Abstract

We explore the use of fiber optic microendoscopy to image and quantify bacterial infection in the skin and lungs using an animal model. The contact probe fiber bundle fluorescence microendoscope has a 4 µm resolution, a 750 µm field of view, and a 1 mm outer diameter. Subcutaneous and intra-tracheal infections of fluorescent Mycobacterium bovis Bacillus Calmette-Guérin (BCG) bacteria were detected in situ from inocula down to 104 and 107 colony forming units, respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Centers for Disease Control, “Tuberculosis (TB): Data and Statistics,” Oct. 25, 2010, retrieved Feb. 16, 2010, http://www.cdc.gov/tb/statistics/default.htm .
  2. M. Taniguchi, E. Akai, T. Koshida, K. Hibi, H. Kudo, K. Otsuka, H. Saito, K. Yano, H. Endo, and K. Mitsubayashi, “A fiber optic immunosensor for rapid bacteria determination,” in 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, F. Ibrahim, N. A. Abu Osman, J. Usman, and N. A. Kadri, eds. (Springer-Verlag, Berlin, 2007), pp. 308–311.
  3. M. S. John, A. Kishen, L. C. Sing, and A. Asundi, “Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor,” Appl. Opt. 41(34), 7334–7338 (2002).
    [CrossRef] [PubMed]
  4. H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, “Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis,” J. Fluoresc. 13(6), 489–493 (2003).
    [CrossRef]
  5. C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, and D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18(4), 593–603 (1995).
    [CrossRef] [PubMed]
  6. J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010).
    [CrossRef] [PubMed]
  7. S. Wiles, K. M. Pickard, K. Peng, T. T. MacDonald, and G. Frankel, “In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium,” Infect. Immun. 74(9), 5391–5396 (2006).
    [CrossRef] [PubMed]
  8. N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
    [CrossRef] [PubMed]
  9. Y. Kong, S. Subbian, S. L. G. Cirillo, and J. D. Cirillo, “Application of optical imaging to study of extrapulmonary spread by tuberculosis,” Tuberculosis (Edinb.) 89(Suppl 1), S15–S17 (2009).
    [CrossRef] [PubMed]
  10. V. Balasubramanian, E. H. Wiegeshaus, B. T. Taylor, and D. W. Smith, “Pathogenesis of tuberculosis: pathway to apical localization,” Tuber. Lung Dis. 75(3), 168–178 (1994).
    [CrossRef] [PubMed]
  11. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [CrossRef] [PubMed]
  12. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
    [CrossRef]
  13. K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
    [CrossRef] [PubMed]
  14. K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44(10), 1792–1797 (2005).
    [CrossRef] [PubMed]
  15. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004).
    [CrossRef] [PubMed]
  16. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
    [CrossRef] [PubMed]
  17. J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
    [CrossRef] [PubMed]
  18. T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
    [CrossRef] [PubMed]
  19. W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
    [CrossRef] [PubMed]
  20. M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
    [CrossRef] [PubMed]
  21. S. Gordon, S. Keshav, and M. Stein, “BCG-induced granuloma formation in murine tissues,” Immunobiology 191(4-5), 369–377 (1994).
    [PubMed]
  22. M. Goldgeier, C. A. Fox, J. M. Zavislan, D. Harris, and S. Gonzalez, “Noninvasive imaging, treatment, and microscopic confirmation of clearance of basal cell carcinoma,” Dermatol. Surg. 29(3), 205–210 (2003).
    [CrossRef] [PubMed]
  23. N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
    [CrossRef] [PubMed]
  24. N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
    [CrossRef] [PubMed]
  25. A. Mohan and S. K. Sharma, “Fibreoptic bronchoscopy in the diagnosis of sputum smear-negative pulmonary tuberculosis: current status,” Indian J. Chest Dis. Allied Sci. 50(1), 67–78 (2008).
    [PubMed]
  26. K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008).
    [PubMed]
  27. Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
    [CrossRef] [PubMed]

2010 (3)

J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010).
[CrossRef] [PubMed]

