Abstract

A two-channel optical system has been developed to provide spatially resolved simultaneous imaging of singlet molecular oxygen (1O2) phosphorescence and photosensitizer (PS) fluorescence produced by the photodynamic process. The current imaging system uses a spectral discrimination method to differentiate the weak 1O2 phosphorescence that peaks near 1.27 μm from PS fluorescence that also occurs in this spectral region. The detection limit of 1O2 emission was determined at a concentration of 500 nM benzoporphyrin derivative monoacid (BPD) in tissue-like phantoms, and these signals observed were proportional to the PS fluorescence. Preliminary in vivo images with tumor laden mice indicate that it is possible to obtain simultaneous images of 1O2 and PS tissue distribution.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. R. Weishaupt, C. J. Gomer, and T. J. Dougherty, “Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor,” Cancer Res. 36(7 PT 1), 2326–2329 (1976).
    [PubMed]
  2. A. C. Kubler, “Photodynamic Therapy,” Med. Laser Appl. 20(1), 37–45 (2005).
    [CrossRef]
  3. T. J. Farrell, R. P. Hawkes, M. S. Patterson, and B. C. Wilson, “Modeling of photosensitizer fluorescence emission and photobleaching for photodynamic therapy dosimetry,” Appl. Opt. 37(31), 7168–7183 (1998).
    [CrossRef] [PubMed]
  4. S. L. Jacques, “Simple theory, measurements, and rules of thumb for dosimetry during photodynamic therapy,” Proc. SPIE 1065, 100–108 (1989).
  5. B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erikson, and M. W. Dewhirst, “Oxygen microelectrode measurements in R3230Ac Tumors during photodynamic therapy with verteporfin,” Proc. SPIE 4248, 144 (2001).
  6. B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson, and M. W. Dewhirst, “Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin,” Photochem. Photobiol. 74(5), 700–706 (2001).
    [CrossRef] [PubMed]
  7. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004).
    [CrossRef] [PubMed]
  8. D. Kessel, Y. Luo, P. Mathieu, and J. J. Reiners., “Determinants of the apoptotic response to lysosomal photodamage,” Photochem. Photobiol. 71(2), 196–200 (2000).
    [CrossRef] [PubMed]
  9. V. H. Fingar, T. J. Wieman, S. A. Wiehle, and P. B. Cerrito, “The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion,” Cancer Res. 52(18), 4914–4921 (1992).
    [PubMed]
  10. M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol. 75(4), 382–391 (2002).
    [CrossRef] [PubMed]
  11. M. J. Niedre, C. S. Yu, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid,” Br. J. Cancer 92(2), 298–304 (2005).
    [PubMed]
  12. M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994).
    [CrossRef] [PubMed]
  13. S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
    [CrossRef] [PubMed]
  14. S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” J. Biomed. Opt. 13(6), 064035 (2008).
    [CrossRef] [PubMed]
  15. H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
    [CrossRef] [PubMed]
  16. L. K. Andersen, Z. Gao, P. R. Ogilby, L. Poulsen, and I. Zebger, “A Singlet oxygen image with 2.5 μm resolution,” J. Phys. Chem. A 106(37), 8488–8490 (2002).
    [CrossRef]
  17. I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
    [CrossRef] [PubMed]
  18. M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
    [CrossRef] [PubMed]
  19. T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
    [CrossRef] [PubMed]
  20. Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
    [CrossRef] [PubMed]
  21. M. Price, J. J. Reiners, A. M. Santiago, and D. Kessel, “Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy,” Photochem. Photobiol. 85(5), 1177–1181 (2009).
    [CrossRef] [PubMed]
  22. B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
    [CrossRef] [PubMed]
  23. S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, J. A. O'Hara, and B. W. Pogue, “A singlet molecular oxygen imaging sensor for photodynamic therapy,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BTuC4.
  24. S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
    [CrossRef]
  25. U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol. 45(3), 195–214 (2000).
    [CrossRef] [PubMed]
  26. L. Ayaru, J. Wittmann, A. J. Macrobert, M. Novelli, S. G. Bown, and S. P. Pereira, “Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster,” Pancreatology 7(1), 20–27 (2007).
    [CrossRef] [PubMed]
  27. J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009).
    [CrossRef]

2011 (1)

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

2010 (1)

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

2009 (3)

M. Price, J. J. Reiners, A. M. Santiago, and D. Kessel, “Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy,” Photochem. Photobiol. 85(5), 1177–1181 (2009).
[CrossRef] [PubMed]

