. Donath, H. Möhwald, “Melamine formaldehyde core decomposition as the key step controlling capsule integrity: optimizing the polyelectrolyte capsule fabrication,” Macromol. Chem. Phys. 203(7), 953–960 (2002).
    [CrossRef]
  63. D. V. Volodkin, N. I. Larionova, G. B. Sukhorukov, “Protein encapsulation via porous CaCO3 microparticles templating,” Biomacromolecules 5(5), 1962–1972 (2004).
    [CrossRef] [PubMed]
  64. E. W. Stein, D. V. Volodkin, M. J. McShane, G. B. Sukhorukov, “Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase,” Biomacromolecules 7(3), 710–719 (2006).
    [CrossRef] [PubMed]
  65. J. Harris and S. Zalipsky, Poly(Ethylene Glycol) Chemistry and Biological Applications, Vol. 680 of ACS Symposium Series (American Chemical Society, 1997).
  66. M. B. Mellott, K. Searcy, M. V. Pishko, “Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization,” Biomaterials 22(9), 929–941 (2001).
    [CrossRef] [PubMed]
  67. R. Russell, A. Axel, K. Shields, M. Pishko, “Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing,” Polymer (Guildf.) 42(11), 4893–4901 (2001).
    [CrossRef]
  68. R. M. Rounds, B. L. Ibey, H. T. Beier, M. V. Pishko, G. L. Coté, “Microporated PEG spheres for fluorescent analyte detection,” J. Fluoresc. 17(1), 57–63 (2006).
    [CrossRef] [PubMed]
  69. J. Lim, A. Chouai, S. T. Lo, W. Liu, X. Sun, E. E. Simanek, “Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages,” Bioconjug. Chem. 20(11), 2154–2161 (2009).
    [CrossRef] [PubMed]
  70. Invitrogen, Amine-Reactive Probes, Aug. 17, 2010, http://probes.invitrogen.com/media/pis/mp00143.pdf .
  71. E. Chang, D. Holguin, “Electrooptical light-management material: Low-refractive-index hydrogels,” J. Adhes. 83(1), 15–26 (2007).
    [CrossRef]
  72. W. M. Yunus, A. B. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt. 27(16), 3341–3343 (1988).
    [CrossRef] [PubMed]
  73. M. Mcshane and E. Stein, “Fluorescence-based glucose sensors,” in In Vivo Glucose Sensing, D. D. Cunningham and J. A. Stenken , eds. (Wiley, (2010).
  74. F. Hussain, D. J. Birch, J. C. Pickup, “Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase,” Anal. Biochem. 339(1), 137–143 (2005).
    [CrossRef] [PubMed]

2011 (1)

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

2010 (2)

J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010).
[CrossRef]

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

2009 (5)

N. S. Oliver, C. Toumazou, A. E. Cass, D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

J. Lim, A. Chouai, S. T. Lo, W. Liu, X. Sun, E. E. Simanek, “Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages,” Bioconjug. Chem. 20(11), 2154–2161 (2009).
[CrossRef] [PubMed]

American Diabetes Association, “Standards of medical care in diabetes--2009,” Diabetes Care 32(Suppl 1), S13–S61 (2009).
[CrossRef] [PubMed]

L. Zeng, G. Liu, D. Yang, Z. Ren, Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

B. Malik, G. Coté, “Real-time dual wavelength polarimetry for glucose sensing,” Proc. SPIE 7186, 718604 (2009).
[CrossRef]

2008 (3)

P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008).
[CrossRef] [PubMed]

I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
[CrossRef] [PubMed]

American Diabetes Association, “Economic costs of diabetes in the U.S. In 2007,” Diabetes Care 31(3), 596–615 (2008).
[PubMed]

2007 (5)

D. Qi, A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy,” Appl. Opt. 46(10), 1726–1734 (2007).
[CrossRef] [PubMed]

E. Chang, D. Holguin, “Electrooptical light-management material: Low-refractive-index hydrogels,” J. Adhes. 83(1), 15–26 (2007).
[CrossRef]

O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, “Polymer microcapsules as mobile local pH-sensors,” J. Mater. Chem. 17(42), 4471–4476 (2007).
[CrossRef]

D. A. Tomalia, L. A. Reyna, S. Svenson, “Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging,” Biochem. Soc. Trans. 35(1), 61–67 (2007).
[CrossRef] [PubMed]

R. Weiss, Y. Yegorchikov, A. Shusterman, I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

2006 (6)

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006).
[CrossRef] [PubMed]

R. Ballerstadt, C. Evans, R. McNichols, A. Gowda, “Concanavalin A for in vivo glucose sensing: a biotoxicity review,” Biosens. Bioelectron. 22(2), 275–284 (2006).
[CrossRef] [PubMed]

U. Gupta, H. B. Agashe, A. Asthana, N. K. Jain, “Dendrimers: novel polymeric nanoarchitectures for solubility enhancement,” Biomacromolecules 7(3), 649–658 (2006).
[CrossRef] [PubMed]

E. W. Stein, D. V. Volodkin, M. J. McShane, G. B. Sukhorukov, “Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase,” Biomacromolecules 7(3), 710–719 (2006).
[CrossRef] [PubMed]

R. M. Rounds, B. L. Ibey, H. T. Beier, M. V. Pishko, G. L. Coté, “Microporated PEG spheres for fluorescent analyte detection,” J. Fluoresc. 17(1), 57–63 (2006).
[CrossRef] [PubMed]

2005 (8)

D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
[CrossRef] [PubMed]

Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005).
[CrossRef] [PubMed]

C. C. Lee, J. A. MacKay, J. M. Fréchet, F. C. Szoka, “Designing dendrimers for biological applications,” Nat. Biotechnol. 23(12), 1517–1526 (2005).
[CrossRef] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

F. Hussain, D. J. Birch, J. C. Pickup, “Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase,” Anal. Biochem. 339(1), 137–143 (2005).
[CrossRef] [PubMed]

E. R. Gillies, J. M. Fréchet, “Dendrimers and dendritic polymers in drug delivery,” Drug Discov. Today 10(1), 35–43 (2005).
[CrossRef] [PubMed]

B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Coté, V. K. Yadavalli, M. V. Pishko, “Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates,” Anal. Chem. 77(21), 7039–7046 (2005).
[CrossRef] [PubMed]

Q. Wan, G. L. Coté, J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
[CrossRef] [PubMed]

2004 (9)

R. R. Ansari, S. Böckle, L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[CrossRef] [PubMed]

A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett, M. W. Grinstaff, T. Kim, “New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair,” Arch. Ophthalmol. 122(6), 867–870 (2004).
[CrossRef] [PubMed]

H. T. Chen, M. F. Neerman, A. R. Parrish, E. E. Simanek, “Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery,” J. Am. Chem. Soc. 126(32), 10044–10048 (2004).
[CrossRef] [PubMed]

M. F. Neerman, W. Zhang, A. R. Parrish, E. E. Simanek, “In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery,” Int. J. Pharm. 281(1-2), 129–132 (2004).
[CrossRef] [PubMed]

R. Ballerstadt, A. Polak, A. Beuhler, J. Frye, “In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring,” Biosens. Bioelectron. 19(8), 905–914 (2004).
[CrossRef] [PubMed]

