Abstract

Near Infra-Red Spectroscopy (NIRS) is a non-invasive technique which can be used to investigate cerebral haemodynamics and oxygenation with high temporal resolution. When combined with measures of Cerebral Blood Flow (CBF), it has the potential to provide information about oxygen delivery, utilization and metabolism. However, the interpretation of experimental results is complex. Measured NIRS signals reflect both scalp and cerebral haemodynamics and are influenced by many factors. The relationship between Arterial Blood Pressure (ABP) and CBF has been widely investigated and it central to cerebral autoregulation. Changes in arterial blood gas levels have a significant effect on ABP and CBF and these relationships have been quantified previously. The relationship between ABP and NIRS signals, however, has not been fully characterized. In this paper, we thus investigate the influence of changes in arterial blood gas levels both experimentally and theoretically, using an extended mathematical model of cerebral blood flow and metabolism, in terms of the phase angle at 0.1 Hz. The autoregulation response is found to be strongly dependent upon the carbon dioxide (CO2) partial pressure but much less so upon changes in arterial oxygen saturation (SaO2). The results for phase angle sensitivity to CO2 show good agreement between experimental and theory, but a poorer agreement is found for the sensitivity to SaO2.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
    [CrossRef] [PubMed]
  2. P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
    [CrossRef] [PubMed]
  3. R. B. Panerai, D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans, “Multivariate dynamic analysis of cerebral blood flow regulation in humans,” IEEE Trans. Biomed. Eng. 47(3), 419–423 (2000).
    [CrossRef] [PubMed]
  4. T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Multivariate system identification for cerebral autoregulation,” Ann. Biomed. Eng. 36(2), 308–320 (2008).
    [CrossRef] [PubMed]
  5. T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Wavelet phase synchronization analysis of cerebral blood flow autoregulation,” IEEE Trans. Biomed. Eng. 57(4), 960–968 (2010).
    [CrossRef] [PubMed]
  6. S. J. Payne, J. Selb, and D. A. Boas, “Effects of autoregulation and CO2 reactivity on cerebral oxygen transport,” Ann. Biomed. Eng. 37(11), 2288–2298 (2009).
    [CrossRef] [PubMed]
  7. S. J. Payne, “A model of the interaction between autoregulation and neural activation in the brain,” Math. Biosci. 204(2), 260–281 (2006).
    [CrossRef] [PubMed]
  8. S. J. Payne and L. Tarassenko, “Combined transfer function analysis and modelling of cerebral autoregulation,” Ann. Biomed. Eng. 34(5), 847–858 (2006).
    [CrossRef] [PubMed]
  9. I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol. 645, 315–320 (2009).
    [CrossRef] [PubMed]
  10. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
    [CrossRef] [PubMed]
  11. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
    [CrossRef] [PubMed]
  12. M. M. Tisdall, C. Taylor, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers,” Anesth. Analg. 109(3), 906–913 (2009).
    [CrossRef] [PubMed]
  13. F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), 604–611 (2008).
    [CrossRef] [PubMed]
  14. J. S. Soul, G. A. Taylor, D. Wypij, A. J. Duplessis, and J. J. Volpe, “Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus,” Pediatr. Res. 48(4), 445–449 (2000).
    [CrossRef] [PubMed]
  15. A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
    [CrossRef] [PubMed]
  16. I. Tachtsidis, C. E. Elwell, T. S. Leung, C. W. Lee, M. Smith, and D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25(2), 437–445 (2004).
    [CrossRef] [PubMed]
  17. H. Nilsson and C. Aalkjaer, “Vasomotion: mechanisms and physiological importance,” Mol. Interv. 3(2), 79–89, 51 (2003).
    [CrossRef] [PubMed]
  18. M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
    [CrossRef] [PubMed]
  19. M. Reivich, “Arterial PCO2 and cerebral hemodynamics,” Am. J. Physiol. 206, 25–35 (1964).
    [PubMed]
  20. A. W. Subudhi, R. B. Panerai, and R. C. Roach, “Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques,” J. Appl. Physiol. 107(4), 1165–1171 (2009).
    [CrossRef] [PubMed]
  21. N. E. Dineen, F. G. Brodie, T. G. Robinson, and R. B. Panerai, “Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia,” J. Appl. Physiol. 108(3), 604–613 (2010).
    [CrossRef] [PubMed]
  22. B. K. Siesjö, “Cerebral metabolic rate in hypercarbia--a controversy,” Anesthesiology 52(6), 461–465 (1980).
    [CrossRef] [PubMed]
  23. F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
    [CrossRef] [PubMed]

