C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).

[CrossRef]
[PubMed]

H. Iwabuchi, ““Efficient Monte Carlo method for radiative transfer modeling,” J. of the Atmosph,” Science 63, 2324–2339 (2006).

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).

[CrossRef]
[PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[CrossRef]

I. T. Lima, A. O. Lima, J. Zweck, and C. R. Menyuk, “Efficient computation of outage probabilities due to polarization effects in a WDM system using a reduced Stokes model and importance sampling,” IEEE Photon. Technol. Lett. 15(1), 45–47 (2003).

[CrossRef]

G. Biondini, W. L. Kath, and C. R. Menyuk, “Importance sampling for polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(3), 310–312 (2002).

[CrossRef]

S. L. Fogal, G. Biondini, and W. L. Kath, “Multiple importance sampling for first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(9), 1273–1275 (2002).

[CrossRef]

N. G. Chen and J. Bai, “Estimation of quasi-straightforward propagating light in tissues,” Phys. Med. Biol. 44(7), 1669–1676 (1999).

[CrossRef]
[PubMed]

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).

[CrossRef]
[PubMed]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34(25), 5699–5707 (1995).

[CrossRef]
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

[CrossRef]
[PubMed]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).

[CrossRef]
[PubMed]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).

[CrossRef]
[PubMed]

N. G. Chen and J. Bai, “Estimation of quasi-straightforward propagating light in tissues,” Phys. Med. Biol. 44(7), 1669–1676 (1999).

[CrossRef]
[PubMed]

I. T. Lima, A. O. Lima, G. Biondini, C. R. Menyuk, and W. L. Kath, “A comparative study of single section polarization-mode dispersion compensators,” J. Lightwave Technol. 22(4), 1023–1032 (2004).

[CrossRef]

S. L. Fogal, G. Biondini, and W. L. Kath, “Multiple importance sampling for first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(9), 1273–1275 (2002).

[CrossRef]

G. Biondini, W. L. Kath, and C. R. Menyuk, “Importance sampling for polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(3), 310–312 (2002).

[CrossRef]

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12(4), 044007 (2007).

[CrossRef]
[PubMed]

N. G. Chen and J. Bai, “Estimation of quasi-straightforward propagating light in tissues,” Phys. Med. Biol. 44(7), 1669–1676 (1999).

[CrossRef]
[PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[CrossRef]

S. L. Fogal, G. Biondini, and W. L. Kath, “Multiple importance sampling for first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(9), 1273–1275 (2002).

[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[CrossRef]

H. Iwabuchi, ““Efficient Monte Carlo method for radiative transfer modeling,” J. of the Atmosph,” Science 63, 2324–2339 (2006).

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

[CrossRef]
[PubMed]

I. T. Lima, A. O. Lima, G. Biondini, C. R. Menyuk, and W. L. Kath, “A comparative study of single section polarization-mode dispersion compensators,” J. Lightwave Technol. 22(4), 1023–1032 (2004).

[CrossRef]

S. L. Fogal, G. Biondini, and W. L. Kath, “Multiple importance sampling for first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(9), 1273–1275 (2002).

[CrossRef]

G. Biondini, W. L. Kath, and C. R. Menyuk, “Importance sampling for polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(3), 310–312 (2002).

[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[CrossRef]

I. T. Lima, A. O. Lima, G. Biondini, C. R. Menyuk, and W. L. Kath, “A comparative study of single section polarization-mode dispersion compensators,” J. Lightwave Technol. 22(4), 1023–1032 (2004).

[CrossRef]

I. T. Lima, A. O. Lima, J. Zweck, and C. R. Menyuk, “Efficient computation of outage probabilities due to polarization effects in a WDM system using a reduced Stokes model and importance sampling,” IEEE Photon. Technol. Lett. 15(1), 45–47 (2003).

[CrossRef]

I. T. Lima, A. O. Lima, G. Biondini, C. R. Menyuk, and W. L. Kath, “A comparative study of single section polarization-mode dispersion compensators,” J. Lightwave Technol. 22(4), 1023–1032 (2004).