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
[CrossRef] [PubMed]

2009 (2)

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[CrossRef] [PubMed]

Y. Kong, S. Subbian, S. L. G. Cirillo, and J. D. Cirillo, “Application of optical imaging to study of extrapulmonary spread by tuberculosis,” Tuberculosis (Edinb.) 89(Suppl 1), S15–S17 (2009).
[CrossRef] [PubMed]

2008 (4)

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[CrossRef] [PubMed]

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[CrossRef] [PubMed]

A. Mohan and S. K. Sharma, “Fibreoptic bronchoscopy in the diagnosis of sputum smear-negative pulmonary tuberculosis: current status,” Indian J. Chest Dis. Allied Sci. 50(1), 67–78 (2008).
[PubMed]

K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008).
[PubMed]

2007 (1)

2006 (1)

S. Wiles, K. M. Pickard, K. Peng, T. T. MacDonald, and G. Frankel, “In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium,” Infect. Immun. 74(9), 5391–5396 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

2003 (3)

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, “Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis,” J. Fluoresc. 13(6), 489–493 (2003).
[CrossRef]

M. Goldgeier, C. A. Fox, J. M. Zavislan, D. Harris, and S. Gonzalez, “Noninvasive imaging, treatment, and microscopic confirmation of clearance of basal cell carcinoma,” Dermatol. Surg. 29(3), 205–210 (2003).
[CrossRef] [PubMed]

2002 (2)

M. S. John, A. Kishen, L. C. Sing, and A. Asundi, “Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor,” Appl. Opt. 41(34), 7334–7338 (2002).
[CrossRef] [PubMed]

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

1996 (1)

M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
[CrossRef] [PubMed]

1995 (1)

C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, and D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18(4), 593–603 (1995).
[CrossRef] [PubMed]

1994 (2)

V. Balasubramanian, E. H. Wiegeshaus, B. T. Taylor, and D. W. Smith, “Pathogenesis of tuberculosis: pathway to apical localization,” Tuber. Lung Dis. 75(3), 168–178 (1994).
[CrossRef] [PubMed]

S. Gordon, S. Keshav, and M. Stein, “BCG-induced granuloma formation in murine tissues,” Immunobiology 191(4-5), 369–377 (1994).
[PubMed]

1993 (1)

Anandasabapathy, S.

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[CrossRef] [PubMed]

Anderson, A. S.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Appiah, B.

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

Asundi, A.

Aziz, D.

Balasubramanian, V.

V. Balasubramanian, E. H. Wiegeshaus, B. T. Taylor, and D. W. Smith, “Pathogenesis of tuberculosis: pathway to apical localization,” Tuber. Lung Dis. 75(3), 168–178 (1994).
[CrossRef] [PubMed]

Benaron, D. A.

C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, and D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18(4), 593–603 (1995).
[CrossRef] [PubMed]

Biswas, M.

K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008).
[PubMed]

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Busscher, H. J.

J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010).
[CrossRef] [PubMed]

Carlson, K.

Celli, J. P.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[CrossRef] [PubMed]

Chidley, M.

Cirillo, J. D.

Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
[CrossRef] [PubMed]

Y. Kong, S. Subbian, S. L. G. Cirillo, and J. D. Cirillo, “Application of optical imaging to study of extrapulmonary spread by tuberculosis,” Tuberculosis (Edinb.) 89(Suppl 1), S15–S17 (2009).
[CrossRef] [PubMed]

Cirillo, S. L.

Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
[CrossRef] [PubMed]

Cirillo, S. L. G.

Y. Kong, S. Subbian, S. L. G. Cirillo, and J. D. Cirillo, “Application of optical imaging to study of extrapulmonary spread by tuberculosis,” Tuberculosis (Edinb.) 89(Suppl 1), S15–S17 (2009).
[CrossRef] [PubMed]

Collier, T.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Contag, C. H.

C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, and D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18(4), 593–603 (1995).
[CrossRef] [PubMed]

Contag, P. R.