2011 (1)

F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
[CrossRef] [PubMed]

2010 (2)

N. E. Dineen, F. G. Brodie, T. G. Robinson, and R. B. Panerai, “Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia,” J. Appl. Physiol. 108(3), 604–613 (2010).
[CrossRef] [PubMed]

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Wavelet phase synchronization analysis of cerebral blood flow autoregulation,” IEEE Trans. Biomed. Eng. 57(4), 960–968 (2010).
[CrossRef] [PubMed]

2009 (4)

S. J. Payne, J. Selb, and D. A. Boas, “Effects of autoregulation and CO2 reactivity on cerebral oxygen transport,” Ann. Biomed. Eng. 37(11), 2288–2298 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol. 645, 315–320 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, C. Taylor, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers,” Anesth. Analg. 109(3), 906–913 (2009).
[CrossRef] [PubMed]

A. W. Subudhi, R. B. Panerai, and R. C. Roach, “Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques,” J. Appl. Physiol. 107(4), 1165–1171 (2009).
[CrossRef] [PubMed]

2008 (3)

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), 604–611 (2008).
[CrossRef] [PubMed]

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Multivariate system identification for cerebral autoregulation,” Ann. Biomed. Eng. 36(2), 308–320 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[CrossRef] [PubMed]

2007 (3)

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef] [PubMed]

2006 (3)

S. J. Payne, “A model of the interaction between autoregulation and neural activation in the brain,” Math. Biosci. 204(2), 260–281 (2006).
[CrossRef] [PubMed]

S. J. Payne and L. Tarassenko, “Combined transfer function analysis and modelling of cerebral autoregulation,” Ann. Biomed. Eng. 34(5), 847–858 (2006).
[CrossRef] [PubMed]

M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
[CrossRef] [PubMed]

2004 (1)

I. Tachtsidis, C. E. Elwell, T. S. Leung, C. W. Lee, M. Smith, and D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25(2), 437–445 (2004).
[CrossRef] [PubMed]

2003 (1)

H. Nilsson and C. Aalkjaer, “Vasomotion: mechanisms and physiological importance,” Mol. Interv. 3(2), 79–89, 51 (2003).
[CrossRef] [PubMed]

2001 (1)

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

2000 (2)

R. B. Panerai, D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans, “Multivariate dynamic analysis of cerebral blood flow regulation in humans,” IEEE Trans. Biomed. Eng. 47(3), 419–423 (2000).
[CrossRef] [PubMed]

J. S. Soul, G. A. Taylor, D. Wypij, A. J. Duplessis, and J. J. Volpe, “Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus,” Pediatr. Res. 48(4), 445–449 (2000).
[CrossRef] [PubMed]

1980 (1)

B. K. Siesjö, “Cerebral metabolic rate in hypercarbia--a controversy,” Anesthesiology 52(6), 461–465 (1980).
[CrossRef] [PubMed]

1964 (1)

M. Reivich, “Arterial PCO2 and cerebral hemodynamics,” Am. J. Physiol. 206, 25–35 (1964).
[PubMed]

Aalkjaer, C.

H. Nilsson and C. Aalkjaer, “Vasomotion: mechanisms and physiological importance,” Mol. Interv. 3(2), 79–89, 51 (2003).
[CrossRef] [PubMed]

Ainslie, P. N.

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Wavelet phase synchronization analysis of cerebral blood flow autoregulation,” IEEE Trans. Biomed. Eng. 57(4), 960–968 (2010).
[CrossRef] [PubMed]

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Multivariate system identification for cerebral autoregulation,” Ann. Biomed. Eng. 36(2), 308–320 (2008).
[CrossRef] [PubMed]

Al-Rawi, P. G.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Austin, T.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), 604–611 (2008).
[CrossRef] [PubMed]

Boas, D. A.