J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009).
[CrossRef]

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
[CrossRef] [PubMed]

S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” J. Biomed. Opt. 13(6), 064035 (2008).
[CrossRef] [PubMed]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[CrossRef] [PubMed]

2007 (2)

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[CrossRef] [PubMed]

L. Ayaru, J. Wittmann, A. J. Macrobert, M. Novelli, S. G. Bown, and S. P. Pereira, “Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster,” Pancreatology 7(1), 20–27 (2007).
[CrossRef] [PubMed]

2005 (3)

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[CrossRef] [PubMed]

A. C. Kubler, “Photodynamic Therapy,” Med. Laser Appl. 20(1), 37–45 (2005).
[CrossRef]

M. J. Niedre, C. S. Yu, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid,” Br. J. Cancer 92(2), 298–304 (2005).
[PubMed]

2004 (2)

H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004).
[CrossRef] [PubMed]

I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
[CrossRef] [PubMed]

2002 (2)

M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol. 75(4), 382–391 (2002).
[CrossRef] [PubMed]

L. K. Andersen, Z. Gao, P. R. Ogilby, L. Poulsen, and I. Zebger, “A Singlet oxygen image with 2.5 μm resolution,” J. Phys. Chem. A 106(37), 8488–8490 (2002).
[CrossRef]

2001 (1)

B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson, and M. W. Dewhirst, “Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin,” Photochem. Photobiol. 74(5), 700–706 (2001).
[CrossRef] [PubMed]

2000 (2)

D. Kessel, Y. Luo, P. Mathieu, and J. J. Reiners., “Determinants of the apoptotic response to lysosomal photodamage,” Photochem. Photobiol. 71(2), 196–200 (2000).
[CrossRef] [PubMed]

U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol. 45(3), 195–214 (2000).
[CrossRef] [PubMed]

1998 (1)

1994 (1)

M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994).
[CrossRef] [PubMed]

1992 (1)

V. H. Fingar, T. J. Wieman, S. A. Wiehle, and P. B. Cerrito, “The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion,” Cancer Res. 52(18), 4914–4921 (1992).
[PubMed]

1976 (1)

K. R. Weishaupt, C. J. Gomer, and T. J. Dougherty, “Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor,” Cancer Res. 36(7 PT 1), 2326–2329 (1976).
[PubMed]

Andersen, L. K.

I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
[CrossRef] [PubMed]

L. K. Andersen, Z. Gao, P. R. Ogilby, L. Poulsen, and I. Zebger, “A Singlet oxygen image with 2.5 μm resolution,” J. Phys. Chem. A 106(37), 8488–8490 (2002).
[CrossRef]

Ayaru, L.

L. Ayaru, J. Wittmann, A. J. Macrobert, M. Novelli, S. G. Bown, and S. P. Pereira, “Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster,” Pancreatology 7(1), 20–27 (2007).
[CrossRef] [PubMed]

Bown, S. G.

L. Ayaru, J. Wittmann, A. J. Macrobert, M. Novelli, S. G. Bown, and S. P. Pereira, “Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster,” Pancreatology 7(1), 20–27 (2007).
[CrossRef] [PubMed]

Braun, R. D.

B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson, and M. W. Dewhirst, “Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin,” Photochem. Photobiol. 74(5), 700–706 (2001).
[CrossRef] [PubMed]

Breitenbach, T.

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

Busch, T. M.

H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004).
[CrossRef] [PubMed]

Cerrito, P. B.

V. H. Fingar, T. J. Wieman, S. A. Wiehle, and P. B. Cerrito, “The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion,” Cancer Res. 52(18), 4914–4921 (1992).
[PubMed]

Chang, S. K.

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[CrossRef] [PubMed]

Chen, A.

J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009).
[CrossRef]

Chen, Q.

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[CrossRef] [PubMed]

Davis, S. J.

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[CrossRef] [PubMed]

S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
[CrossRef] [PubMed]

S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” J. Biomed. Opt. 13(6), 064035 (2008).
[CrossRef] [PubMed]

Dewhirst, M. W.

B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson, and M. W. Dewhirst, “Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin,” Photochem. Photobiol. 74(5), 700–706 (2001).
[CrossRef] [PubMed]

Dougherty, T. J.

K. R. Weishaupt, C. J. Gomer, and T. J. Dougherty, “Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor,” Cancer Res. 36(7 PT 1), 2326–2329 (1976).
[PubMed]

Emanuele, M. J.