C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, and D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18(4), 593–603 (1995).
[CrossRef] [PubMed]

Cope, L.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Deliolanis, N. C.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[CrossRef] [PubMed]

Descour, M.

K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44(10), 1792–1797 (2005).
[CrossRef] [PubMed]

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Dijkstra, R. J. B.

J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010).
[CrossRef] [PubMed]

Drezek, R.

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

Engelsman, A. F.

J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010).
[CrossRef] [PubMed]

Follen, M.

K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44(10), 1792–1797 (2005).
[CrossRef] [PubMed]

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Fox, C. A.

M. Goldgeier, C. A. Fox, J. M. Zavislan, D. Harris, and S. Gonzalez, “Noninvasive imaging, treatment, and microscopic confirmation of clearance of basal cell carcinoma,” Dermatol. Surg. 29(3), 205–210 (2003).
[CrossRef] [PubMed]

Francis, K. P.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Frankel, G.

S. Wiles, K. M. Pickard, K. Peng, T. T. MacDonald, and G. Frankel, “In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium,” Infect. Immun. 74(9), 5391–5396 (2006).
[CrossRef] [PubMed]

Ganguly, K. C.

K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008).
[PubMed]

Giana, H. E.

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, “Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis,” J. Fluoresc. 13(6), 489–493 (2003).
[CrossRef]

Gill, C.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Gillenwater, A.

Gmitro, A. F.

Goldgeier, M.

M. Goldgeier, C. A. Fox, J. M. Zavislan, D. Harris, and S. Gonzalez, “Noninvasive imaging, treatment, and microscopic confirmation of clearance of basal cell carcinoma,” Dermatol. Surg. 29(3), 205–210 (2003).
[CrossRef] [PubMed]

Gonzalez, S.

M. Goldgeier, C. A. Fox, J. M. Zavislan, D. Harris, and S. Gonzalez, “Noninvasive imaging, treatment, and microscopic confirmation of clearance of basal cell carcinoma,” Dermatol. Surg. 29(3), 205–210 (2003).
[CrossRef] [PubMed]

Gordon, S.

S. Gordon, S. Keshav, and M. Stein, “BCG-induced granuloma formation in murine tissues,” Immunobiology 191(4-5), 369–377 (1994).
[PubMed]

Harris, D.

M. Goldgeier, C. A. Fox, J. M. Zavislan, D. Harris, and S. Gonzalez, “Noninvasive imaging, treatment, and microscopic confirmation of clearance of basal cell carcinoma,” Dermatol. Surg. 29(3), 205–210 (2003).
[CrossRef] [PubMed]

Hasan, T.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[CrossRef] [PubMed]

Hassan, M. K.

K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008).
[PubMed]

Hirano, M.

M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
[CrossRef] [PubMed]

Hiron, M. M.

K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008).
[PubMed]

Jackson, J.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Jansen, K. U.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

John, M. S.

Kano, A.

Kasmieh, R.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[CrossRef] [PubMed]

Keshav, S.

S. Gordon, S. Keshav, and M. Stein, “BCG-induced granuloma formation in murine tissues,” Immunobiology 191(4-5), 369–377 (1994).
[PubMed]

Kishen, A.

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Kong, Y.

Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
[CrossRef] [PubMed]

Y. Kong, S. Subbian, S. L. G. Cirillo, and J. D. Cirillo, “Application of optical imaging to study of extrapulmonary spread by tuberculosis,” Tuberculosis (Edinb.) 89(Suppl 1), S15–S17 (2009).
[CrossRef] [PubMed]

Kroto, S. M.

Kuklin, N. A.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Liang, C.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

MacDonald, T. T.

S. Wiles, K. M. Pickard, K. Peng, T. T. MacDonald, and G. Frankel, “In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium,” Infect. Immun. 74(9), 5391–5396 (2006).
[CrossRef] [PubMed]

Mai, Z.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[CrossRef] [PubMed]

Maru, D.

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[CrossRef] [PubMed]

McClements, W.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Miyakawa, A.

M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
[CrossRef] [PubMed]

Mohan, A.