S. Freiberg, X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282(1-2), 1–18 (2004).
[CrossRef] [PubMed]

A. A. Antipov, G. B. Sukhorukov, “Polyelectrolyte multilayer capsules as vehicles with tunable permeability,” Adv. Colloid Interface Sci. 111(1-2), 49–61 (2004).
[CrossRef] [PubMed]

C. S. Peyratout, L. Dähne, “Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers,” Angew. Chem. Int. Ed. Engl. 43(29), 3762–3783 (2004).
[CrossRef] [PubMed]

D. V. Volodkin, N. I. Larionova, G. B. Sukhorukov, “Protein encapsulation via porous CaCO3 microparticles templating,” Biomacromolecules 5(5), 1962–1972 (2004).
[CrossRef] [PubMed]

2003 (1)

M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003).
[CrossRef] [PubMed]

2002 (5)

M. W. Grinstaff, “Biodendrimers: new polymeric biomaterials for tissue engineering,” Chemistry 8(13), 2838–2846 (2002).
[CrossRef] [PubMed]

W. Turnbull, J. Stoddart, “Design and synthesis of glycodendrimer,” Rev. Mol. Biotechnol. 90(3–4), 231–255 (2002).
[CrossRef]

M. J. McShane, “Potential for glucose monitoring with nanoengineered fluorescent biosensors,” Diabetes Technol. Ther. 4(4), 533–538 (2002).
[CrossRef] [PubMed]

C. Gao, S. Moya, E. Donath, H. Möhwald, “Melamine formaldehyde core decomposition as the key step controlling capsule integrity: optimizing the polyelectrolyte capsule fabrication,” Macromol. Chem. Phys. 203(7), 953–960 (2002).
[CrossRef]

J. Lambert, J. Morookian, S. Sirk, M. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

2001 (5)

J. Wang, “Glucose biosensors: 40 Years of advances and challenges,” Electroanalysis 13(12), 983–988 (2001).
[CrossRef]

R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[CrossRef] [PubMed]

M. B. Mellott, K. Searcy, M. V. Pishko, “Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization,” Biomaterials 22(9), 929–941 (2001).
[CrossRef] [PubMed]

R. Russell, A. Axel, K. Shields, M. Pishko, “Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing,” Polymer (Guildf.) 42(11), 4893–4901 (2001).
[CrossRef]

B. D. Cameron, J. S. Baba, G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[CrossRef] [PubMed]

2000 (7)

J. J. Burmeister, M. A. Arnold, G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[CrossRef] [PubMed]

S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J. R. Lakowicz, “A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor,” Biochem. Biophys. Res. Commun. 274(3), 727–731 (2000).
[CrossRef] [PubMed]

R. Ballerstadt, J. S. Schultz, “A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring,” Anal. Chem. 72(17), 4185–4192 (2000).
[CrossRef] [PubMed]

M. Liu, K. Kono, J. M. Fréchet, “Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents,” J. Control. Release 65(1-2), 121–131 (2000).
[CrossRef] [PubMed]

C. Kojima, K. Kono, K. Maruyama, T. Takagishi, “Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs,” Bioconjug. Chem. 11(6), 910–917 (2000).
[CrossRef] [PubMed]

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

1999 (1)

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

1998 (1)

W. R. Gombotz, S. Wee, “Protein release from alginate matrices,” Adv. Drug Deliv. Rev. 31(3), 267–285 (1998).
[CrossRef] [PubMed]

1997 (1)

L. Tolosa, H. Malak, G. Raob, J. Lakowicz, “Optical assay for glucose based on the luminescnence decay time of the long wavelength dye Cy5,” Sens. Actuators B Chem. 45(2), 93–99 (1997).
[CrossRef]

1993 (1)

The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” N. Engl. J. Med. 329(14), 977–986 (1993).
[CrossRef] [PubMed]

1991 (1)

S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, R. Langer, “Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres,” Pharm. Res. 08(6), 713–720 (1991).
[CrossRef] [PubMed]

1988 (1)

1982 (1)

J. S. Schultz, S. Mansouri, I. J. Goldstein, “Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites,” Diabetes Care 5(3), 245–253 (1982).
[CrossRef] [PubMed]

1974 (1)

C. Huet, M. Lonchampt, M. Huet, A. Bernadac, “Temperature effects on the concanavalin A molecule and on concanavalin A binding,” Biochim. Biophys. Acta 365(1), 28–39 (1974).
[PubMed]

Agashe, H. B.

U. Gupta, H. B. Agashe, A. Asthana, N. K. Jain, “Dendrimers: novel polymeric nanoarchitectures for solubility enhancement,” Biomacromolecules 7(3), 649–658 (2006).
[CrossRef] [PubMed]

Ansari, R. R.

R. R. Ansari, S. Böckle, L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[CrossRef] [PubMed]

Antipov, A. A.

A. A. Antipov, G. B. Sukhorukov, “Polyelectrolyte multilayer capsules as vehicles with tunable permeability,” Adv. Colloid Interface Sci. 111(1-2), 49–61 (2004).
[CrossRef] [PubMed]

Anumula, H.

B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006).
[CrossRef] [PubMed]

Armstrong, D.

I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
[CrossRef] [PubMed]

Arnold, M. A.

J. J. Burmeister, M. A. Arnold, G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[CrossRef] [PubMed]

Asthana, A.

U. Gupta, H. B. Agashe, A. Asthana, N. K. Jain, “Dendrimers: novel polymeric nanoarchitectures for solubility enhancement,” Biomacromolecules 7(3), 649–658 (2006).
[CrossRef] [PubMed]

Axel, A.

R. Russell, A. Axel, K. Shields, M. Pishko, “Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing,” Polymer (Guildf.) 42(11), 4893–4901 (2001).
[CrossRef]

Baba, J. S.

B. D. Cameron, J. S. Baba, G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[CrossRef] [PubMed]

Backlund, J. Y.

D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
[CrossRef] [PubMed]

Ballerstadt, R.

R. Ballerstadt, C. Evans, R. McNichols, A. Gowda, “Concanavalin A for in vivo glucose sensing: a biotoxicity review,” Biosens. Bioelectron. 22(2), 275–284 (2006).
[CrossRef] [PubMed]

R. Ballerstadt, A. Polak, A. Beuhler, J. Frye, “In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring,” Biosens. Bioelectron. 19(8), 905–914 (2004).
[CrossRef] [PubMed]

R. Ballerstadt, J. S. Schultz, “A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring,” Anal. Chem. 72(17), 4185–4192 (2000).
[CrossRef] [PubMed]

Barman, I.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

Beier, H. T.

R. M. Rounds, B. L. Ibey, H. T. Beier, M. V. Pishko, G. L. Coté, “Microporated PEG spheres for fluorescent analyte detection,” J. Fluoresc. 17(1), 57–63 (2006).
[CrossRef] [PubMed]

B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Coté, V. K. Yadavalli, M. V. Pishko, “Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates,” Anal. Chem. 77(21), 7039–7046 (2005).
[CrossRef] [PubMed]

Bergenstal, R. M.

I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
[CrossRef] [PubMed]

Berger, A. J.

Bernadac, A.

C. Huet, M. Lonchampt, M. Huet, A. Bernadac, “Temperature effects on the concanavalin A molecule and on concanavalin A binding,” Biochim. Biophys. Acta 365(1), 28–39 (1974).
[PubMed]

Bertozzi, C. R.

P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008).
[CrossRef] [PubMed]

Beuhler, A.