H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004).
[CrossRef] [PubMed]

Erickson, C.

B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson, and M. W. Dewhirst, “Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin,” Photochem. Photobiol. 74(5), 700–706 (2001).
[CrossRef] [PubMed]

Farrell, T. J.

Fingar, V. H.

V. H. Fingar, T. J. Wieman, S. A. Wiehle, and P. B. Cerrito, “The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion,” Cancer Res. 52(18), 4914–4921 (1992).
[PubMed]

Foster, T. H.

M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994).
[CrossRef] [PubMed]

Galbally-Kinney, K. L.

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

Gao, Z.

I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
[CrossRef] [PubMed]

L. K. Andersen, Z. Gao, P. R. Ogilby, L. Poulsen, and I. Zebger, “A Singlet oxygen image with 2.5 μm resolution,” J. Phys. Chem. A 106(37), 8488–8490 (2002).
[CrossRef]

Gbur, P.

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

Giles, A.

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[CrossRef] [PubMed]

Glatstein, E.

H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004).
[CrossRef] [PubMed]

Gomer, C. J.

K. R. Weishaupt, C. J. Gomer, and T. J. Dougherty, “Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor,” Cancer Res. 36(7 PT 1), 2326–2329 (1976).
[PubMed]

Hasan, T.

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009).
[CrossRef]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[CrossRef] [PubMed]

S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” J. Biomed. Opt. 13(6), 064035 (2008).
[CrossRef] [PubMed]

S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
[CrossRef] [PubMed]

U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol. 45(3), 195–214 (2000).
[CrossRef] [PubMed]

Hatz, S.

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

Hawkes, R. P.

He, Y.

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

Hinds, M. F.

S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” J. Biomed. Opt. 13(6), 064035 (2008).
[CrossRef] [PubMed]

S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
[CrossRef] [PubMed]

Hoopes, P. J.

J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009).
[CrossRef]

Hu, B.

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

Isabelle, M. E.

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

Ji, Y.

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

Kessel, D.

M. Price, J. J. Reiners, A. M. Santiago, and D. Kessel, “Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy,” Photochem. Photobiol. 85(5), 1177–1181 (2009).
[CrossRef] [PubMed]

D. Kessel, Y. Luo, P. Mathieu, and J. J. Reiners., “Determinants of the apoptotic response to lysosomal photodamage,” Photochem. Photobiol. 71(2), 196–200 (2000).
[CrossRef] [PubMed]

Kristiansen, U.

I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
[CrossRef] [PubMed]

Kubler, A. C.

A. C. Kubler, “Photodynamic Therapy,” Med. Laser Appl. 20(1), 37–45 (2005).
[CrossRef]

Kuimova, M. K.

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

Lambert, J. D. C.

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
[CrossRef] [PubMed]

Lanzen, J. L.

B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson, and M. W. Dewhirst, “Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin,” Photochem. Photobiol. 74(5), 700–706 (2001).
[CrossRef] [PubMed]

Laubach, H. J.

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[CrossRef] [PubMed]

Lee, S.

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[CrossRef] [PubMed]

S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
[CrossRef] [PubMed]

S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” J. Biomed. Opt. 13(6), 064035 (2008).
[CrossRef] [PubMed]

Liang, A.

S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” J. Biomed. Opt. 13(6), 064035 (2008).
[CrossRef] [PubMed]

Liu, Z.

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

Luo, Y.

D. Kessel, Y. Luo, P. Mathieu, and J. J. Reiners., “Determinants of the apoptotic response to lysosomal photodamage,” Photochem. Photobiol. 71(2), 196–200 (2000).
[CrossRef] [PubMed]

Ma, H.

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

Macrobert, A. J.

L. Ayaru, J. Wittmann, A. J. Macrobert, M. Novelli, S. G. Bown, and S. P. Pereira, “Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster,” Pancreatology 7(1), 20–27 (2007).
[CrossRef] [PubMed]

Mathieu, P.

D. Kessel, Y. Luo, P. Mathieu, and J. J. Reiners., “Determinants of the apoptotic response to lysosomal photodamage,” Photochem. Photobiol. 71(2), 196–200 (2000).
[CrossRef] [PubMed]

Minhaj, A. M.

S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
[CrossRef] [PubMed]

Murphy, B. A.

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

Nichols, M. G.

M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994).
[CrossRef] [PubMed]

Niedre, M. J.