A. Mohan and S. K. Sharma, “Fibreoptic bronchoscopy in the diagnosis of sputum smear-negative pulmonary tuberculosis: current status,” Indian J. Chest Dis. Allied Sci. 50(1), 67–78 (2008).
[PubMed]

Montgomery, D.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Mridha, Z. U.

K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008).
[PubMed]

Muldoon, T. J.

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[CrossRef] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[CrossRef] [PubMed]

Mullins, J. I.

C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, and D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18(4), 593–603 (1995).
[CrossRef] [PubMed]

Nida, D. L.

Ntziachristos, V.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[CrossRef] [PubMed]

Overbye, K.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Pacheco, M. T. T.

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, “Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis,” J. Fluoresc. 13(6), 489–493 (2003).
[CrossRef]

Pancari, G. D.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Peng, K.

S. Wiles, K. M. Pickard, K. Peng, T. T. MacDonald, and G. Frankel, “In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium,” Infect. Immun. 74(9), 5391–5396 (2006).
[CrossRef] [PubMed]

Pickard, K. M.

S. Wiles, K. M. Pickard, K. Peng, T. T. MacDonald, and G. Frankel, “In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium,” Infect. Immun. 74(9), 5391–5396 (2006).
[CrossRef] [PubMed]

Pierce, M. C.

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Rahman, M. M.

K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008).
[PubMed]

Rao, J.

Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
[CrossRef] [PubMed]

Ren, H.

Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
[CrossRef] [PubMed]

Richards-Kortum, R.

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[CrossRef] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[CrossRef] [PubMed]

K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44(10), 1792–1797 (2005).
[CrossRef] [PubMed]

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Rizvi, I.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[CrossRef] [PubMed]

Rouse, A. R.

Sacchettini, J. C.

Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
[CrossRef] [PubMed]

Saha, S. C.

K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008).
[PubMed]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Shah, K.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[CrossRef] [PubMed]

Shaner, N. C.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[CrossRef] [PubMed]

Sharma, P. K.

J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010).
[CrossRef] [PubMed]

Sharma, S. K.

A. Mohan and S. K. Sharma, “Fibreoptic bronchoscopy in the diagnosis of sputum smear-negative pulmonary tuberculosis: current status,” Indian J. Chest Dis. Allied Sci. 50(1), 67–78 (2008).
[PubMed]

Shu, C.

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

Silveira, L.

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, “Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis,” J. Fluoresc. 13(6), 489–493 (2003).
[CrossRef]

Sing, L. C.

Sjollema, J.

J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010).
[CrossRef] [PubMed]

Smith, D. W.

V. Balasubramanian, E. H. Wiegeshaus, B. T. Taylor, and D. W. Smith, “Pathogenesis of tuberculosis: pathway to apical localization,” Tuber. Lung Dis. 75(3), 168–178 (1994).
[CrossRef] [PubMed]

Spilman, S. D.

C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, and D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18(4), 593–603 (1995).
[CrossRef] [PubMed]

Spring, B. Q.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[CrossRef] [PubMed]

Stein, M.

S. Gordon, S. Keshav, and M. Stein, “BCG-induced granuloma formation in murine tissues,” Immunobiology 191(4-5), 369–377 (1994).
[PubMed]

Steinbach, P. A.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[CrossRef] [PubMed]

Stevenson, D. K.

C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, and D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18(4), 593–603 (1995).
[CrossRef] [PubMed]

Subbian, S.

Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
[CrossRef] [PubMed]

Y. Kong, S. Subbian, S. L. G. Cirillo, and J. D. Cirillo, “Application of optical imaging to study of extrapulmonary spread by tuberculosis,” Tuberculosis (Edinb.) 89(Suppl 1), S15–S17 (2009).
[CrossRef] [PubMed]

Sun, J.

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

Sung, K. B.

Sung, K.-B.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Tannous, B. A.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[CrossRef] [PubMed]

Taylor, B. T.