S. J. Payne, J. Selb, and D. A. Boas, “Effects of autoregulation and CO2 reactivity on cerebral oxygen transport,” Ann. Biomed. Eng. 37(11), 2288–2298 (2009).
[CrossRef] [PubMed]

Brier, M. R.

F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
[CrossRef] [PubMed]

Brodie, F. G.

N. E. Dineen, F. G. Brodie, T. G. Robinson, and R. B. Panerai, “Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia,” J. Appl. Physiol. 108(3), 604–613 (2010).
[CrossRef] [PubMed]

Cooper, C. E.

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol. 645, 315–320 (2009).
[CrossRef] [PubMed]

Delpy, D. T.

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

I. Tachtsidis, C. E. Elwell, T. S. Leung, C. W. Lee, M. Smith, and D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25(2), 437–445 (2004).
[CrossRef] [PubMed]

Deverson, S. T.

R. B. Panerai, D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans, “Multivariate dynamic analysis of cerebral blood flow regulation in humans,” IEEE Trans. Biomed. Eng. 47(3), 419–423 (2000).
[CrossRef] [PubMed]

Dineen, N. E.

N. E. Dineen, F. G. Brodie, T. G. Robinson, and R. B. Panerai, “Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia,” J. Appl. Physiol. 108(3), 604–613 (2010).
[CrossRef] [PubMed]

Duplessis, A. J.

J. S. Soul, G. A. Taylor, D. Wypij, A. J. Duplessis, and J. J. Volpe, “Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus,” Pediatr. Res. 48(4), 445–449 (2000).
[CrossRef] [PubMed]

Ebden, M. J.

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

Elwell, C. E.

M. M. Tisdall, C. Taylor, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers,” Anesth. Analg. 109(3), 906–913 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol. 645, 315–320 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[CrossRef] [PubMed]

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[CrossRef] [PubMed]

I. Tachtsidis, C. E. Elwell, T. S. Leung, C. W. Lee, M. Smith, and D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25(2), 437–445 (2004).
[CrossRef] [PubMed]

Evans, D. H.

R. B. Panerai, D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans, “Multivariate dynamic analysis of cerebral blood flow regulation in humans,” IEEE Trans. Biomed. Eng. 47(3), 419–423 (2000).
[CrossRef] [PubMed]

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef] [PubMed]

Gavaghan, D. J.

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

Grabiak, D.

M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
[CrossRef] [PubMed]

Gu, H.

F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
[CrossRef] [PubMed]

Guschlbauer, B.

M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
[CrossRef] [PubMed]

Hart, J.

F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
[CrossRef] [PubMed]

Hayes, P.

R. B. Panerai, D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans, “Multivariate dynamic analysis of cerebral blood flow regulation in humans,” IEEE Trans. Biomed. Eng. 47(3), 419–423 (2000).
[CrossRef] [PubMed]

Hetzel, A.

M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
[CrossRef] [PubMed]

Kirkpatrick, P. J.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Lee, C. W.

I. Tachtsidis, C. E. Elwell, T. S. Leung, C. W. Lee, M. Smith, and D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25(2), 437–445 (2004).
[CrossRef] [PubMed]

Leung, T. S.

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol. 645, 315–320 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, C. Taylor, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers,” Anesth. Analg. 109(3), 906–913 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[CrossRef] [PubMed]

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), 604–611 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[CrossRef] [PubMed]

I. Tachtsidis, C. E. Elwell, T. S. Leung, C. W. Lee, M. Smith, and D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25(2), 437–445 (2004).
[CrossRef] [PubMed]

Lu, H.

F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
[CrossRef] [PubMed]

Mahony, P.

R. B. Panerai, D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans, “Multivariate dynamic analysis of cerebral blood flow regulation in humans,” IEEE Trans. Biomed. Eng. 47(3), 419–423 (2000).
[CrossRef] [PubMed]

Meek, J. H.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), 604–611 (2008).
[CrossRef] [PubMed]

Nilsson, H.