M. J. Niedre, C. S. Yu, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid,” Br. J. Cancer 92(2), 298–304 (2005).
[PubMed]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[CrossRef] [PubMed]

M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol. 75(4), 382–391 (2002).
[CrossRef] [PubMed]

Novelli, M.

L. Ayaru, J. Wittmann, A. J. Macrobert, M. Novelli, S. G. Bown, and S. P. Pereira, “Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster,” Pancreatology 7(1), 20–27 (2007).
[CrossRef] [PubMed]

O’Hara, J.

J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009).
[CrossRef]

O’Hara, J. A.

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

Ogilby, P. R.

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
[CrossRef] [PubMed]

L. K. Andersen, Z. Gao, P. R. Ogilby, L. Poulsen, and I. Zebger, “A Singlet oxygen image with 2.5 μm resolution,” J. Phys. Chem. A 106(37), 8488–8490 (2002).
[CrossRef]

Patterson, M. S.

M. J. Niedre, C. S. Yu, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid,” Br. J. Cancer 92(2), 298–304 (2005).
[PubMed]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[CrossRef] [PubMed]

M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol. 75(4), 382–391 (2002).
[CrossRef] [PubMed]

T. J. Farrell, R. P. Hawkes, M. S. Patterson, and B. C. Wilson, “Modeling of photosensitizer fluorescence emission and photobleaching for photodynamic therapy dosimetry,” Appl. Opt. 37(31), 7168–7183 (1998).
[CrossRef] [PubMed]

Pedersen, B. W.

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

Peng, Q.

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

Pereira, S. P.

L. Ayaru, J. Wittmann, A. J. Macrobert, M. Novelli, S. G. Bown, and S. P. Pereira, “Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster,” Pancreatology 7(1), 20–27 (2007).
[CrossRef] [PubMed]

Pogue, B. W.

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009).
[CrossRef]

B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson, and M. W. Dewhirst, “Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin,” Photochem. Photobiol. 74(5), 700–706 (2001).
[CrossRef] [PubMed]

Poulsen, L.

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
[CrossRef] [PubMed]

L. K. Andersen, Z. Gao, P. R. Ogilby, L. Poulsen, and I. Zebger, “A Singlet oxygen image with 2.5 μm resolution,” J. Phys. Chem. A 106(37), 8488–8490 (2002).
[CrossRef]

Price, M.

M. Price, J. J. Reiners, A. M. Santiago, and D. Kessel, “Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy,” Photochem. Photobiol. 85(5), 1177–1181 (2009).
[CrossRef] [PubMed]

Putt, M. E.

H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004).
[CrossRef] [PubMed]

Reiners, J. J.

M. Price, J. J. Reiners, A. M. Santiago, and D. Kessel, “Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy,” Photochem. Photobiol. 85(5), 1177–1181 (2009).
[CrossRef] [PubMed]

D. Kessel, Y. Luo, P. Mathieu, and J. J. Reiners., “Determinants of the apoptotic response to lysosomal photodamage,” Photochem. Photobiol. 71(2), 196–200 (2000).
[CrossRef] [PubMed]

Rizvi, I.

J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009).
[CrossRef]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[CrossRef] [PubMed]

Rosen, D. I.

S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
[CrossRef] [PubMed]

Samkoe, K. S.

J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009).
[CrossRef]

Santiago, A. M.

M. Price, J. J. Reiners, A. M. Santiago, and D. Kessel, “Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy,” Photochem. Photobiol. 85(5), 1177–1181 (2009).
[CrossRef] [PubMed]

Schack, N. B.

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

Schmidt-Erfurth, U.

U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol. 45(3), 195–214 (2000).
[CrossRef] [PubMed]

Shin, D. B.

H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004).
[CrossRef] [PubMed]

Snyder, J. W.

I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
[CrossRef] [PubMed]

Spring, B.

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

Taylor, C. R.

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[CrossRef] [PubMed]

Tu, Y.

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

Vu, D. H.

S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” J. Biomed. Opt. 13(6), 064035 (2008).
[CrossRef] [PubMed]

S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
[CrossRef] [PubMed]

Wang, H. W.

H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004).
[CrossRef] [PubMed]

Wei, Y. C.

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[CrossRef] [PubMed]

Weishaupt, K. R.

K. R. Weishaupt, C. J. Gomer, and T. J. Dougherty, “Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor,” Cancer Res. 36(7 PT 1), 2326–2329 (1976).
[PubMed]

Wiehle, S. A.