V. Balasubramanian, E. H. Wiegeshaus, B. T. Taylor, and D. W. Smith, “Pathogenesis of tuberculosis: pathway to apical localization,” Tuber. Lung Dis. 75(3), 168–178 (1994).
[CrossRef] [PubMed]

Tobery, T. W.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Tsien, R. Y.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[CrossRef] [PubMed]

Udovich, J. A.

van Dam, G. M.

J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010).
[CrossRef] [PubMed]

van der Mei, H. C.

J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010).
[CrossRef] [PubMed]

Wiegeshaus, E. H.

V. Balasubramanian, E. H. Wiegeshaus, B. T. Taylor, and D. W. Smith, “Pathogenesis of tuberculosis: pathway to apical localization,” Tuber. Lung Dis. 75(3), 168–178 (1994).
[CrossRef] [PubMed]

Wiles, S.

S. Wiles, K. M. Pickard, K. Peng, T. T. MacDonald, and G. Frankel, “In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium,” Infect. Immun. 74(9), 5391–5396 (2006).
[CrossRef] [PubMed]

Williams, M. D.

Wurdinger, T.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[CrossRef] [PubMed]

Yamashita, Y.

M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
[CrossRef] [PubMed]

Yao, H.

Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
[CrossRef] [PubMed]

Yu, J.

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Yun, S. H.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[CrossRef] [PubMed]

Zangaro, R. A.

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, “Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis,” J. Fluoresc. 13(6), 489–493 (2003).
[CrossRef]

Zavislan, J. M.

M. Goldgeier, C. A. Fox, J. M. Zavislan, D. Harris, and S. Gonzalez, “Noninvasive imaging, treatment, and microscopic confirmation of clearance of basal cell carcinoma,” Dermatol. Surg. 29(3), 205–210 (2003).
[CrossRef] [PubMed]

Zhong, W.

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[CrossRef] [PubMed]

Antimicrob. Agents Chemother. (1)

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003).
[CrossRef] [PubMed]

Appl. Opt. (3)

Biomaterials (1)

J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010).
[CrossRef] [PubMed]

Br. J. Cancer (1)

W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009).
[CrossRef] [PubMed]

Brain Res. (1)

M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996).
[CrossRef] [PubMed]

Dermatol. Surg. (1)

M. Goldgeier, C. A. Fox, J. M. Zavislan, D. Harris, and S. Gonzalez, “Noninvasive imaging, treatment, and microscopic confirmation of clearance of basal cell carcinoma,” Dermatol. Surg. 29(3), 205–210 (2003).
[CrossRef] [PubMed]

Gastrointest. Endosc. (1)

T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Immunobiology (1)

S. Gordon, S. Keshav, and M. Stein, “BCG-induced granuloma formation in murine tissues,” Immunobiology 191(4-5), 369–377 (1994).
[PubMed]

Indian J. Chest Dis. Allied Sci. (1)

A. Mohan and S. K. Sharma, “Fibreoptic bronchoscopy in the diagnosis of sputum smear-negative pulmonary tuberculosis: current status,” Indian J. Chest Dis. Allied Sci. 50(1), 67–78 (2008).
[PubMed]

Infect. Immun. (1)

S. Wiles, K. M. Pickard, K. Peng, T. T. MacDonald, and G. Frankel, “In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium,” Infect. Immun. 74(9), 5391–5396 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010).
[CrossRef] [PubMed]

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[CrossRef] [PubMed]

J. Fluoresc. (1)

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, “Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis,” J. Fluoresc. 13(6), 489–493 (2003).
[CrossRef]

Mol. Microbiol. (1)

C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, and D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18(4), 593–603 (1995).
[CrossRef] [PubMed]

Mymensingh Med. J. (1)

K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008).
[PubMed]

Nat. Methods (1)

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010).
[CrossRef] [PubMed]

Tuber. Lung Dis. (1)

V. Balasubramanian, E. H. Wiegeshaus, B. T. Taylor, and D. W. Smith, “Pathogenesis of tuberculosis: pathway to apical localization,” Tuber. Lung Dis. 75(3), 168–178 (1994).
[CrossRef] [PubMed]

Tuberculosis (Edinb.) (1)

Y. Kong, S. Subbian, S. L. G. Cirillo, and J. D. Cirillo, “Application of optical imaging to study of extrapulmonary spread by tuberculosis,” Tuberculosis (Edinb.) 89(Suppl 1), S15–S17 (2009).
[CrossRef] [PubMed]

Other (2)

Centers for Disease Control, “Tuberculosis (TB): Data and Statistics,” Oct. 25, 2010, retrieved Feb. 16, 2010, http://www.cdc.gov/tb/statistics/default.htm .