H. Nilsson and C. Aalkjaer, “Vasomotion: mechanisms and physiological importance,” Mol. Interv. 3(2), 79–89, 51 (2003).
[CrossRef] [PubMed]

Panerai, R. B.

N. E. Dineen, F. G. Brodie, T. G. Robinson, and R. B. Panerai, “Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia,” J. Appl. Physiol. 108(3), 604–613 (2010).
[CrossRef] [PubMed]

A. W. Subudhi, R. B. Panerai, and R. C. Roach, “Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques,” J. Appl. Physiol. 107(4), 1165–1171 (2009).
[CrossRef] [PubMed]

R. B. Panerai, D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans, “Multivariate dynamic analysis of cerebral blood flow regulation in humans,” IEEE Trans. Biomed. Eng. 47(3), 419–423 (2000).
[CrossRef] [PubMed]

Payne, S. J.

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Wavelet phase synchronization analysis of cerebral blood flow autoregulation,” IEEE Trans. Biomed. Eng. 57(4), 960–968 (2010).
[CrossRef] [PubMed]

S. J. Payne, J. Selb, and D. A. Boas, “Effects of autoregulation and CO2 reactivity on cerebral oxygen transport,” Ann. Biomed. Eng. 37(11), 2288–2298 (2009).
[CrossRef] [PubMed]

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Multivariate system identification for cerebral autoregulation,” Ann. Biomed. Eng. 36(2), 308–320 (2008).
[CrossRef] [PubMed]

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

S. J. Payne and L. Tarassenko, “Combined transfer function analysis and modelling of cerebral autoregulation,” Ann. Biomed. Eng. 34(5), 847–858 (2006).
[CrossRef] [PubMed]

S. J. Payne, “A model of the interaction between autoregulation and neural activation in the brain,” Math. Biosci. 204(2), 260–281 (2006).
[CrossRef] [PubMed]

Peng, T.

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Wavelet phase synchronization analysis of cerebral blood flow autoregulation,” IEEE Trans. Biomed. Eng. 57(4), 960–968 (2010).
[CrossRef] [PubMed]

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Multivariate system identification for cerebral autoregulation,” Ann. Biomed. Eng. 36(2), 308–320 (2008).
[CrossRef] [PubMed]

Poulin, M. J.

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Wavelet phase synchronization analysis of cerebral blood flow autoregulation,” IEEE Trans. Biomed. Eng. 57(4), 960–968 (2010).
[CrossRef] [PubMed]

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Multivariate system identification for cerebral autoregulation,” Ann. Biomed. Eng. 36(2), 308–320 (2008).
[CrossRef] [PubMed]

Pritchard, C.

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol. 645, 315–320 (2009).
[CrossRef] [PubMed]

Quaresima, V.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef] [PubMed]

Reinhard, M.

M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
[CrossRef] [PubMed]

Reivich, M.

M. Reivich, “Arterial PCO2 and cerebral hemodynamics,” Am. J. Physiol. 206, 25–35 (1964).
[PubMed]

Roach, R. C.

A. W. Subudhi, R. B. Panerai, and R. C. Roach, “Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques,” J. Appl. Physiol. 107(4), 1165–1171 (2009).
[CrossRef] [PubMed]

Robinson, T. G.

N. E. Dineen, F. G. Brodie, T. G. Robinson, and R. B. Panerai, “Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia,” J. Appl. Physiol. 108(3), 604–613 (2010).
[CrossRef] [PubMed]

Roth, M.

M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
[CrossRef] [PubMed]

Rowley, A. B.

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Wavelet phase synchronization analysis of cerebral blood flow autoregulation,” IEEE Trans. Biomed. Eng. 57(4), 960–968 (2010).
[CrossRef] [PubMed]

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Multivariate system identification for cerebral autoregulation,” Ann. Biomed. Eng. 36(2), 308–320 (2008).
[CrossRef] [PubMed]

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

Selb, J.

