Abstract

We present a new method of formation photoplethysmographic images with high spatial resolution from video recordings of a living body in the reflection geometry. The method (patent pending) is based on lock-in amplification of every pixel of the recorded video frames. A reference function required for synchronous detection of cardiovascular pulse waves is formed from the same frames. The method is featured by ability to visualize dynamic changes in cardiovascular pulse wave during the cardiac (or respiratory) cycle. We demonstrate that the system is capable to detect the minimal irritations of the body such as gentle scratching of the skin by own finger.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ambiguity of mapping the relative phase of blood pulsations

Victor Teplov, Ervin Nippolainen, Alexander A. Makarenko, Rashid Giniatullin, and Alexei A. Kamshilin
Biomed. Opt. Express 5(9) 3123-3139 (2014)

Influence of a skin status on the light interaction with dermis

Alexei A. Kamshilin, Oleg V. Mamontov, Vasily T. Koval, Grigory A. Zayats, and Roman V. Romashko
Biomed. Opt. Express 6(11) 4326-4334 (2015)

Motion robust PPG-imaging through color channel mapping

Andreia V. Moço, Sander Stuijk, and Gerard de Haan
Biomed. Opt. Express 7(5) 1737-1754 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. 119, 334–335 (1937).
  2. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
    [Crossref] [PubMed]
  3. A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography--a review,” Comput. Methods Programs Biomed. 28(4), 257–269 (1989).
    [Crossref] [PubMed]
  4. W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
    [Crossref] [PubMed]
  5. J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
    [Crossref] [PubMed]
  6. J. C. de Trafford and K. Lafferty, “What does photoplethysmography measure?” Med. Biol. Eng. Comput. 22(5), 479–480 (1984).
    [Crossref] [PubMed]
  7. F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
    [Crossref] [PubMed]
  8. S. Hu, J. Zhieng, V. Chouliaras, and R. Summers, “Feasibility of imaging photoplethysmography,” in Proceedings of IEEE Conference on BioMedical Engineering and Informatics (IEEE, 2008), pp. 72–75.
  9. K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
    [Crossref] [PubMed]
  10. W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express 16(26), 21434–21445 (2008).
    [Crossref] [PubMed]
  11. M. P. Fitz, Fundamentals of Communications Systems (McGraw-Hill, New York, 2007), Chap. 11.
  12. M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
    [Crossref] [PubMed]
  13. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), 201–266 (2001).
    [Crossref] [PubMed]

2010 (1)

2008 (1)

2007 (2)

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[Crossref] [PubMed]

2005 (1)

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

2001 (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), 201–266 (2001).
[Crossref] [PubMed]

1990 (1)

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
[Crossref] [PubMed]

1989 (1)

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography--a review,” Comput. Methods Programs Biomed. 28(4), 257–269 (1989).
[Crossref] [PubMed]

1984 (1)

J. C. de Trafford and K. Lafferty, “What does photoplethysmography measure?” Med. Biol. Eng. Comput. 22(5), 479–480 (1984).
[Crossref] [PubMed]

1981 (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

1937 (1)

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. 119, 334–335 (1937).

Allen, J.

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), 201–266 (2001).
[Crossref] [PubMed]

Cui, W. J.

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
[Crossref] [PubMed]

de Trafford, J. C.

J. C. de Trafford and K. Lafferty, “What does photoplethysmography measure?” Med. Biol. Eng. Comput. 22(5), 479–480 (1984).
[Crossref] [PubMed]

Harness, J. B.

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography--a review,” Comput. Methods Programs Biomed. 28(4), 257–269 (1989).
[Crossref] [PubMed]

Hertzman, A. B.

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. 119, 334–335 (1937).

Humphreys, K.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[Crossref] [PubMed]

Irving, G.

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography--a review,” Comput. Methods Programs Biomed. 28(4), 257–269 (1989).
[Crossref] [PubMed]

Kamal, A. A. R.

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography--a review,” Comput. Methods Programs Biomed. 28(4), 257–269 (1989).
[Crossref] [PubMed]

Lafferty, K.

J. C. de Trafford and K. Lafferty, “What does photoplethysmography measure?” Med. Biol. Eng. Comput. 22(5), 479–480 (1984).
[Crossref] [PubMed]

Lee, B. Y.