M. Taniguchi, E. Akai, T. Koshida, K. Hibi, H. Kudo, K. Otsuka, H. Saito, K. Yano, H. Endo, and K. Mitsubayashi, “A fiber optic immunosensor for rapid bacteria determination,” in 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, F. Ibrahim, N. A. Abu Osman, J. Usman, and N. A. Kadri, eds. (Springer-Verlag, Berlin, 2007), pp. 308–311.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of fluorescence microendoscope for preclinical imaging. LED: light emitting diode, CL: collimating lens, EX: excitation filter, DM: dichroic mirror, OL: objective lens, EM: emission filter, FL: focusing lens, CCD: charge coupled device camera.

Fig. 2
Fig. 2

Imaging of excoriated skin using the microendoscope.

Fig. 9
Fig. 9

Lung infection. (a) Bar plot of average fluorescence intensity for each intra-tracheal (lung) bacterial inoculum. (b) Regression fit for average fluorescence intensity versus CFU determined from bacterial inoculum titer.

Fig. 4
Fig. 4

In situ images of sites subcutaneously inoculated with (a) and (b) 106, (c) 105, and (d) 104 CFU of bacteria expressing tdTomato, and (e) 106 CFU of negative control (BCG with vector backbone). (f) Macroscopic IVIS image of tissue subcutaneously inoculated with (i) 106, (ii) 105, and (iii) 104 CFU of bacteria expressing tdTomato, and (iv) 106 CFU of negative control (BCG with vector backbone). IVIS image field of view is 6.5 cm and scale bar units are (photons/sec/cm2/sr)/(µW/cm2).

Fig. 5
Fig. 5

In situ images of sites subcutaneously inoculated with (a) 103, (b) 102, and (c) 101 CFU of bacteria expressing tdTomato, and (d) 106 CFU of negative control (BCG with vector backbone).

Fig. 7
Fig. 7

In situ images of lungs intra-tracheally inoculated with (a) 108, (b) 107, and (c) 106 CFU of bacteria expressing tdTomato, and (d) 106 CFU of bacteria carrying vector alone (negative control).

Fig. 3
Fig. 3

Bacterial colonies grown on agar (a) expressing tdTomato, and (b) negative control (BCG carrying the vector backbone).

Fig. 6
Fig. 6

Subcutaneous infection. (a) Bar plot of average fluorescence intensity for each subcutaneous bacterial inoculum. (b) Regression fit for average fluorescence intensity versus CFU levels determined from bacterial inoculum titer.

Fig. 8
Fig. 8

Macroscopic IVIS images of lungs intra-tracheally inoculated with (a) 108, (b) 107, and (c) 106 CFU of bacteria expressing tdTomato, and (d) 106 CFU of non-fluorescent vector backbone (negative control). Field of view is 6.5 cm and scale bar units are (photons/sec/cm2/sr)/(µW/cm2).

Fig. 10
Fig. 10

Confocal microscope images of in vitro smear samples prepared using (a) tdTomato expressing BCG bacteria and (b) non-fluorescent BCG bacteria

Fig. 11
Fig. 11

Confocal microscope images of histology slides prepared using punch biopsies of lung tissue infected with (a), (b), and (c): tdTomato expressing bacteria; (d), (e), and (f): non-fluorescent BCG bacteria. (a) and (d): DAPI (blue) channel; (b) and (e): TRITC (red) channel; (c) and (f): DAPI + TRITC channels. White arrows indicate tdTomato expressing BCG bacteria.

Metrics