S. J. Payne, J. Selb, and D. A. Boas, “Effects of autoregulation and CO2 reactivity on cerebral oxygen transport,” Ann. Biomed. Eng. 37(11), 2288–2298 (2009).
[CrossRef] [PubMed]

Siesjö, B. K.

B. K. Siesjö, “Cerebral metabolic rate in hypercarbia--a controversy,” Anesthesiology 52(6), 461–465 (1980).
[CrossRef] [PubMed]

Simpson, D. M.

R. B. Panerai, D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans, “Multivariate dynamic analysis of cerebral blood flow regulation in humans,” IEEE Trans. Biomed. Eng. 47(3), 419–423 (2000).
[CrossRef] [PubMed]

Smielewski, P.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Smith, M.

M. M. Tisdall, C. Taylor, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers,” Anesth. Analg. 109(3), 906–913 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol. 645, 315–320 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[CrossRef] [PubMed]

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[CrossRef] [PubMed]

I. Tachtsidis, C. E. Elwell, T. S. Leung, C. W. Lee, M. Smith, and D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25(2), 437–445 (2004).
[CrossRef] [PubMed]

Soul, J. S.

J. S. Soul, G. A. Taylor, D. Wypij, A. J. Duplessis, and J. J. Volpe, “Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus,” Pediatr. Res. 48(4), 445–449 (2000).
[CrossRef] [PubMed]

Subudhi, A. W.

A. W. Subudhi, R. B. Panerai, and R. C. Roach, “Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques,” J. Appl. Physiol. 107(4), 1165–1171 (2009).
[CrossRef] [PubMed]

Tachtsidis, I.

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol. 645, 315–320 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, C. Taylor, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers,” Anesth. Analg. 109(3), 906–913 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[CrossRef] [PubMed]

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[CrossRef] [PubMed]

I. Tachtsidis, C. E. Elwell, T. S. Leung, C. W. Lee, M. Smith, and D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25(2), 437–445 (2004).
[CrossRef] [PubMed]

Tarassenko, L.

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

S. J. Payne and L. Tarassenko, “Combined transfer function analysis and modelling of cerebral autoregulation,” Ann. Biomed. Eng. 34(5), 847–858 (2006).
[CrossRef] [PubMed]

Taylor, C.

M. M. Tisdall, C. Taylor, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers,” Anesth. Analg. 109(3), 906–913 (2009).
[CrossRef] [PubMed]

Taylor, G. A.

J. S. Soul, G. A. Taylor, D. Wypij, A. J. Duplessis, and J. J. Volpe, “Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus,” Pediatr. Res. 48(4), 445–449 (2000).
[CrossRef] [PubMed]

Timmer, J.

M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
[CrossRef] [PubMed]

Tisdall, M. M.

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol. 645, 315–320 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, C. Taylor, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers,” Anesth. Analg. 109(3), 906–913 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[CrossRef] [PubMed]

Uh, J.

F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
[CrossRef] [PubMed]

Volpe, J. J.

J. S. Soul, G. A. Taylor, D. Wypij, A. J. Duplessis, and J. J. Volpe, “Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus,” Pediatr. Res. 48(4), 445–449 (2000).
[CrossRef] [PubMed]

Walker, A. M.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), 604–611 (2008).
[CrossRef] [PubMed]

Wehrle-Wieland, E.

M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
[CrossRef] [PubMed]

Weiller, C.

M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
[CrossRef] [PubMed]

Whiteley, J. P.

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

Wilkinson, M.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), 604–611 (2008).
[CrossRef] [PubMed]

Wolf, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef] [PubMed]

Wong, F. Y.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), 604–611 (2008).
[CrossRef] [PubMed]

Wyatt, J. S.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), 604–611 (2008).
[CrossRef] [PubMed]

Wypij, D.

J. S. Soul, G. A. Taylor, D. Wypij, A. J. Duplessis, and J. J. Volpe, “Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus,” Pediatr. Res. 48(4), 445–449 (2000).
[CrossRef] [PubMed]

Xu, F.

F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
[CrossRef] [PubMed]

Yang, Y.