R. Ballerstadt, A. Polak, A. Beuhler, J. Frye, “In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring,” Biosens. Bioelectron. 19(8), 905–914 (2004).
[CrossRef] [PubMed]

Birch, D. J.

F. Hussain, D. J. Birch, J. C. Pickup, “Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase,” Anal. Biochem. 339(1), 137–143 (2005).
[CrossRef] [PubMed]

Blixt, O.

P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008).
[CrossRef] [PubMed]

Böckle, S.

R. R. Ansari, S. Böckle, L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[CrossRef] [PubMed]

Borchert, M.

J. Lambert, J. Morookian, S. Sirk, M. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

Buckingham, B.

I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
[CrossRef] [PubMed]

Burmeister, J. J.

J. J. Burmeister, M. A. Arnold, G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[CrossRef] [PubMed]

Cameron, B. D.

B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006).
[CrossRef] [PubMed]

B. D. Cameron, J. S. Baba, G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[CrossRef] [PubMed]

Carnahan, M. A.

A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett, M. W. Grinstaff, T. Kim, “New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair,” Arch. Ophthalmol. 122(6), 867–870 (2004).
[CrossRef] [PubMed]

M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003).
[CrossRef] [PubMed]

Cass, A. E.

N. S. Oliver, C. Toumazou, A. E. Cass, D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

Chang, E.

E. Chang, D. Holguin, “Electrooptical light-management material: Low-refractive-index hydrogels,” J. Adhes. 83(1), 15–26 (2007).
[CrossRef]

Chen, H. T.

H. T. Chen, M. F. Neerman, A. R. Parrish, E. E. Simanek, “Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery,” J. Am. Chem. Soc. 126(32), 10044–10048 (2004).
[CrossRef] [PubMed]

Chen, X.

P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008).
[CrossRef] [PubMed]

Childs, B. P.

I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
[CrossRef] [PubMed]

Chouai, A.

J. Lim, A. Chouai, S. T. Lo, W. Liu, X. Sun, E. E. Simanek, “Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages,” Bioconjug. Chem. 20(11), 2154–2161 (2009).
[CrossRef] [PubMed]

Cicenaite, I.

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

Clarke, W. L.

I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
[CrossRef] [PubMed]

Cleary, P. A.

D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
[CrossRef] [PubMed]

Cohen, S.

S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, R. Langer, “Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres,” Pharm. Res. 08(6), 713–720 (1991).
[CrossRef] [PubMed]

Coté, G.

B. Malik, G. Coté, “Real-time dual wavelength polarimetry for glucose sensing,” Proc. SPIE 7186, 718604 (2009).
[CrossRef]

Coté, G. L.

R. M. Rounds, B. L. Ibey, H. T. Beier, M. V. Pishko, G. L. Coté, “Microporated PEG spheres for fluorescent analyte detection,” J. Fluoresc. 17(1), 57–63 (2006).
[CrossRef] [PubMed]

B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Coté, V. K. Yadavalli, M. V. Pishko, “Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates,” Anal. Chem. 77(21), 7039–7046 (2005).
[CrossRef] [PubMed]

Q. Wan, G. L. Coté, J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
[CrossRef] [PubMed]

B. D. Cameron, J. S. Baba, G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[CrossRef] [PubMed]

R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

D’Auria, S.

S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J. R. Lakowicz, “A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor,” Biochem. Biophys. Res. Commun. 274(3), 727–731 (2000).
[CrossRef] [PubMed]

Dähne, L.

C. S. Peyratout, L. Dähne, “Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers,” Angew. Chem. Int. Ed. Engl. 43(29), 3762–3783 (2004).
[CrossRef] [PubMed]

Dasari, R. R.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

Daunert, S.

J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010).
[CrossRef]

Di Cesare, N.

S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J. R. Lakowicz, “A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor,” Biochem. Biophys. Res. Commun. 274(3), 727–731 (2000).
[CrossRef] [PubMed]

Dingari, N. C.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

Dixon, J. B.

Q. Wan, G. L. Coté, J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
[CrossRef] [PubMed]

Donath, E.

C. Gao, S. Moya, E. Donath, H. Möhwald, “Melamine formaldehyde core decomposition as the key step controlling capsule integrity: optimizing the polyelectrolyte capsule fabrication,” Macromol. Chem. Phys. 203(7), 953–960 (2002).
[CrossRef]

Dong, X.

Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005).
[CrossRef] [PubMed]

Eberhardt, M. S.

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

Enejder, A. M.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

England, J. D.

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

Ensor, C.

J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010).
[CrossRef]

Esenaliev, R. O.

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[CrossRef] [PubMed]

Evans, C.

R. Ballerstadt, C. Evans, R. McNichols, A. Gowda, “Concanavalin A for in vivo glucose sensing: a biotoxicity review,” Biosens. Bioelectron. 22(2), 275–284 (2006).
[CrossRef] [PubMed]

Feld, M. S.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Feng, J.

Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005).
[CrossRef] [PubMed]

Finkelstein, S.

M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003).
[CrossRef] [PubMed]

Flegal, K. M.

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

Fomichova, A.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Fréchet, J. M.

C. C. Lee, J. A. MacKay, J. M. Fréchet, F. C. Szoka, “Designing dendrimers for biological applications,” Nat. Biotechnol. 23(12), 1517–1526 (2005).
[CrossRef] [PubMed]

E. R. Gillies, J. M. Fréchet, “Dendrimers and dendritic polymers in drug delivery,” Drug Discov. Today 10(1), 35–43 (2005).
[CrossRef] [PubMed]

M. Liu, K. Kono, J. M. Fréchet, “Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents,” J. Control. Release 65(1-2), 121–131 (2000).
[CrossRef] [PubMed]

Freiberg, S.

S. Freiberg, X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282(1-2), 1–18 (2004).
[CrossRef] [PubMed]

Frye, J.

R. Ballerstadt, A. Polak, A. Beuhler, J. Frye, “In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring,” Biosens. Bioelectron. 19(8), 905–914 (2004).
[CrossRef] [PubMed]

Gao, C.

C. Gao, S. Moya, E. Donath, H. Möhwald, “Melamine formaldehyde core decomposition as the key step controlling capsule integrity: optimizing the polyelectrolyte capsule fabrication,” Macromol. Chem. Phys. 203(7), 953–960 (2002).
[CrossRef]

Gefrides, C. C.

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

Genuth, S. M.

D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
[CrossRef] [PubMed]

Gillies, E. R.

E. R. Gillies, J. M. Fréchet, “Dendrimers and dendritic polymers in drug delivery,” Drug Discov. Today 10(1), 35–43 (2005).
[CrossRef] [PubMed]

Goldstein, D. E.

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

Goldstein, I. J.

J. S. Schultz, S. Mansouri, I. J. Goldstein, “Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites,” Diabetes Care 5(3), 245–253 (1982).
[CrossRef] [PubMed]

Gombotz, W. R.

W. R. Gombotz, S. Wee, “Protein release from alginate matrices,” Adv. Drug Deliv. Rev. 31(3), 267–285 (1998).
[CrossRef] [PubMed]

Gowda, A.

R. Ballerstadt, C. Evans, R. McNichols, A. Gowda, “Concanavalin A for in vivo glucose sensing: a biotoxicity review,” Biosens. Bioelectron. 22(2), 275–284 (2006).
[CrossRef] [PubMed]

Gretz, N.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Grinstaff, M. W.

