Abstract

Fourier transform infrared imaging (FTIRI) and the attenuated total reflection Fourier transform infrared microimaging (ATR-FTIRM) were used to study the chemical and structural distributions of cellular components surrounding individual chondrocytes in canine humeral cartilage, at 6.25µm pixel resolution in FTIRI and 1.56µm pixel resolution in ATR-FTIRM. The chemical and structural distributions of the cellular components in chondrocytes and tissue can be successfully imaged in high resolution ATR-FTIRM. One can also study the territorial matrix of fine collagen fibrils surrounding the individual chondrocytes by the polarization experiments using the absorption ratio of amide I to amide II bands.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hardingham, S. Tew, and A. Murdoch, “Tissue engineering: chondrocytes and cartilage,” Arthritis Res. 4(Suppl 3), S63–S68 (2002).
    [CrossRef] [PubMed]
  2. R. A. Stockwell, “Chondrocytes,” J. Clin. Pathol. Suppl. (R Coll Pathol) 12, 7–13 (1978).
    [PubMed]
  3. K. Tavakol, R. G. Miller, D. P. Bazett-Jones, W. S. Hwang, L. E. McGann, and N. S. Schachar, “Ultrastructural changes of articular cartilage chondrocytes associated with freeze-thawing,” J. Orthop. Res. 11(1), 1–9 (1993).
    [CrossRef] [PubMed]
  4. M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” N. Engl. J. Med. 331(14), 889–895 (1994).
    [CrossRef] [PubMed]
  5. A. C. Hall, “Volume-sensitive taurine transport in bovine articular chondrocytes,” J. Physiol. 484(Pt 3), 755–766 (1995).
    [PubMed]
  6. S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
    [CrossRef] [PubMed]
  7. E. Kolettas, H. I. Muir, J. C. Barrett, and T. E. Hardingham, “Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor,” Rheumatology (Oxford) 40(10), 1146–1156 (2001).
    [CrossRef] [PubMed]
  8. C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72A(1), 83–90 (2005).
    [CrossRef] [PubMed]
  9. S. J. Curran, R. Chen, J. M. Curran, and J. A. Hunt, “Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres,” Tissue Eng. 11(9-10), 1312–1322 (2005).
    [CrossRef] [PubMed]
  10. H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
    [CrossRef] [PubMed]
  11. J. A. Ryan, E. A. Eisner, G. DuRaine, Z. You, and A. Hari Reddi, “Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine,” J. Tissue Eng. Regen. Med. 3(2), 107–116 (2009).
    [CrossRef] [PubMed]
  12. I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
    [CrossRef]
  13. J.-H. Yin and Y. Xia, “Macromolecular concentrations in bovine nasal cartilage by Fourier transform infrared imaging and principal component regression,” Appl. Spectrosc. 64(11), 1199–1208 (2010).
    [CrossRef] [PubMed]
  14. Y. Xia, N. Ramakrishnan, and A. Bidthanapally, “The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI),” Osteoarthritis Cartilage 15(7), 780–788 (2007).
    [CrossRef] [PubMed]
  15. N. Ramakrishnan, Y. Xia, and A. Bidthanapally, “Polarized IR microscopic imaging of articular cartilage,” Phys. Med. Biol. 52(15), 4601–4614 (2007).
    [CrossRef] [PubMed]
  16. Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
    [CrossRef] [PubMed]
  17. N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
    [CrossRef] [PubMed]
  18. P. A. West, M. P. G. Bostrom, P. A. Torzilli, and N. P. Camacho, “Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study,” Appl. Spectrosc. 58(4), 376–381 (2004).
    [CrossRef] [PubMed]
  19. X. Bi, X. Yang, M. P. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta 1758(7), 934–941 (2006).
    [CrossRef] [PubMed]
  20. H. J. Gulley-Stahl, S. B. Bledsoe, A. P. Evan, and A. J. Sommer, “The advantages of an attenuated total internal reflection infrared microspectroscopic imaging approach for kidney biopsy analysis,” Appl. Spectrosc. 64(1), 15–22 (2010).
    [CrossRef] [PubMed]
  21. S. G. Kazarian and K. L. A. Chan, “Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging,” Appl. Spectrosc. 64(5), 135–152 (2010).
    [CrossRef] [PubMed]
  22. J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007).
    [CrossRef] [PubMed]
  23. R. A. Dluhy, “Infrared spectroscopy of biophysical monomolecular films at interfaces: theory and applications, ” Appl. Spectrosc. Rev. 35(4), 315–351 (2000).
    [CrossRef]
  24. J. Dunham, D. R. Shackleton, M. E. Billingham, L. Bitensky, J. Chayen, and I. H. Muir, “A reappraisal of the structure of normal canine articular cartilage,” J. Anat. 157, 89–99 (1988).
    [PubMed]
  25. S. Z. Wang, Y. P. Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
    [CrossRef] [PubMed]
  26. C. V. Koulis, J. A. Reffner, and A. M. Bibby, “Comparison of transmission and internal reflection infrared spectra of cocaine,” J. Forensic Sci. 46(4), 822–829 (2001).
    [PubMed]
  27. N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998).
    [CrossRef] [PubMed]
  28. Y. Xia, J. B. Moody, H. Alhadlaq, and J. N. Hu, “Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution,” J. Magn. Reson. Imaging 17(3), 365–374 (2003).
    [CrossRef] [PubMed]
  29. H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
    [CrossRef] [PubMed]

