Abstract

The performance of a MEMS (micro-electro-mechanical-system) segmented deformable mirror was evaluated in an adaptive optics (AO) scanning laser ophthalmoscope. The tested AO mirror (Iris AO, Inc, Berkeley, CA) is composed of 37 hexagonal segments that allow piston/tip/tilt motion up to 5 μm stroke and ±5 mrad angle over a 3.5 mm optical aperture. The control system that implements the closed-loop operation employs a 1:1 matched 37-lenslet Shack-Hartmann wavefront sensor whose measurements are used to apply modal corrections to the deformable mirror. After a preliminary evaluation of the AO mirror optical performance, retinal images from 4 normal subjects over a 0.9°x0.9° field size were acquired through a 6.4 mm ocular pupil, showing resolved retinal features at the cellular level. Cone photoreceptors were observed as close as 0.25 degrees from the foveal center. In general, the quality of these images is comparable to that obtained using deformable mirrors based on different technologies.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19(17), 2991–2997 (1980).
    [CrossRef] [PubMed]
  2. R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. BME-28(7), 488–492 (1981).
    [CrossRef] [PubMed]
  3. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987).
    [CrossRef] [PubMed]
  4. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [PubMed]
  5. F. Romero-Borja, K. Venkateswaran, A. Roorda, and T. Hebert, “Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope,” Appl. Opt. 44(19), 4032–4040 (2005).
    [CrossRef] [PubMed]
  6. K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
    [CrossRef] [PubMed]
  7. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
    [CrossRef]
  8. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).
  9. R. Tyson, Principles of Adaptive Optics (CRC Press, 2010).
  10. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
    [CrossRef] [PubMed]
  11. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
    [CrossRef] [PubMed]
  12. P. Prieto, E. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004).
    [CrossRef] [PubMed]
  13. F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
    [CrossRef] [PubMed]
  14. J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  15. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26(10), 746–748 (2001).
    [CrossRef] [PubMed]
  16. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230(4-6), 225–238 (2004).
    [CrossRef]
  17. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13(11), 4275–4285 (2005).
    [CrossRef] [PubMed]
  18. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
    [CrossRef] [PubMed]
  19. Y. H. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
    [CrossRef] [PubMed]
  20. B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29(10), 1186–1190 (1990).
    [CrossRef]
  21. D. S. Acton and R. C. Smithson, “Solar imaging with a segmented adaptive mirror,” Appl. Opt. 31(16), 3161–3169 (1992).
    [CrossRef] [PubMed]
  22. M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997).
    [CrossRef]
  23. W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5(1), 90–101 (1999).
    [CrossRef]
  24. A. Tuantranont and V. M. Bright, “Segmented silicon-micromachined microelectromechanical deformable mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 8(1), 33–45 (2002).
    [CrossRef]
  25. D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
    [CrossRef]
  26. N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007).
    [CrossRef] [PubMed]
  27. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
    [CrossRef] [PubMed]
  28. J. I. W. Morgan, J. J. Hunter, W. H. Merigan, and D. R. Williams, “The reduction of retinal autofluorescence caused by light exposure,” Invest. Ophthalmol. Vis. Sci. 50(12), 6015–6022 (2009).
    [CrossRef] [PubMed]
  29. E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
    [CrossRef] [PubMed]
  30. D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13(1), 275–289 (2005).
    [CrossRef] [PubMed]
  31. M. A. Helmbrecht, M. He, T. Juneau, M. Hart, and N. Doble, “Segmented MEMS deformable-mirror for wavefront correction,” Proc. SPIE 6376, 63760D, 63760D-9 (2006).
    [CrossRef]
  32. J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
    [CrossRef]
  33. N. Doble, C. Kempf, M. Helmbrecht, and A. Roorda, “Closed loop adaptive optics in the human eye using a segmented MEMS deformable mirror,” Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4195 (2008).
  34. N. Doble and S. Choi, “Widefield imaging of the human retina using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 50, ARVO E-Abstract 1062 (2009).
  35. T. Wilson, “The role of the pinhole in confocal imaging systems,” in The Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), pp. 99–113.
  36. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
    [CrossRef] [PubMed]
  37. K. Grieve, P. Tiruveedhula, Y. H. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006).
    [CrossRef] [PubMed]
  38. M. A. Helmbrecht and T. Juneau, “Piston-tip-tilt positioning of a segmented MEMS deformable mirror,” Proc. SPIE 6467, 64670M. (2007)
  39. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
    [CrossRef] [PubMed]
  40. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
    [CrossRef] [PubMed]