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
[Crossref] [PubMed]

Markham, C.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[Crossref] [PubMed]

Mastik, F.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

McDuff, D. J.

Mearns, A. J.

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography--a review,” Comput. Methods Programs Biomed. 28(4), 257–269 (1989).
[Crossref] [PubMed]

Nelson, J. S.

Ostrander, L. E.

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
[Crossref] [PubMed]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

Picard, R. W.

Poh, M.-Z.

Spealman, C. R.

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. 119, 334–335 (1937).

Svaasand, L. O.

van der Steen, A. F. W.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Verkruysse, W.

Ward, T.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[Crossref] [PubMed]

Wieringa, F. P.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Am. J. Physiol. (1)

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. 119, 334–335 (1937).

Ann. Biomed. Eng. (1)

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography--a review,” Comput. Methods Programs Biomed. 28(4), 257–269 (1989).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

Med. Biol. Eng. Comput. (1)

J. C. de Trafford and K. Lafferty, “What does photoplethysmography measure?” Med. Biol. Eng. Comput. 22(5), 479–480 (1984).
[Crossref] [PubMed]

Opt. Express (2)

Physiol. Meas. (2)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), 201–266 (2001).
[Crossref] [PubMed]

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[Crossref] [PubMed]

Other (2)

M. P. Fitz, Fundamentals of Communications Systems (McGraw-Hill, New York, 2007), Chap. 11.

S. Hu, J. Zhieng, V. Chouliaras, and R. Summers, “Feasibility of imaging photoplethysmography,” in Proceedings of IEEE Conference on BioMedical Engineering and Informatics (IEEE, 2008), pp. 72–75.

Supplementary Material (4)

» Media 1: MOV (2548 KB)     
» Media 2: MOV (2546 KB)     
» Media 3: MOV (2547 KB)     
» Media 4: MOV (2527 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experiment for formation of photoplethysmographic images.

Fig. 2
Fig. 2

(a) Example of the recorded frames with the selected ROI for the reference function formation. (b) Evolution of the spatially-averaged pixels value during the recorded video.

Fig. 3
Fig. 3

Power spectrum of the mean-pixel-value time-trace. Frequency bands limited by B 1 and B 2 and by C 1 and C 2 are used for generation of the reference function representative for breathing and heart-beating physiological processes, respectively.

Fig. 4
Fig. 4

(a) Raw time-trace of the spatially-averaged pixel value, and (b) calculated reference function RC (t) representing the heart beats. Solid blue line is the real part of RC (t) while the dotted red line is the imaginary part.

Fig. 5
Fig. 5

(a) Temporal dependence of the pixel value averaged inside the ROI after subtraction its DC level. (b) Calculated reference function using adaptive algorithm. Green vertical bars show borders of single-period cosine segments after their phase adjustment with the raw time trace of averaged pixel values.

Fig. 6
Fig. 6

Drawing which illustrates calculation of the correlation matrix SC (x, y).

Fig. 7
Fig. 7

Distribution of blood-pulsations amplitude (a, c) before and (b, d) after gentle scratching of the palm of (a, b) subject A and (c, d) – subject B. The scales show the absolute value of the components of the correlation matrix SC (x,y), which are different for different subjects.

Fig. 8
Fig. 8

Excerpts from animations created using Eq. (4) for (a, b) subject A (Media 1 and Media 2, respectively) and for (c, d) subject B (Media 3 and Media 4, respectively before and after gentle scratching of the palm. All excerpts were executed for the frame No. 66 of 72, which corresponds to the phase ϕ = −30° in respect to the averaged blood pulsations in the selected ROI.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

t Re [ R C ( t ) ] R C ( t ) = 1.
S C ( x , y ) = t I ( x , y , t ) R C ( t ) .
R C ( t ) = 2 N exp ( 2 π i f t ) ,
I ( x , y , t ) = A ( x , y ) cos [ 2 π i f t + ψ ( x , y ) ] + B ( x , y ) .
S C ( x , y ) = A ( x , y ) exp [ i ψ ( x , y ) ] .
H C ( x , y , t ) = Re [ S C ( x , y ) ] cos ϕ ( t ) + Im [ S C ( x , y ) ] sin ϕ ( t ) .

Metrics