A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett, M. W. Grinstaff, T. Kim, “New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair,” Arch. Ophthalmol. 122(6), 867–870 (2004).
[CrossRef] [PubMed]

M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003).
[CrossRef] [PubMed]

M. W. Grinstaff, “Biodendrimers: new polymeric biomaterials for tissue engineering,” Chemistry 8(13), 2838–2846 (2002).
[CrossRef] [PubMed]

Gryczynski, I.

S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J. R. Lakowicz, “A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor,” Biochem. Biophys. Res. Commun. 274(3), 727–731 (2000).
[CrossRef] [PubMed]

Gryczynski, Z.

S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J. R. Lakowicz, “A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor,” Biochem. Biophys. Res. Commun. 274(3), 727–731 (2000).
[CrossRef] [PubMed]

Gupta, U.

U. Gupta, H. B. Agashe, A. Asthana, N. K. Jain, “Dendrimers: novel polymeric nanoarchitectures for solubility enhancement,” Biomacromolecules 7(3), 649–658 (2006).
[CrossRef] [PubMed]

Harris, M. I.

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

Herrmann, C.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Hirsch, I. B.

I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
[CrossRef] [PubMed]

Holguin, D.

E. Chang, D. Holguin, “Electrooptical light-management material: Low-refractive-index hydrogels,” J. Adhes. 83(1), 15–26 (2007).
[CrossRef]

Horowitz, G. L.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Hu, N.

P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008).
[CrossRef] [PubMed]

Huang, Z.

L. Zeng, G. Liu, D. Yang, Z. Ren, Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

Huet, C.

C. Huet, M. Lonchampt, M. Huet, A. Bernadac, “Temperature effects on the concanavalin A molecule and on concanavalin A binding,” Biochim. Biophys. Acta 365(1), 28–39 (1974).
[PubMed]

Huet, M.

C. Huet, M. Lonchampt, M. Huet, A. Bernadac, “Temperature effects on the concanavalin A molecule and on concanavalin A binding,” Biochim. Biophys. Acta 365(1), 28–39 (1974).
[PubMed]

Hunter, M.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Hussain, F.

F. Hussain, D. J. Birch, J. C. Pickup, “Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase,” Anal. Biochem. 339(1), 137–143 (2005).
[CrossRef] [PubMed]

Hwang, L. H.

S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, R. Langer, “Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres,” Pharm. Res. 08(6), 713–720 (1991).
[CrossRef] [PubMed]

Ibey, B. L.

R. M. Rounds, B. L. Ibey, H. T. Beier, M. V. Pishko, G. L. Coté, “Microporated PEG spheres for fluorescent analyte detection,” J. Fluoresc. 17(1), 57–63 (2006).
[CrossRef] [PubMed]

B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Coté, V. K. Yadavalli, M. V. Pishko, “Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates,” Anal. Chem. 77(21), 7039–7046 (2005).
[CrossRef] [PubMed]

Immoos, C. E.

M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003).
[CrossRef] [PubMed]

Jain, N. K.

U. Gupta, H. B. Agashe, A. Asthana, N. K. Jain, “Dendrimers: novel polymeric nanoarchitectures for solubility enhancement,” Biomacromolecules 7(3), 649–658 (2006).
[CrossRef] [PubMed]

Javier, A. M.

O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, “Polymer microcapsules as mobile local pH-sensors,” J. Mater. Chem. 17(42), 4471–4476 (2007).
[CrossRef]

Joel, S.

J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010).
[CrossRef]

Johnston, D. G.

N. S. Oliver, C. Toumazou, A. E. Cass, D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

Kazarian, T.

J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010).
[CrossRef]

Kim, T.

A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett, M. W. Grinstaff, T. Kim, “New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair,” Arch. Ophthalmol. 122(6), 867–870 (2004).
[CrossRef] [PubMed]

Kojima, C.

C. Kojima, K. Kono, K. Maruyama, T. Takagishi, “Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs,” Bioconjug. Chem. 11(6), 910–917 (2000).
[CrossRef] [PubMed]

Kong, C. R.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

Kono, K.

M. Liu, K. Kono, J. M. Fréchet, “Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents,” J. Control. Release 65(1-2), 121–131 (2000).
[CrossRef] [PubMed]

C. Kojima, K. Kono, K. Maruyama, T. Takagishi, “Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs,” Bioconjug. Chem. 11(6), 910–917 (2000).
[CrossRef] [PubMed]

Kreft, O.

O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, “Polymer microcapsules as mobile local pH-sensors,” J. Mater. Chem. 17(42), 4471–4476 (2007).
[CrossRef]

Kristinsson, J.

A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett, M. W. Grinstaff, T. Kim, “New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair,” Arch. Ophthalmol. 122(6), 867–870 (2004).
[CrossRef] [PubMed]

Kuranov, R. V.

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

Lachin, J. M.

D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
[CrossRef] [PubMed]

Lakowicz, J.

L. Tolosa, H. Malak, G. Raob, J. Lakowicz, “Optical assay for glucose based on the luminescnence decay time of the long wavelength dye Cy5,” Sens. Actuators B Chem. 45(2), 93–99 (1997).
[CrossRef]

Lakowicz, J. R.

S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J. R. Lakowicz, “A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor,” Biochem. Biophys. Res. Commun. 274(3), 727–731 (2000).
[CrossRef] [PubMed]

Lambert, J.

J. Lambert, J. Morookian, S. Sirk, M. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

Langer, R.

S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, R. Langer, “Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres,” Pharm. Res. 08(6), 713–720 (1991).
[CrossRef] [PubMed]

Larin, K. V.

Larina, I. V.

Larionova, N. I.

D. V. Volodkin, N. I. Larionova, G. B. Sukhorukov, “Protein encapsulation via porous CaCO3 microparticles templating,” Biomacromolecules 5(5), 1962–1972 (2004).
[CrossRef] [PubMed]

Lee, C. C.

C. C. Lee, J. A. MacKay, J. M. Fréchet, F. C. Szoka, “Designing dendrimers for biological applications,” Nat. Biotechnol. 23(12), 1517–1526 (2005).
[CrossRef] [PubMed]

Lee, S. J.

M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003).
[CrossRef] [PubMed]

Li, Y.

Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005).
[CrossRef] [PubMed]

Lim, J.

J. Lim, A. Chouai, S. T. Lo, W. Liu, X. Sun, E. E. Simanek, “Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages,” Bioconjug. Chem. 20(11), 2154–2161 (2009).
[CrossRef] [PubMed]

Little, R. R.

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

Liu, G.

L. Zeng, G. Liu, D. Yang, Z. Ren, Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

Liu, M.

M. Liu, K. Kono, J. M. Fréchet, “Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents,” J. Control. Release 65(1-2), 121–131 (2000).
[CrossRef] [PubMed]

Liu, W.

J. Lim, A. Chouai, S. T. Lo, W. Liu, X. Sun, E. E. Simanek, “Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages,” Bioconjug. Chem. 20(11), 2154–2161 (2009).
[CrossRef] [PubMed]

Lo, S. T.

J. Lim, A. Chouai, S. T. Lo, W. Liu, X. Sun, E. E. Simanek, “Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages,” Bioconjug. Chem. 20(11), 2154–2161 (2009).
[CrossRef] [PubMed]

Lonchampt, M.

C. Huet, M. Lonchampt, M. Huet, A. Bernadac, “Temperature effects on the concanavalin A molecule and on concanavalin A binding,” Biochim. Biophys. Acta 365(1), 28–39 (1974).
[PubMed]

Lucarelli, M.