V. H. Fingar, T. J. Wieman, S. A. Wiehle, and P. B. Cerrito, “The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion,” Cancer Res. 52(18), 4914–4921 (1992).
[PubMed]

Wieman, T. J.

V. H. Fingar, T. J. Wieman, S. A. Wiehle, and P. B. Cerrito, “The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion,” Cancer Res. 52(18), 4914–4921 (1992).
[PubMed]

Wilson, B. C.

M. J. Niedre, C. S. Yu, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid,” Br. J. Cancer 92(2), 298–304 (2005).
[PubMed]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[CrossRef] [PubMed]

M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol. 75(4), 382–391 (2002).
[CrossRef] [PubMed]

T. J. Farrell, R. P. Hawkes, M. S. Patterson, and B. C. Wilson, “Modeling of photosensitizer fluorescence emission and photobleaching for photodynamic therapy dosimetry,” Appl. Opt. 37(31), 7168–7183 (1998).
[CrossRef] [PubMed]

Wittmann, J.

L. Ayaru, J. Wittmann, A. J. Macrobert, M. Novelli, S. G. Bown, and S. P. Pereira, “Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster,” Pancreatology 7(1), 20–27 (2007).
[CrossRef] [PubMed]

Xie, W.

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

Xing, D.

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[CrossRef] [PubMed]

Yodh, A. G.

H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004).
[CrossRef] [PubMed]

Yu, C. S.

M. J. Niedre, C. S. Yu, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid,” Br. J. Cancer 92(2), 298–304 (2005).
[PubMed]

Zebger, I.

I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
[CrossRef] [PubMed]

L. K. Andersen, Z. Gao, P. R. Ogilby, L. Poulsen, and I. Zebger, “A Singlet oxygen image with 2.5 μm resolution,” J. Phys. Chem. A 106(37), 8488–8490 (2002).
[CrossRef]

Zeng, N.

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

Zhou, J.

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[CrossRef] [PubMed]

Zhou, Y.

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

Zhu, L.

S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
[CrossRef] [PubMed]

Zurakowski, D.

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Br. J. Cancer (1)

M. J. Niedre, C. S. Yu, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid,” Br. J. Cancer 92(2), 298–304 (2005).
[PubMed]

Cancer Res. (3)

K. R. Weishaupt, C. J. Gomer, and T. J. Dougherty, “Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor,” Cancer Res. 36(7 PT 1), 2326–2329 (1976).
[PubMed]

H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004).
[CrossRef] [PubMed]

V. H. Fingar, T. J. Wieman, S. A. Wiehle, and P. B. Cerrito, “The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion,” Cancer Res. 52(18), 4914–4921 (1992).
[PubMed]

J. Biomed. Opt. (5)

Y. C. Wei, J. Zhou, D. Xing, and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12(1), 014002 (2007).
[CrossRef] [PubMed]

S. Lee, L. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, and T. Hasan, “Pulsed diode laser-based monitor for singlet molecular oxygen,” J. Biomed. Opt. 13(3), 034010 (2008).
[CrossRef] [PubMed]

S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, and T. Hasan, “Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats,” J. Biomed. Opt. 13(6), 064035 (2008).
[CrossRef] [PubMed]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[CrossRef] [PubMed]

B. Hu, N. Zeng, Z. Liu, Y. Ji, W. Xie, Q. Peng, Y. Zhou, Y. He, and H. Ma, “Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization,” J. Biomed. Opt. 16(1), 016003 (2011).
[CrossRef] [PubMed]

J. Phys. Chem. A (1)

L. K. Andersen, Z. Gao, P. R. Ogilby, L. Poulsen, and I. Zebger, “A Singlet oxygen image with 2.5 μm resolution,” J. Phys. Chem. A 106(37), 8488–8490 (2002).
[CrossRef]

Med. Laser Appl. (1)

A. C. Kubler, “Photodynamic Therapy,” Med. Laser Appl. 20(1), 37–45 (2005).
[CrossRef]

Pancreatology (1)

L. Ayaru, J. Wittmann, A. J. Macrobert, M. Novelli, S. G. Bown, and S. P. Pereira, “Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster,” Pancreatology 7(1), 20–27 (2007).
[CrossRef] [PubMed]

Photochem. Photobiol. (6)

B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erickson, and M. W. Dewhirst, “Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin,” Photochem. Photobiol. 74(5), 700–706 (2001).
[CrossRef] [PubMed]

M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo,” Photochem. Photobiol. 75(4), 382–391 (2002).
[CrossRef] [PubMed]