2011 (2)

2009 (4)

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

N. Doble and S. Choi, “Widefield imaging of the human retina using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 50, ARVO E-Abstract 1062 (2009).

J. I. W. Morgan, J. J. Hunter, W. H. Merigan, and D. R. Williams, “The reduction of retinal autofluorescence caused by light exposure,” Invest. Ophthalmol. Vis. Sci. 50(12), 6015–6022 (2009).
[CrossRef] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
[CrossRef] [PubMed]

2008 (1)

N. Doble, C. Kempf, M. Helmbrecht, and A. Roorda, “Closed loop adaptive optics in the human eye using a segmented MEMS deformable mirror,” Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4195 (2008).

2007 (3)

2006 (5)

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
[CrossRef] [PubMed]

M. A. Helmbrecht, M. He, T. Juneau, M. Hart, and N. Doble, “Segmented MEMS deformable-mirror for wavefront correction,” Proc. SPIE 6376, 63760D, 63760D-9 (2006).
[CrossRef]

K. Grieve, P. Tiruveedhula, Y. H. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006).
[CrossRef] [PubMed]

D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
[CrossRef]

Y. H. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (3)

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230(4-6), 225–238 (2004).
[CrossRef]

K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[CrossRef] [PubMed]

P. Prieto, E. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004).
[CrossRef] [PubMed]

2002 (3)

2001 (3)

1999 (1)

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5(1), 90–101 (1999).
[CrossRef]

1998 (1)

1997 (2)

J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[CrossRef] [PubMed]

M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997).
[CrossRef]

1992 (1)

1990 (1)

B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29(10), 1186–1190 (1990).
[CrossRef]

1987 (1)

1981 (1)

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. BME-28(7), 488–492 (1981).
[CrossRef] [PubMed]

1980 (1)

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[CrossRef]

Acton, D. S.

Arathorn, D. W.

Artal, P.

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[CrossRef]

Bierden, P.

Bright, V. M.

A. Tuantranont and V. M. Bright, “Segmented silicon-micromachined microelectromechanical deformable mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 8(1), 33–45 (2002).
[CrossRef]

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5(1), 90–101 (1999).
[CrossRef]

M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997).
[CrossRef]

Burns, S. A.

Campbell, M. C. W.

Chen, L.

Choi, S.

N. Doble and S. Choi, “Widefield imaging of the human retina using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 50, ARVO E-Abstract 1062 (2009).

Chung, M.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

Comtois, J. H.

M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997).
[CrossRef]

Cowan, W. D.

D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
[CrossRef]

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5(1), 90–101 (1999).
[CrossRef]

M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997).
[CrossRef]

Cox, I. G.

Dagel, D. J.

D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
[CrossRef]

Dainty, C.

Dalimier, E.

Delori, F. C.

Doble, N.

N. Doble and S. Choi, “Widefield imaging of the human retina using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 50, ARVO E-Abstract 1062 (2009).

N. Doble, C. Kempf, M. Helmbrecht, and A. Roorda, “Closed loop adaptive optics in the human eye using a segmented MEMS deformable mirror,” Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4195 (2008).

N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007).
[CrossRef] [PubMed]

M. A. Helmbrecht, M. He, T. Juneau, M. Hart, and N. Doble, “Segmented MEMS deformable-mirror for wavefront correction,” Proc. SPIE 6376, 63760D, 63760D-9 (2006).
[CrossRef]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
[CrossRef] [PubMed]

Donnelly Iii, W.

Dubra, A.

Elsner, A. E.

Ferguson, D.

Fernández, E.