S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, R. Langer, “Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres,” Pharm. Res. 08(6), 713–720 (1991).
[CrossRef] [PubMed]

MacKay, J. A.

C. C. Lee, J. A. MacKay, J. M. Fréchet, F. C. Szoka, “Designing dendrimers for biological applications,” Nat. Biotechnol. 23(12), 1517–1526 (2005).
[CrossRef] [PubMed]

Madou, M.

J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010).
[CrossRef]

Madsen, R.

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

Malak, H.

L. Tolosa, H. Malak, G. Raob, J. Lakowicz, “Optical assay for glucose based on the luminescnence decay time of the long wavelength dye Cy5,” Sens. Actuators B Chem. 45(2), 93–99 (1997).
[CrossRef]

Malik, B.

B. Malik, G. Coté, “Real-time dual wavelength polarimetry for glucose sensing,” Proc. SPIE 7186, 718604 (2009).
[CrossRef]

Mansouri, S.

J. S. Schultz, S. Mansouri, I. J. Goldstein, “Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites,” Diabetes Care 5(3), 245–253 (1982).
[CrossRef] [PubMed]

Maruyama, K.

C. Kojima, K. Kono, K. Maruyama, T. Takagishi, “Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs,” Bioconjug. Chem. 11(6), 910–917 (2000).
[CrossRef] [PubMed]

McNichols, R.

R. Ballerstadt, C. Evans, R. McNichols, A. Gowda, “Concanavalin A for in vivo glucose sensing: a biotoxicity review,” Biosens. Bioelectron. 22(2), 275–284 (2006).
[CrossRef] [PubMed]

McNichols, R. J.

R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

McShane, M. J.

E. W. Stein, D. V. Volodkin, M. J. McShane, G. B. Sukhorukov, “Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase,” Biomacromolecules 7(3), 710–719 (2006).
[CrossRef] [PubMed]

M. J. McShane, “Potential for glucose monitoring with nanoengineered fluorescent biosensors,” Diabetes Technol. Ther. 4(4), 533–538 (2002).
[CrossRef] [PubMed]

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

Mellott, M. B.

M. B. Mellott, K. Searcy, M. V. Pishko, “Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization,” Biomaterials 22(9), 929–941 (2001).
[CrossRef] [PubMed]

Möhwald, H.

C. Gao, S. Moya, E. Donath, H. Möhwald, “Melamine formaldehyde core decomposition as the key step controlling capsule integrity: optimizing the polyelectrolyte capsule fabrication,” Macromol. Chem. Phys. 203(7), 953–960 (2002).
[CrossRef]

Morgan, M. T.

M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003).
[CrossRef] [PubMed]

Morookian, J.

J. Lambert, J. Morookian, S. Sirk, M. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

Motamedi, M.

Moya, S.

C. Gao, S. Moya, E. Donath, H. Möhwald, “Melamine formaldehyde core decomposition as the key step controlling capsule integrity: optimizing the polyelectrolyte capsule fabrication,” Macromol. Chem. Phys. 203(7), 953–960 (2002).
[CrossRef]

Nathan, D. M.

D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
[CrossRef] [PubMed]

Neerman, M. F.

H. T. Chen, M. F. Neerman, A. R. Parrish, E. E. Simanek, “Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery,” J. Am. Chem. Soc. 126(32), 10044–10048 (2004).
[CrossRef] [PubMed]

M. F. Neerman, W. Zhang, A. R. Parrish, E. E. Simanek, “In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery,” Int. J. Pharm. 281(1-2), 129–132 (2004).
[CrossRef] [PubMed]

Neudecker, S.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Oh, J.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Oliver, N. S.

N. S. Oliver, C. Toumazou, A. E. Cass, D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

Orchard, T. J.

D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
[CrossRef] [PubMed]

Parak, W. J.

O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, “Polymer microcapsules as mobile local pH-sensors,” J. Mater. Chem. 17(42), 4471–4476 (2007).
[CrossRef]

Parrish, A. R.

H. T. Chen, M. F. Neerman, A. R. Parrish, E. E. Simanek, “Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery,” J. Am. Chem. Soc. 126(32), 10044–10048 (2004).
[CrossRef] [PubMed]

M. F. Neerman, W. Zhang, A. R. Parrish, E. E. Simanek, “In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery,” Int. J. Pharm. 281(1-2), 129–132 (2004).
[CrossRef] [PubMed]

Peters, A.

I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
[CrossRef] [PubMed]

Petrich, W.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Peyratout, C. S.

C. S. Peyratout, L. Dähne, “Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers,” Angew. Chem. Int. Ed. Engl. 43(29), 3762–3783 (2004).
[CrossRef] [PubMed]

Pickup, J. C.

F. Hussain, D. J. Birch, J. C. Pickup, “Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase,” Anal. Biochem. 339(1), 137–143 (2005).
[CrossRef] [PubMed]

Pishko, M.

R. Russell, A. Axel, K. Shields, M. Pishko, “Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing,” Polymer (Guildf.) 42(11), 4893–4901 (2001).
[CrossRef]

Pishko, M. V.

R. M. Rounds, B. L. Ibey, H. T. Beier, M. V. Pishko, G. L. Coté, “Microporated PEG spheres for fluorescent analyte detection,” J. Fluoresc. 17(1), 57–63 (2006).
[CrossRef] [PubMed]

B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Coté, V. K. Yadavalli, M. V. Pishko, “Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates,” Anal. Chem. 77(21), 7039–7046 (2005).
[CrossRef] [PubMed]

M. B. Mellott, K. Searcy, M. V. Pishko, “Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization,” Biomaterials 22(9), 929–941 (2001).
[CrossRef] [PubMed]

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

Polak, A.

R. Ballerstadt, A. Polak, A. Beuhler, J. Frye, “In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring,” Biosens. Bioelectron. 19(8), 905–914 (2004).
[CrossRef] [PubMed]

Prough, D.

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

Pucci, A.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Qi, D.

Rahman, A. B.

Raob, G.

L. Tolosa, H. Malak, G. Raob, J. Lakowicz, “Optical assay for glucose based on the luminescnence decay time of the long wavelength dye Cy5,” Sens. Actuators B Chem. 45(2), 93–99 (1997).
[CrossRef]

Raskin, P.

D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
[CrossRef] [PubMed]

Raz, I.

R. Weiss, Y. Yegorchikov, A. Shusterman, I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

Ren, Z.

L. Zeng, G. Liu, D. Yang, Z. Ren, Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

Reyna, L. A.

D. A. Tomalia, L. A. Reyna, S. Svenson, “Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging,” Biochem. Soc. Trans. 35(1), 61–67 (2007).
[CrossRef] [PubMed]

Ribeiro, A. A.

M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003).
[CrossRef] [PubMed]

Rohlfing, C. L.

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

Rossi, M.

S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J. R. Lakowicz, “A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor,” Biochem. Biophys. Res. Commun. 274(3), 727–731 (2000).
[CrossRef] [PubMed]

Rounds, R. M.

R. M. Rounds, B. L. Ibey, H. T. Beier, M. V. Pishko, G. L. Coté, “Microporated PEG spheres for fluorescent analyte detection,” J. Fluoresc. 17(1), 57–63 (2006).
[CrossRef] [PubMed]

B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Coté, V. K. Yadavalli, M. V. Pishko, “Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates,” Anal. Chem. 77(21), 7039–7046 (2005).
[CrossRef] [PubMed]

Rovati, L.