2010

S. G. Kazarian and K. L. A. Chan, “Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging,” Appl. Spectrosc. 64(5), 135–152 (2010).
[CrossRef] [PubMed]

S. Z. Wang, Y. P. Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[CrossRef] [PubMed]

H. J. Gulley-Stahl, S. B. Bledsoe, A. P. Evan, and A. J. Sommer, “The advantages of an attenuated total internal reflection infrared microspectroscopic imaging approach for kidney biopsy analysis,” Appl. Spectrosc. 64(1), 15–22 (2010).
[CrossRef] [PubMed]

J.-H. Yin and Y. Xia, “Macromolecular concentrations in bovine nasal cartilage by Fourier transform infrared imaging and principal component regression,” Appl. Spectrosc. 64(11), 1199–1208 (2010).
[CrossRef] [PubMed]

2009

J. A. Ryan, E. A. Eisner, G. DuRaine, Z. You, and A. Hari Reddi, “Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine,” J. Tissue Eng. Regen. Med. 3(2), 107–116 (2009).
[CrossRef] [PubMed]

I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
[CrossRef]

2008

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[CrossRef] [PubMed]

2007

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[CrossRef] [PubMed]

Y. Xia, N. Ramakrishnan, and A. Bidthanapally, “The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI),” Osteoarthritis Cartilage 15(7), 780–788 (2007).
[CrossRef] [PubMed]

N. Ramakrishnan, Y. Xia, and A. Bidthanapally, “Polarized IR microscopic imaging of articular cartilage,” Phys. Med. Biol. 52(15), 4601–4614 (2007).
[CrossRef] [PubMed]

J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007).
[CrossRef] [PubMed]

2006

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

X. Bi, X. Yang, M. P. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta 1758(7), 934–941 (2006).
[CrossRef] [PubMed]

2005

C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72A(1), 83–90 (2005).
[CrossRef] [PubMed]

S. J. Curran, R. Chen, J. M. Curran, and J. A. Hunt, “Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres,” Tissue Eng. 11(9-10), 1312–1322 (2005).
[CrossRef] [PubMed]

2004

2003

Y. Xia, J. B. Moody, H. Alhadlaq, and J. N. Hu, “Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution,” J. Magn. Reson. Imaging 17(3), 365–374 (2003).
[CrossRef] [PubMed]

2002

T. Hardingham, S. Tew, and A. Murdoch, “Tissue engineering: chondrocytes and cartilage,” Arthritis Res. 4(Suppl 3), S63–S68 (2002).
[CrossRef] [PubMed]

2001

E. Kolettas, H. I. Muir, J. C. Barrett, and T. E. Hardingham, “Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor,” Rheumatology (Oxford) 40(10), 1146–1156 (2001).
[CrossRef] [PubMed]

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[CrossRef] [PubMed]

C. V. Koulis, J. A. Reffner, and A. M. Bibby, “Comparison of transmission and internal reflection infrared spectra of cocaine,” J. Forensic Sci. 46(4), 822–829 (2001).
[PubMed]

2000

R. A. Dluhy, “Infrared spectroscopy of biophysical monomolecular films at interfaces: theory and applications, ” Appl. Spectrosc. Rev. 35(4), 315–351 (2000).
[CrossRef]

1998

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998).
[CrossRef] [PubMed]

1995

A. C. Hall, “Volume-sensitive taurine transport in bovine articular chondrocytes,” J. Physiol. 484(Pt 3), 755–766 (1995).
[PubMed]