Fernández, E. J.

Gendron, E.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230(4-6), 225–238 (2004).
[CrossRef]

Glanc, M.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230(4-6), 225–238 (2004).
[CrossRef]

Grieve, K.

Grine, A. J.

D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
[CrossRef]

Grossetete, G. D.

D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
[CrossRef]

Guirao, A.

Hammer, D. X.

Hart, M.

M. A. Helmbrecht, M. He, T. Juneau, M. Hart, and N. Doble, “Segmented MEMS deformable-mirror for wavefront correction,” Proc. SPIE 6376, 63760D, 63760D-9 (2006).
[CrossRef]

He, M.

M. A. Helmbrecht, M. He, T. Juneau, M. Hart, and N. Doble, “Segmented MEMS deformable-mirror for wavefront correction,” Proc. SPIE 6376, 63760D, 63760D-9 (2006).
[CrossRef]

Hebert, T.

Hebert, T. J.

Helmbrecht, M.

N. Doble, C. Kempf, M. Helmbrecht, and A. Roorda, “Closed loop adaptive optics in the human eye using a segmented MEMS deformable mirror,” Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4195 (2008).

Helmbrecht, M. A.

M. A. Helmbrecht and T. Juneau, “Piston-tip-tilt positioning of a segmented MEMS deformable mirror,” Proc. SPIE 6467, 64670M. (2007)

M. A. Helmbrecht, M. He, T. Juneau, M. Hart, and N. Doble, “Segmented MEMS deformable-mirror for wavefront correction,” Proc. SPIE 6376, 63760D, 63760D-9 (2006).
[CrossRef]

Hick, S. R.

M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997).
[CrossRef]

Hofer, H.

Hong, X.

Hughes, G. W.

Hulburd, B.

B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29(10), 1186–1190 (1990).
[CrossRef]

Hunter, J. J.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[CrossRef] [PubMed]

J. I. W. Morgan, J. J. Hunter, W. H. Merigan, and D. R. Williams, “The reduction of retinal autofluorescence caused by light exposure,” Invest. Ophthalmol. Vis. Sci. 50(12), 6015–6022 (2009).
[CrossRef] [PubMed]

Iglesias, I.

Jokiel, B.

D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
[CrossRef]

Juneau, T.

M. A. Helmbrecht and T. Juneau, “Piston-tip-tilt positioning of a segmented MEMS deformable mirror,” Proc. SPIE 6467, 64670M. (2007)

M. A. Helmbrecht, M. He, T. Juneau, M. Hart, and N. Doble, “Segmented MEMS deformable-mirror for wavefront correction,” Proc. SPIE 6376, 63760D, 63760D-9 (2006).
[CrossRef]

Kempf, C.

N. Doble, C. Kempf, M. Helmbrecht, and A. Roorda, “Closed loop adaptive optics in the human eye using a segmented MEMS deformable mirror,” Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4195 (2008).

Kumru, S.

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

Lacombe, F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230(4-6), 225–238 (2004).
[CrossRef]

Lafaille, D.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230(4-6), 225–238 (2004).
[CrossRef]

Le Gargasson, J. F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230(4-6), 225–238 (2004).
[CrossRef]

Lee, M. K.

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5(1), 90–101 (1999).
[CrossRef]

Lena, P.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230(4-6), 225–238 (2004).
[CrossRef]

Liang, J. Z.

Manzanera, S.

Masella, B.

Merigan, W. H.

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[CrossRef] [PubMed]

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

J. I. W. Morgan, J. J. Hunter, W. H. Merigan, and D. R. Williams, “The reduction of retinal autofluorescence caused by light exposure,” Invest. Ophthalmol. Vis. Sci. 50(12), 6015–6022 (2009).
[CrossRef] [PubMed]

Miller, D.

Miller, D. T.

Morgan, J. I. W.

J. I. W. Morgan, J. J. Hunter, W. H. Merigan, and D. R. Williams, “The reduction of retinal autofluorescence caused by light exposure,” Invest. Ophthalmol. Vis. Sci. 50(12), 6015–6022 (2009).
[CrossRef] [PubMed]

Noojin, G. D.