R. R. Ansari, S. Böckle, L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[CrossRef] [PubMed]

Ruan, M.

Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005).
[CrossRef] [PubMed]

Russell, R.

R. Russell, A. Axel, K. Shields, M. Pishko, “Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing,” Polymer (Guildf.) 42(11), 4893–4901 (2001).
[CrossRef]

Russell, R. J.

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

Sapozhnikova, V. V.

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

Sasic, S.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Scecina, T. G.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Schultz, J. S.

R. Ballerstadt, J. S. Schultz, “A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring,” Anal. Chem. 72(17), 4185–4192 (2000).
[CrossRef] [PubMed]

J. S. Schultz, S. Mansouri, I. J. Goldstein, “Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites,” Diabetes Care 5(3), 245–253 (1982).
[CrossRef] [PubMed]

Searcy, K.

M. B. Mellott, K. Searcy, M. V. Pishko, “Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization,” Biomaterials 22(9), 929–941 (2001).
[CrossRef] [PubMed]

Shen, W.

Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005).
[CrossRef] [PubMed]

Shi, J.

Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005).
[CrossRef] [PubMed]

Shields, K.

R. Russell, A. Axel, K. Shields, M. Pishko, “Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing,” Polymer (Guildf.) 42(11), 4893–4901 (2001).
[CrossRef]

Shih, W. C.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Shusterman, A.

R. Weiss, Y. Yegorchikov, A. Shusterman, I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

Siegrist, J.

J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010).
[CrossRef]

Simanek, E. E.

J. Lim, A. Chouai, S. T. Lo, W. Liu, X. Sun, E. E. Simanek, “Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages,” Bioconjug. Chem. 20(11), 2154–2161 (2009).
[CrossRef] [PubMed]

M. F. Neerman, W. Zhang, A. R. Parrish, E. E. Simanek, “In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery,” Int. J. Pharm. 281(1-2), 129–132 (2004).
[CrossRef] [PubMed]

H. T. Chen, M. F. Neerman, A. R. Parrish, E. E. Simanek, “Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery,” J. Am. Chem. Soc. 126(32), 10044–10048 (2004).
[CrossRef] [PubMed]

Sirk, S.

J. Lambert, J. Morookian, S. Sirk, M. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

Small, G. W.

J. J. Burmeister, M. A. Arnold, G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[CrossRef] [PubMed]

Stein, E. W.

E. W. Stein, D. V. Volodkin, M. J. McShane, G. B. Sukhorukov, “Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase,” Biomacromolecules 7(3), 710–719 (2006).
[CrossRef] [PubMed]

Stinnett, S.

A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett, M. W. Grinstaff, T. Kim, “New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair,” Arch. Ophthalmol. 122(6), 867–870 (2004).
[CrossRef] [PubMed]

Stoddart, J.

W. Turnbull, J. Stoddart, “Design and synthesis of glycodendrimer,” Rev. Mol. Biotechnol. 90(3–4), 231–255 (2002).
[CrossRef]

Sukhorukov, G. B.

O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, “Polymer microcapsules as mobile local pH-sensors,” J. Mater. Chem. 17(42), 4471–4476 (2007).
[CrossRef]

E. W. Stein, D. V. Volodkin, M. J. McShane, G. B. Sukhorukov, “Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase,” Biomacromolecules 7(3), 710–719 (2006).
[CrossRef] [PubMed]

D. V. Volodkin, N. I. Larionova, G. B. Sukhorukov, “Protein encapsulation via porous CaCO3 microparticles templating,” Biomacromolecules 5(5), 1962–1972 (2004).
[CrossRef] [PubMed]

A. A. Antipov, G. B. Sukhorukov, “Polyelectrolyte multilayer capsules as vehicles with tunable permeability,” Adv. Colloid Interface Sci. 111(1-2), 49–61 (2004).
[CrossRef] [PubMed]

Sun, X.

J. Lim, A. Chouai, S. T. Lo, W. Liu, X. Sun, E. E. Simanek, “Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages,” Bioconjug. Chem. 20(11), 2154–2161 (2009).
[CrossRef] [PubMed]

Svenson, S.

D. A. Tomalia, L. A. Reyna, S. Svenson, “Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging,” Biochem. Soc. Trans. 35(1), 61–67 (2007).
[CrossRef] [PubMed]

Szoka, F. C.

C. C. Lee, J. A. MacKay, J. M. Fréchet, F. C. Szoka, “Designing dendrimers for biological applications,” Nat. Biotechnol. 23(12), 1517–1526 (2005).
[CrossRef] [PubMed]

Takagishi, T.

C. Kojima, K. Kono, K. Maruyama, T. Takagishi, “Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs,” Bioconjug. Chem. 11(6), 910–917 (2000).
[CrossRef] [PubMed]

Tam, U. C.

P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008).
[CrossRef] [PubMed]

Tolosa, L.

L. Tolosa, H. Malak, G. Raob, J. Lakowicz, “Optical assay for glucose based on the luminescnence decay time of the long wavelength dye Cy5,” Sens. Actuators B Chem. 45(2), 93–99 (1997).
[CrossRef]

Tomalia, D. A.

D. A. Tomalia, L. A. Reyna, S. Svenson, “Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging,” Biochem. Soc. Trans. 35(1), 61–67 (2007).
[CrossRef] [PubMed]

Toumazou, C.

N. S. Oliver, C. Toumazou, A. E. Cass, D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

Turnbull, W.

W. Turnbull, J. Stoddart, “Design and synthesis of glycodendrimer,” Rev. Mol. Biotechnol. 90(3–4), 231–255 (2002).
[CrossRef]

Velazquez, A. J.

A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett, M. W. Grinstaff, T. Kim, “New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair,” Arch. Ophthalmol. 122(6), 867–870 (2004).
[CrossRef] [PubMed]

Volodkin, D. V.

E. W. Stein, D. V. Volodkin, M. J. McShane, G. B. Sukhorukov, “Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase,” Biomacromolecules 7(3), 710–719 (2006).
[CrossRef] [PubMed]

D. V. Volodkin, N. I. Larionova, G. B. Sukhorukov, “Protein encapsulation via porous CaCO3 microparticles templating,” Biomacromolecules 5(5), 1962–1972 (2004).
[CrossRef] [PubMed]

Vrancic, C.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Wan, Q.

Q. Wan, G. L. Coté, J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
[CrossRef] [PubMed]

Wang, J.

J. Wang, “Glucose biosensors: 40 Years of advances and challenges,” Electroanalysis 13(12), 983–988 (2001).
[CrossRef]

Wang, P.

J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010).
[CrossRef]

Wee, S.

W. R. Gombotz, S. Wee, “Protein release from alginate matrices,” Adv. Drug Deliv. Rev. 31(3), 267–285 (1998).
[CrossRef] [PubMed]

Weiss, R.

R. Weiss, Y. Yegorchikov, A. Shusterman, I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

Wiedmeyer, H. M.

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

Wolpert, H.

I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
[CrossRef] [PubMed]

Wu, P.

P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008).
[CrossRef] [PubMed]

Yadavalli, V. K.

B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Coté, V. K. Yadavalli, M. V. Pishko, “Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates,” Anal. Chem. 77(21), 7039–7046 (2005).
[CrossRef] [PubMed]

Yang, D.