F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
[CrossRef] [PubMed]

Yezhuvath, U. S.

F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (2)

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol. 645, 315–320 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol. 614, 217–225 (2008).
[CrossRef] [PubMed]

Am. J. Physiol. (1)

M. Reivich, “Arterial PCO2 and cerebral hemodynamics,” Am. J. Physiol. 206, 25–35 (1964).
[PubMed]

Anesth. Analg. (1)

M. M. Tisdall, C. Taylor, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers,” Anesth. Analg. 109(3), 906–913 (2009).
[CrossRef] [PubMed]

Anesthesiology (1)

B. K. Siesjö, “Cerebral metabolic rate in hypercarbia--a controversy,” Anesthesiology 52(6), 461–465 (1980).
[CrossRef] [PubMed]

Ann. Biomed. Eng. (3)

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Multivariate system identification for cerebral autoregulation,” Ann. Biomed. Eng. 36(2), 308–320 (2008).
[CrossRef] [PubMed]

S. J. Payne, J. Selb, and D. A. Boas, “Effects of autoregulation and CO2 reactivity on cerebral oxygen transport,” Ann. Biomed. Eng. 37(11), 2288–2298 (2009).
[CrossRef] [PubMed]

S. J. Payne and L. Tarassenko, “Combined transfer function analysis and modelling of cerebral autoregulation,” Ann. Biomed. Eng. 34(5), 847–858 (2006).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

R. B. Panerai, D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans, “Multivariate dynamic analysis of cerebral blood flow regulation in humans,” IEEE Trans. Biomed. Eng. 47(3), 419–423 (2000).
[CrossRef] [PubMed]

T. Peng, A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne, “Wavelet phase synchronization analysis of cerebral blood flow autoregulation,” IEEE Trans. Biomed. Eng. 57(4), 960–968 (2010).
[CrossRef] [PubMed]

J. Appl. Physiol. (2)

A. W. Subudhi, R. B. Panerai, and R. C. Roach, “Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques,” J. Appl. Physiol. 107(4), 1165–1171 (2009).
[CrossRef] [PubMed]

N. E. Dineen, F. G. Brodie, T. G. Robinson, and R. B. Panerai, “Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia,” J. Appl. Physiol. 108(3), 604–613 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

F. Xu, J. Uh, M. R. Brier, J. Hart, U. S. Yezhuvath, H. Gu, Y. Yang, and H. Lu, “The influence of carbon dioxide on brain activity and metabolism in conscious humans,” J. Cereb. Blood Flow Metab. 31(1), 58–67 (2011).
[CrossRef] [PubMed]

J. Neurol. Sci. (1)

M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel, “Oscillatory cerebral hemodynamics--the macro- vs. microvascular level,” J. Neurol. Sci. 250(1-2), 103–109 (2006).
[CrossRef] [PubMed]

Math. Biosci. (1)

S. J. Payne, “A model of the interaction between autoregulation and neural activation in the brain,” Math. Biosci. 204(2), 260–281 (2006).
[CrossRef] [PubMed]

Mol. Interv. (1)

H. Nilsson and C. Aalkjaer, “Vasomotion: mechanisms and physiological importance,” Mol. Interv. 3(2), 79–89, 51 (2003).
[CrossRef] [PubMed]

Pediatr. Res. (1)

J. S. Soul, G. A. Taylor, D. Wypij, A. J. Duplessis, and J. J. Volpe, “Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus,” Pediatr. Res. 48(4), 445–449 (2000).
[CrossRef] [PubMed]

Pediatrics (1)

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), 604–611 (2008).
[CrossRef] [PubMed]

Physiol. Meas. (2)

A. B. Rowley, S. J. Payne, I. Tachtsidis, M. J. Ebden, J. P. Whiteley, D. J. Gavaghan, L. Tarassenko, M. Smith, C. E. Elwell, and D. T. Delpy, “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation,” Physiol. Meas. 28(2), 161–173 (2007).
[CrossRef] [PubMed]

I. Tachtsidis, C. E. Elwell, T. S. Leung, C. W. Lee, M. Smith, and D. T. Delpy, “Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations,” Physiol. Meas. 25(2), 437–445 (2004).
[CrossRef] [PubMed]

Stroke (1)

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of model. Pa , systemic arterial pressure; Rla , resistance of non-regulating arterial compartment; P1 , Rsa , and Ca , pressure, resistance, and compliance of regulating arterial compartment; Rsv , resistance of capillary compartment and small veins; Cv , venous compliance; P2 , venous pressure; Pv and Rlv , venous pressure and resistance of large veins, respectively; Pic , intracranial pressure.