[CrossRef]

I. T. Lima, A. O. Lima, J. Zweck, and C. R. Menyuk, “Efficient computation of outage probabilities due to polarization effects in a WDM system using a reduced Stokes model and importance sampling,” IEEE Photon. Technol. Lett. 15(1), 45–47 (2003).

[CrossRef]

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12(4), 044007 (2007).

[CrossRef]
[PubMed]

I. T. Lima, A. O. Lima, G. Biondini, C. R. Menyuk, and W. L. Kath, “A comparative study of single section polarization-mode dispersion compensators,” J. Lightwave Technol. 22(4), 1023–1032 (2004).

[CrossRef]

I. T. Lima, A. O. Lima, J. Zweck, and C. R. Menyuk, “Efficient computation of outage probabilities due to polarization effects in a WDM system using a reduced Stokes model and importance sampling,” IEEE Photon. Technol. Lett. 15(1), 45–47 (2003).

[CrossRef]

G. Biondini, W. L. Kath, and C. R. Menyuk, “Importance sampling for polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(3), 310–312 (2002).

[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

[CrossRef]
[PubMed]

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).

[CrossRef]
[PubMed]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).

[CrossRef]
[PubMed]

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).

[CrossRef]
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

[CrossRef]
[PubMed]

I. T. Lima, A. O. Lima, J. Zweck, and C. R. Menyuk, “Efficient computation of outage probabilities due to polarization effects in a WDM system using a reduced Stokes model and importance sampling,” IEEE Photon. Technol. Lett. 15(1), 45–47 (2003).

[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

[CrossRef]
[PubMed]

G. Biondini, W. L. Kath, and C. R. Menyuk, “Importance sampling for polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(3), 310–312 (2002).

[CrossRef]

S. L. Fogal, G. Biondini, and W. L. Kath, “Multiple importance sampling for first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14(9), 1273–1275 (2002).

[CrossRef]

I. T. Lima, A. O. Lima, J. Zweck, and C. R. Menyuk, “Efficient computation of outage probabilities due to polarization effects in a WDM system using a reduced Stokes model and importance sampling,” IEEE Photon. Technol. Lett. 15(1), 45–47 (2003).

[CrossRef]

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12(4), 044007 (2007).

[CrossRef]
[PubMed]

S. S. Sherif, C. C. Rosa, C. Flueraru, S. Chang, Y. Mao, and A. G. Podoleanu, “Statistics of the depth-scan photocurrent in time-domain optical coherence tomography,” J. Opt. Soc. Am. A 25(1), 16–20 (2008).

[CrossRef]
[PubMed]

J. M. Schmitt and K. Ben-Letaief, “Efficient Monte Carlo simulation of confocal microscopy in biological tissue,” J. Opt. Soc. Am. A 13(5), 952–961 (1996).

[CrossRef]
[PubMed]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).

[CrossRef]
[PubMed]

N. G. Chen and J. Bai, “Estimation of quasi-straightforward propagating light in tissues,” Phys. Med. Biol. 44(7), 1669–1676 (1999).

[CrossRef]
[PubMed]

G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999).

[CrossRef]
[PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[CrossRef]

H. Iwabuchi, ““Efficient Monte Carlo method for radiative transfer modeling,” J. of the Atmosph,” Science 63, 2324–2339 (2006).

I. T. Lima, Jr., “Advanced Monte Carlo methods applied to Optical Coherence Tomography” (invited), presented at the 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Belém, Brazil, 3–6 Nov. 2009.

“Monte Carlo simulations,” Oregon Medical Laser Center, accessed January 1, 2009, http://omlc.ogi.edu/software/mc/

S. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory (Prentice-Hall, 1993).

E. Hecht, Optics, 4th ed. (Pearson Addison Wesley, 2003).

R. Y. Rubinstein, Simulation and the Monte Carlo Method (Wiley, 1981).