L. Zeng, G. Liu, D. Yang, Z. Ren, Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

Yegorchikov, Y.

R. Weiss, Y. Yegorchikov, A. Shusterman, I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

Yoshioka, T.

S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, R. Langer, “Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres,” Pharm. Res. 08(6), 713–720 (1991).
[CrossRef] [PubMed]

Yunus, W. M.

Zeng, L.

L. Zeng, G. Liu, D. Yang, Z. Ren, Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

Zettl, A.

P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008).
[CrossRef] [PubMed]

Zhang, W.

M. F. Neerman, W. Zhang, A. R. Parrish, E. E. Simanek, “In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery,” Int. J. Pharm. 281(1-2), 129–132 (2004).
[CrossRef] [PubMed]

Zhu, X. X.

S. Freiberg, X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282(1-2), 1–18 (2004).
[CrossRef] [PubMed]

Zhu, Y.

Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005).
[CrossRef] [PubMed]

Zinman, B.

D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
[CrossRef] [PubMed]

Adv. Colloid Interface Sci. (1)

A. A. Antipov, G. B. Sukhorukov, “Polyelectrolyte multilayer capsules as vehicles with tunable permeability,” Adv. Colloid Interface Sci. 111(1-2), 49–61 (2004).
[CrossRef] [PubMed]

Adv. Drug Deliv. Rev. (1)

W. R. Gombotz, S. Wee, “Protein release from alginate matrices,” Adv. Drug Deliv. Rev. 31(3), 267–285 (1998).
[CrossRef] [PubMed]

Anal. Biochem. (1)

F. Hussain, D. J. Birch, J. C. Pickup, “Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase,” Anal. Biochem. 339(1), 137–143 (2005).
[CrossRef] [PubMed]

Anal. Chem. (4)

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Coté, V. K. Yadavalli, M. V. Pishko, “Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates,” Anal. Chem. 77(21), 7039–7046 (2005).
[CrossRef] [PubMed]

R. Ballerstadt, J. S. Schultz, “A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring,” Anal. Chem. 72(17), 4185–4192 (2000).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (3)

P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008).
[CrossRef] [PubMed]

C. S. Peyratout, L. Dähne, “Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers,” Angew. Chem. Int. Ed. Engl. 43(29), 3762–3783 (2004).
[CrossRef] [PubMed]

Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005).
[CrossRef] [PubMed]

Appl. Opt. (2)

Arch. Ophthalmol. (1)

A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett, M. W. Grinstaff, T. Kim, “New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair,” Arch. Ophthalmol. 122(6), 867–870 (2004).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun. (1)

S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J. R. Lakowicz, “A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor,” Biochem. Biophys. Res. Commun. 274(3), 727–731 (2000).
[CrossRef] [PubMed]

Biochem. Soc. Trans. (1)

D. A. Tomalia, L. A. Reyna, S. Svenson, “Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging,” Biochem. Soc. Trans. 35(1), 61–67 (2007).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (1)

C. Huet, M. Lonchampt, M. Huet, A. Bernadac, “Temperature effects on the concanavalin A molecule and on concanavalin A binding,” Biochim. Biophys. Acta 365(1), 28–39 (1974).
[PubMed]

Bioconjug. Chem. (2)

C. Kojima, K. Kono, K. Maruyama, T. Takagishi, “Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs,” Bioconjug. Chem. 11(6), 910–917 (2000).
[CrossRef] [PubMed]

J. Lim, A. Chouai, S. T. Lo, W. Liu, X. Sun, E. E. Simanek, “Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages,” Bioconjug. Chem. 20(11), 2154–2161 (2009).
[CrossRef] [PubMed]

Biomacromolecules (3)

U. Gupta, H. B. Agashe, A. Asthana, N. K. Jain, “Dendrimers: novel polymeric nanoarchitectures for solubility enhancement,” Biomacromolecules 7(3), 649–658 (2006).
[CrossRef] [PubMed]

D. V. Volodkin, N. I. Larionova, G. B. Sukhorukov, “Protein encapsulation via porous CaCO3 microparticles templating,” Biomacromolecules 5(5), 1962–1972 (2004).
[CrossRef] [PubMed]

E. W. Stein, D. V. Volodkin, M. J. McShane, G. B. Sukhorukov, “Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase,” Biomacromolecules 7(3), 710–719 (2006).
[CrossRef] [PubMed]

Biomaterials (1)

M. B. Mellott, K. Searcy, M. V. Pishko, “Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization,” Biomaterials 22(9), 929–941 (2001).
[CrossRef] [PubMed]

Biosens. Bioelectron. (2)

R. Ballerstadt, C. Evans, R. McNichols, A. Gowda, “Concanavalin A for in vivo glucose sensing: a biotoxicity review,” Biosens. Bioelectron. 22(2), 275–284 (2006).
[CrossRef] [PubMed]

R. Ballerstadt, A. Polak, A. Beuhler, J. Frye, “In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring,” Biosens. Bioelectron. 19(8), 905–914 (2004).
[CrossRef] [PubMed]

Chemistry (1)

M. W. Grinstaff, “Biodendrimers: new polymeric biomaterials for tissue engineering,” Chemistry 8(13), 2838–2846 (2002).
[CrossRef] [PubMed]

Diabet. Med. (1)

N. S. Oliver, C. Toumazou, A. E. Cass, D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

Diabetes Care (4)

American Diabetes Association, “Economic costs of diabetes in the U.S. In 2007,” Diabetes Care 31(3), 596–615 (2008).
[PubMed]

American Diabetes Association, “Standards of medical care in diabetes--2009,” Diabetes Care 32(Suppl 1), S13–S61 (2009).
[CrossRef] [PubMed]

C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000).
[CrossRef] [PubMed]

J. S. Schultz, S. Mansouri, I. J. Goldstein, “Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites,” Diabetes Care 5(3), 245–253 (1982).
[CrossRef] [PubMed]

Diabetes Technol. Ther. (6)

M. J. McShane, “Potential for glucose monitoring with nanoengineered fluorescent biosensors,” Diabetes Technol. Ther. 4(4), 533–538 (2002).
[CrossRef] [PubMed]

R. Weiss, Y. Yegorchikov, A. Shusterman, I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

B. D. Cameron, J. S. Baba, G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[CrossRef] [PubMed]

B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006).
[CrossRef] [PubMed]

J. J. Burmeister, M. A. Arnold, G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[CrossRef] [PubMed]

I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008).
[CrossRef] [PubMed]

Drug Discov. Today (1)

E. R. Gillies, J. M. Fréchet, “Dendrimers and dendritic polymers in drug delivery,” Drug Discov. Today 10(1), 35–43 (2005).
[CrossRef] [PubMed]

Electroanalysis (1)

J. Wang, “Glucose biosensors: 40 Years of advances and challenges,” Electroanalysis 13(12), 983–988 (2001).
[CrossRef]

Exp. Biol. Med. (Maywood) (1)

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

Int. J. Pharm. (2)

M. F. Neerman, W. Zhang, A. R. Parrish, E. E. Simanek, “In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery,” Int. J. Pharm. 281(1-2), 129–132 (2004).
[CrossRef] [PubMed]

S. Freiberg, X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282(1-2), 1–18 (2004).
[CrossRef] [PubMed]

J. Adhes. (1)

E. Chang, D. Holguin, “Electrooptical light-management material: Low-refractive-index hydrogels,” J. Adhes. 83(1), 15–26 (2007).
[CrossRef]