D. Kessel, Y. Luo, P. Mathieu, and J. J. Reiners., “Determinants of the apoptotic response to lysosomal photodamage,” Photochem. Photobiol. 71(2), 196–200 (2000).
[CrossRef] [PubMed]

I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, J. D. C. Lambert, U. Kristiansen, and P. R. Ogilby, “Direct optical detection of singlet oxygen from a single cell,” Photochem. Photobiol. 79(4), 319–322 (2004).
[CrossRef] [PubMed]

M. J. Niedre, M. S. Patterson, A. Giles, and B. C. Wilson, “Imaging of photodynamically generated singlet oxygen luminescence in vivo,” Photochem. Photobiol. 81(4), 941–943 (2005).
[CrossRef] [PubMed]

M. Price, J. J. Reiners, A. M. Santiago, and D. Kessel, “Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy,” Photochem. Photobiol. 85(5), 1177–1181 (2009).
[CrossRef] [PubMed]

Photochem. Photobiol. Sci. (1)

T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, “Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells,” Photochem. Photobiol. Sci. 8(4), 442–452 (2009).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. O’Hara, K. S. Samkoe, A. Chen, P. J. Hoopes, I. Rizvi, T. Hasan, and B. W. Pogue, “Uptake of verteporfin by orthotopic xenograft pancreas models with different levels of aggression,” Proc. SPIE 7380, 73805F, 73805F-7 (2009).
[CrossRef]

S. Lee, K. L. Galbally-Kinney, B. A. Murphy, S. J. Davis, T. Hasan, B. Spring, Y. Tu, B. W. Pogue, M. E. Isabelle, and J. A. O’Hara, “In vivo PDT dosimetry: singlet oxygen emission and photosensitizer fluorescence,” Proc. SPIE 7551, 75510F (2010).
[CrossRef]

Surv. Ophthalmol. (1)

U. Schmidt-Erfurth and T. Hasan, “Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration,” Surv. Ophthalmol. 45(3), 195–214 (2000).
[CrossRef] [PubMed]

Other (3)

S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, J. A. O'Hara, and B. W. Pogue, “A singlet molecular oxygen imaging sensor for photodynamic therapy,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BTuC4.

S. L. Jacques, “Simple theory, measurements, and rules of thumb for dosimetry during photodynamic therapy,” Proc. SPIE 1065, 100–108 (1989).

B. W. Pogue, R. D. Braun, J. L. Lanzen, C. Erikson, and M. W. Dewhirst, “Oxygen microelectrode measurements in R3230Ac Tumors during photodynamic therapy with verteporfin,” Proc. SPIE 4248, 144 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Singlet oxygen 2D imaging system. (a) The schematic of current 2D imaging system (in vivo). (b) Experimental setup of deoxygenating configuration (in vitro).

Fig. 2
Fig. 2

Singlet oxygen detection method. (a) Temporal profiles (using PMT detector) of 1O2 phosphorescence at three bandpass filter positions with 1 μM BPD in methanol. The signal during excitation light ON period (6-11 μs) is due primarily to PS fluorescence with 1320 and 1220 nm filter; or 1O2 emission and PS fluorescence with 1270 nm filter. The increase in the signal with 1270 nm filter is due to increasing 1O2 production during the excitation pulse. (b) Spectral features of 1O2 phosphorescence and total emission intensity with 1 μM BPD in methanol. (c) The method of the 1O2 image process with the three-filter operation (in vitro).

Fig. 3
Fig. 3

Image resolution of the dual-channel system. (a) Visible image. (b) NIR image.

Fig. 4
Fig. 4

Spatially resolved images (10 μM BPD in methanol). (a) Ambient air saturated. (b) Deoxygenated solutions (nitrogen gas purging through the solution). (c) Total BPD fluorescence and singlet O2 phosphorescence intensities in the area of the interest marked with a square box in the images of 5 × 5 mm.

Fig. 5
Fig. 5

Plot of singlet O2 phosphorescence and BPD fluorescence as a function of BPD concentration in 5% FBS with 5% TTX-100. Note that the intensities of PS fluorescence and singlet O2 phosphorescence are not normalized with respect to the signal accumulation conditions of the different camera settings.

Fig. 6
Fig. 6

Images of the BPD fluorescence and singlet oxygen phosphorescence from two tumor laden mice. (a) 1.0 mg BPD / body kg. (b) 0.5 mg BPD / body kg.

Metrics