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

Oliver, J. W.

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

Olivier, S.

Palczewska, G.

Palczewski, K.

Parker, A.

Pocock, G.

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

Pomerantzeff, O.

Poonja, S.

Porter, J.

Prieto, P.

Prieto, P. M.

Queener, H.

Resnick, P. J.

D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
[CrossRef]

Roberts, P. C.

M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997).
[CrossRef]

Rockwell, B. A.

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

Roggeman, M. C.

M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997).
[CrossRef]

Roggemann, M. C.

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5(1), 90–101 (1999).
[CrossRef]

Romero-Borja, F.

Roorda, A.

Rossi, E. A.

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

Sandler, D.

B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29(10), 1186–1190 (1990).
[CrossRef]

Schuster, K. J.

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

Sharma, R.

Shaw, M. J.

D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
[CrossRef]

Shingledecker, A.

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

Singer, B.

Smithson, R. C.

Spahn, O. B.

D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
[CrossRef]

Stolarski, D.

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

Thibos, L.

Tiruveedhula, P.

Tuantranont, A.

A. Tuantranont and V. M. Bright, “Segmented silicon-micromachined microelectromechanical deformable mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 8(1), 33–45 (2002).
[CrossRef]

Tumbar, R.

Vargas-Martín, F.

Venkateswaran, K.

F. Romero-Borja, K. Venkateswaran, A. Roorda, and T. Hebert, “Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope,” Appl. Opt. 44(19), 4032–4040 (2005).
[CrossRef] [PubMed]

K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[CrossRef] [PubMed]

Vincelette, R.

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

Vogel, C. R.

Webb, R. H.

Welsh, B. M.

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5(1), 90–101 (1999).
[CrossRef]

M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997).
[CrossRef]

Williams, D. R.

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
[CrossRef] [PubMed]

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

J. I. W. Morgan, J. J. Hunter, W. H. Merigan, and D. R. Williams, “The reduction of retinal autofluorescence caused by light exposure,” Invest. Ophthalmol. Vis. Sci. 50(12), 6015–6022 (2009).
[CrossRef] [PubMed]

N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007).
[CrossRef] [PubMed]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
[CrossRef] [PubMed]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[CrossRef] [PubMed]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
[CrossRef] [PubMed]

J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[CrossRef] [PubMed]

Yamauchi, Y.

Yin, L.

Yoon, G.

Yoon, G. Y.

Zhang, Y. H.

Appl. Opt. (5)

Biomed. Opt. Express (1)

Eye (Lond.) (1)

E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5(1), 90–101 (1999).
[CrossRef]

A. Tuantranont and V. M. Bright, “Segmented silicon-micromachined microelectromechanical deformable mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 8(1), 33–45 (2002).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. BME-28(7), 488–492 (1981).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

J. I. W. Morgan, J. J. Hunter, W. H. Merigan, and D. R. Williams, “The reduction of retinal autofluorescence caused by light exposure,” Invest. Ophthalmol. Vis. Sci. 50(12), 6015–6022 (2009).
[CrossRef] [PubMed]

N. Doble, C. Kempf, M. Helmbrecht, and A. Roorda, “Closed loop adaptive optics in the human eye using a segmented MEMS deformable mirror,” Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4195 (2008).

N. Doble and S. Choi, “Widefield imaging of the human retina using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 50, ARVO E-Abstract 1062 (2009).

J. Biomed. Opt. (1)

K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006).
[CrossRef]

J. Opt. Soc. Am. A (4)

Opt. Commun. (1)

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230(4-6), 225–238 (2004).
[CrossRef]

Opt. Eng. (2)

B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29(10), 1186–1190 (1990).
[CrossRef]

M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997).
[CrossRef]

Opt. Express (8)

D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13(1), 275–289 (2005).
[CrossRef] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
[CrossRef] [PubMed]

K. Grieve, P. Tiruveedhula, Y. H. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006).
[CrossRef] [PubMed]

E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13(11), 4275–4285 (2005).
[CrossRef] [PubMed]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[CrossRef] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
[CrossRef] [PubMed]

P. Prieto, E. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

Opt. Lett. (3)

Proc. SPIE (2)

M. A. Helmbrecht, M. He, T. Juneau, M. Hart, and N. Doble, “Segmented MEMS deformable-mirror for wavefront correction,” Proc. SPIE 6376, 63760D, 63760D-9 (2006).
[CrossRef]

J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[CrossRef]

Other (4)

F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).