J. Am. Chem. Soc. (2)

M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003).
[CrossRef] [PubMed]

H. T. Chen, M. F. Neerman, A. R. Parrish, E. E. Simanek, “Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery,” J. Am. Chem. Soc. 126(32), 10044–10048 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

R. R. Ansari, S. Böckle, L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[CrossRef] [PubMed]

Q. Wan, G. L. Coté, J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005).
[CrossRef] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

J. Control. Release (1)

M. Liu, K. Kono, J. M. Fréchet, “Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents,” J. Control. Release 65(1-2), 121–131 (2000).
[CrossRef] [PubMed]

J. Fluoresc. (1)

R. M. Rounds, B. L. Ibey, H. T. Beier, M. V. Pishko, G. L. Coté, “Microporated PEG spheres for fluorescent analyte detection,” J. Fluoresc. 17(1), 57–63 (2006).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, “Polymer microcapsules as mobile local pH-sensors,” J. Mater. Chem. 17(42), 4471–4476 (2007).
[CrossRef]

J. Raman Spectrosc. (1)

J. Lambert, J. Morookian, S. Sirk, M. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

Macromol. Chem. Phys. (1)

C. Gao, S. Moya, E. Donath, H. Möhwald, “Melamine formaldehyde core decomposition as the key step controlling capsule integrity: optimizing the polyelectrolyte capsule fabrication,” Macromol. Chem. Phys. 203(7), 953–960 (2002).
[CrossRef]

N. Engl. J. Med. (2)

The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” N. Engl. J. Med. 329(14), 977–986 (1993).
[CrossRef] [PubMed]

D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

C. C. Lee, J. A. MacKay, J. M. Fréchet, F. C. Szoka, “Designing dendrimers for biological applications,” Nat. Biotechnol. 23(12), 1517–1526 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Pharm. Res. (1)

S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, R. Langer, “Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres,” Pharm. Res. 08(6), 713–720 (1991).
[CrossRef] [PubMed]

Polymer (Guildf.) (1)

R. Russell, A. Axel, K. Shields, M. Pishko, “Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing,” Polymer (Guildf.) 42(11), 4893–4901 (2001).
[CrossRef]

Proc. SPIE (2)

B. Malik, G. Coté, “Real-time dual wavelength polarimetry for glucose sensing,” Proc. SPIE 7186, 718604 (2009).
[CrossRef]

L. Zeng, G. Liu, D. Yang, Z. Ren, Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).

Rev. Mol. Biotechnol. (1)

W. Turnbull, J. Stoddart, “Design and synthesis of glycodendrimer,” Rev. Mol. Biotechnol. 90(3–4), 231–255 (2002).
[CrossRef]

Sens. Actuators B Chem. (2)

L. Tolosa, H. Malak, G. Raob, J. Lakowicz, “Optical assay for glucose based on the luminescnence decay time of the long wavelength dye Cy5,” Sens. Actuators B Chem. 45(2), 93–99 (1997).
[CrossRef]

J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010).
[CrossRef]

Other (9)

H. Bittiger and H. Schnebli, Concanavalin A as a Tool, John Wiley & Sons, (1976).

H. A. MacKenzie, H. S. Ashton, Y. C. Shen, J. Lindberg, P. Rae, K. M. Quan, and S. Spiers, “Blood glucose measurements by photoacoustics,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. Sevick-Muraca and J. Izatt, eds., Vol. 22 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper BTuC1.

S. Mansouri and J. Schultz, “Optical glucose sensor based on reversible competitive binding,” IEEE, 112–115 (1984).

J. Harris and S. Zalipsky, Poly(Ethylene Glycol) Chemistry and Biological Applications, Vol. 680 of ACS Symposium Series (American Chemical Society, 1997).

B. Ibey, H. Beier, R. Rounds, M. Pishko, and G. Coté, “Dendrimer based fluorescent glucose sensor for diabetic monitoring,” Progress in Biomedical Optics and Imaging - Proceedings of SPIE, (2006).

M. McShane and Y. Lvov, “Layer-by-Layer Electrostatic Self-Assembly,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition, ed. J. Schwarz, C. Contescu, K. Putyera, Eds.; Taylor & Francis, 1823–1840, (2009).

Invitrogen, Amine-Reactive Probes, Aug. 17, 2010, http://probes.invitrogen.com/media/pis/mp00143.pdf .

J. Pickup, “Diabetic control and its measurements,” Textbook of Diabetes, third ed., 34.1–34.17, Blackwell (2003).

M. Mcshane and E. Stein, “Fluorescence-based glucose sensors,” in In Vivo Glucose Sensing, D. D. Cunningham and J. A. Stenken , eds. (Wiley, (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

This is a schematic representation of the aggregative nature used in the Con-A/dendrimer assay. With the assay exposed to low glucose concentrations (A) the assay emits lower fluorescence than when the assay is exposed to high glucose concentrations (B).

Fig. 2
Fig. 2

This represents the mesh/pore sizes associated with various synthesized spheres. A represents PEG50 spheres (50% water, 50% PEG precursor) and has a very loose mesh. B represents PEG100 spheres (100% PEG precursor) and has a tight mesh. C represents microporated spheres (100% PEG with mannitol) that have large pores within the tighter mesh seen in B. These pores allow the sensing aggregation previously described.

Fig. 3
Fig. 3

This is a representation of the optical set up for 90-degree fluorescence measurements of sensing microspheres with a CCD Spectrometer and a HeNe 632.8 laser.

Fig. 4
Fig. 4

These are hybrid images of false-colored confocal fluorescence slices overlaid onto bright-field images of the microspheres. The fluorescence displays the location of the labeled Con-A within the hydrogel, and it shows the differences of the pore distribution between PEG50 microspheres (A) and microporated microspheres (B). The large pores in B allow for the sensing mechanism to function effectively while maintaining reversibility by preventing leaching. The reference bar is 100 μm in length.

Fig. 5
Fig. 5

Titration response to glucose: Glucose was titrated into a cuvette containing microporated microspheres. The system was given time to be at steady-state prior to readings. The intensity of the fluorescence is compared to the initial fluorescence seen at 0 mg/dL glucose concentration. Error bars depict the standard deviation through three separate titration runs.

Fig. 6
Fig. 6

Comparison of Response: This is the normalized fluorescent response of the assay in free solution compared to the normalized fluorescent response of the assay within microporated microspheres.

Fig. 7
Fig. 7

Leaching Studies: Steady state fluorescent scans were taken for microporated and PEG50 microspheres at 0 mg/dL and 600 mg/dL. The supernatant was removed and scanned to determine if labeled Con-A leached out of the matrix. Fluorescence data is plotted relative to the initial 0 mg/dL scan. Error bars depict the standard deviation of the recorded measurements.

Fig. 8
Fig. 8

Reversibility: Steady state fluorescent scans were taken each day at 0 mg/dL and 300 mg/dL glucose concentrations for a set of microporated microspheres. The absolute normalized fluorescent counts (a) and the relative daily increase fluorescence (b) are plotted for 0 mg/dL and 300 mg/dL for important days. Note that while there is a monotonic decrease in the absolute fluorescent intensity seen in (a), the relative fluorescent response (b) remains stable over this same time period. Error bars depict the standard deviation of the three recordings

Metrics