Fig. 2
Fig. 2

Changes in phase angle with arterial saturation: (a) MBP/CBFV; (b) MBP/[ΔO2Hb]; (c) MBP/ [ΔHbdiff]; each data point representing the value for an individual subject within a 5% wide bin of SaO2.

Fig. 3
Fig. 3

Predicted variations in model non-dimensional groups and time constants with PaCO2.

Fig. 4
Fig. 4

Predicted variations in phase angles with PaCO2.

Fig. 5
Fig. 5

Predicted variations in phase angles with SaO2.

Tables (3)

Tables Icon

Table 1 Baseline values, definitions and descriptions of non-dimensional groups and time constants, taken from [7] and [6]

Tables Icon

Table 2 Variation in phase angles with CO2 levels

Tables Icon

Table 3 Sensitivity of phase angle to SaO2 and CO2

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

T a o ˙ a = f i n , a f o u t , a o a v a ,
T a h ˙ a = f i n , a f o u t , a h a v a ,
T v o ˙ v = f i n , v ( 1 E 1 E o ) f o u t , v o v v v ,
T v h ˙ v = f i n , v E E o f o u t , v h v v v ,
Δ E E o + Δ q = 0.
E E o = S a o S a ,
Δ o a Δ q = Δ v a Δ q ,
Δ h a Δ q = Δ v a Δ q ,
Δ o v Δ q = 1 ( 1 + s T v ) [ 1 1 E o + 1 α v α v + s T v ] ,
Δ h v Δ q = ( 1 α v ) ( 1 + s T v ) 1 ( α v + s T v ) ,
Δ v a Δ q = 1 ( 1 + α 1 ) 1 β [ 1 β 1 α 2 1 + s τ ] .
Δ o 2 h b Δ q = O ¯ a ( O ¯ a + O ¯ v ) Δ o a Δ q + O ¯ v ( O ¯ a + O ¯ v ) Δ o v Δ q ,
O ¯ v / V ¯ v O ¯ a / V ¯ a = 1 E .
Δ o 2 h b Δ q = 1 ( 1 + α 1 ) 1 β [ 1 β 1 α 2 1 + s τ ] + α v β 1 τ v α 1 β τ a ( 1 E ) ( 1 + s T v ) [ 1 1 E + 1 α v α v + s T v ] 1 + α v β 1 τ v α 1 β τ a ( 1 E ) .
Δ h h b Δ q = H ¯ a ( H ¯ a + H ¯ v ) Δ h a Δ q + H ¯ v ( H ¯ a + H ¯ v ) Δ h v Δ q ,
S a = O ¯ a H ¯ a + O ¯ a ,
H ¯ a + O ¯ a V ¯ a = H ¯ v + O ¯ v V ¯ v .
Δ h h b Δ q = ( 1 S a ) ( 1 + α 1 ) 1 β [ 1 β 1 α 2 1 + s τ ] + α v β 1 τ v α 1 β τ a ( 1 S a + E o ) ( 1 + s T v ) ( 1 α v ) ( α v + s T v ) ( 1 S a ) + α v β 1 τ v α 1 β τ a ( 1 S a + E o ) .
Δ φ ¯ = tan 1 { i = 1 N sin ( Δ φ i ) / i = 1 N cos ( Δ φ i ) } ,
γ = 1 N ( [ i = 1 N sin ( Δ φ i ) ] 2 + [ i = 1 N cos ( Δ φ i ) ] 2 ) ,
d φ d x = φ x + φ F d F d x

Metrics