R. Tyson, Principles of Adaptive Optics (CRC Press, 2010).

M. A. Helmbrecht and T. Juneau, “Piston-tip-tilt positioning of a segmented MEMS deformable mirror,” Proc. SPIE 6467, 64670M. (2007)

T. Wilson, “The role of the pinhole in confocal imaging systems,” in The Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), pp. 99–113.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the AOSLO setup. LD: light delivery; PMT: photomultiplier tube; WFS: wavefront sensor; DM: deformable mirror; HS: horizontal scanner; VS: vertical scanner. The optical setup is built along two perpendicular planes to remove astigmatism.

Fig. 2
Fig. 2

Image of the Iris AO mirror and a detailed view of the hexagonal segment arrangement. The optical aperture is 3.5 mm and each facet is 0.7 mm from vertex to vertex. Courtesy of Iris AO, Inc.

Fig. 3
Fig. 3

Schematic diagram of the structure underlying each mirror segment that allows its different motions. The mirror segment is attached to an actuator platform that can be pushed and tilted by applying the necessary voltage distribution to a set of three electrodes. The flexures provide mechanical restoring forces that counter the attractive electrostatic forces. Courtesy of Iris AO, Inc.

Fig. 4
Fig. 4

a) PSF produced by the flat AO mirror. Pupil size is 3.5 mm, wavelength is 633 nm and the focal length of the focusing lens is 100 mm. The energy distribution is normalized to unity and the scale on x-y axis represents microns on the CCD. b) Measured energy distribution along the x-axis. For comparison, the theoretically expected PSF from a diffraction limited system, labeled as “ideal”, is also shown. c) Wide-field PSFs obtained saturating the CCD with increasing intensity from left to right to show the dimmest details.

Fig. 5
Fig. 5

a) DPI obtained after correcting + 0.25 D of defocus. The energy distribution is normalized to unity and the scale on the x-y axis represents microns on the pinhole plane. b) Energy distributions along the x-axis after correcting the different amounts of defocus. For comparison, the theoretically expected DPI from a diffraction limited system (autoconvolution of the Airy disk) is also shown. The dashed line rectangle indicates the relative size of the 80 μm diameter pinhole employed as the confocal aperture. Wavelength is 840 nm, data are rescaled to a 100 mm focal length focusing lens and the beam diameter over this lens is 3.5 mm.

Fig. 6
Fig. 6

Mean gray level (right y-axis) in the images recorded by the AOSLO after correcting different amounts of defocus induced by the corresponding trial lenses. On the left y-axis are represented the initial RMS before the AO correction and the final RMS achieved after the said correction.

Fig. 7
Fig. 7

Retinal images taken at the central fovea obtained from subjects A, B, C and D. The field of view is 0.9°x0.9°.

Fig. 8
Fig. 8

Retinal images taken at 1° temporal obtained from subjects A, B, C and D. The field of view is 0.9°x0.9°.

Fig. 9
Fig. 9

AO performance for subjects A, B, C and D. The initial RMS wavefront error is measured before the AO correction but after correcting defocus and astigmatism with trial lenses. The final RMS is measured after the AO correction. RMS is computed using up to 5th order Zernike terms. Six measurements were used to obtain the RMS values and their error bars, which represent ± 1SD. (See text for details). Pupil size is 6.4 mm.

Fig. 10
Fig. 10

Wavefront error in terms of Zernike polynomials up to 5th order measured before and after AO correction for subjects A, B, C and D. Values are the average through 6 different measurements and error bars represent ± 1SD (see text for further details). Pupil size is 6.4 mm.

Metrics