1994

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” N. Engl. J. Med. 331(14), 889–895 (1994).
[CrossRef] [PubMed]

1993

K. Tavakol, R. G. Miller, D. P. Bazett-Jones, W. S. Hwang, L. E. McGann, and N. S. Schachar, “Ultrastructural changes of articular cartilage chondrocytes associated with freeze-thawing,” J. Orthop. Res. 11(1), 1–9 (1993).
[CrossRef] [PubMed]

1988

J. Dunham, D. R. Shackleton, M. E. Billingham, L. Bitensky, J. Chayen, and I. H. Muir, “A reappraisal of the structure of normal canine articular cartilage,” J. Anat. 157, 89–99 (1988).
[PubMed]

1978

R. A. Stockwell, “Chondrocytes,” J. Clin. Pathol. Suppl. (R Coll Pathol) 12, 7–13 (1978).
[PubMed]

Alhadlaq, H.

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[CrossRef] [PubMed]

Y. Xia, J. B. Moody, H. Alhadlaq, and J. N. Hu, “Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution,” J. Magn. Reson. Imaging 17(3), 365–374 (2003).
[CrossRef] [PubMed]

Alhadlaq, H. A.

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[CrossRef] [PubMed]

Asato, H.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Athanasiou, K. A.

C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72A(1), 83–90 (2005).
[CrossRef] [PubMed]

Badar, F.

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[CrossRef] [PubMed]

Barrett, J. C.

E. Kolettas, H. I. Muir, J. C. Barrett, and T. E. Hardingham, “Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor,” Rheumatology (Oxford) 40(10), 1146–1156 (2001).
[CrossRef] [PubMed]

Bazett-Jones, D. P.

K. Tavakol, R. G. Miller, D. P. Bazett-Jones, W. S. Hwang, L. E. McGann, and N. S. Schachar, “Ultrastructural changes of articular cartilage chondrocytes associated with freeze-thawing,” J. Orthop. Res. 11(1), 1–9 (1993).
[CrossRef] [PubMed]

Bi, X.

X. Bi, X. Yang, M. P. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta 1758(7), 934–941 (2006).
[CrossRef] [PubMed]

Bibby, A. M.

C. V. Koulis, J. A. Reffner, and A. M. Bibby, “Comparison of transmission and internal reflection infrared spectra of cocaine,” J. Forensic Sci. 46(4), 822–829 (2001).
[PubMed]

Bidthanapally, A.

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[CrossRef] [PubMed]

Y. Xia, N. Ramakrishnan, and A. Bidthanapally, “The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI),” Osteoarthritis Cartilage 15(7), 780–788 (2007).
[CrossRef] [PubMed]

N. Ramakrishnan, Y. Xia, and A. Bidthanapally, “Polarized IR microscopic imaging of articular cartilage,” Phys. Med. Biol. 52(15), 4601–4614 (2007).
[CrossRef] [PubMed]

Billingham, M. E.

J. Dunham, D. R. Shackleton, M. E. Billingham, L. Bitensky, J. Chayen, and I. H. Muir, “A reappraisal of the structure of normal canine articular cartilage,” J. Anat. 157, 89–99 (1988).
[PubMed]

Bitensky, L.

J. Dunham, D. R. Shackleton, M. E. Billingham, L. Bitensky, J. Chayen, and I. H. Muir, “A reappraisal of the structure of normal canine articular cartilage,” J. Anat. 157, 89–99 (1988).
[PubMed]

Bledsoe, S. B.

Boorman, R. B.

I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
[CrossRef]

Bostrom, M. P.

X. Bi, X. Yang, M. P. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta 1758(7), 934–941 (2006).
[CrossRef] [PubMed]

Bostrom, M. P. G.

Brittberg, M.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” N. Engl. J. Med. 331(14), 889–895 (1994).
[CrossRef] [PubMed]

Brown, M. D.

J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007).
[CrossRef] [PubMed]

Camacho, N. P.

X. Bi, X. Yang, M. P. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta 1758(7), 934–941 (2006).
[CrossRef] [PubMed]

P. A. West, M. P. G. Bostrom, P. A. Torzilli, and N. P. Camacho, “Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study,” Appl. Spectrosc. 58(4), 376–381 (2004).
[CrossRef] [PubMed]

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[CrossRef] [PubMed]

Carr, G. L.

N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998).
[CrossRef] [PubMed]

Chan, K. L. A.

S. G. Kazarian and K. L. A. Chan, “Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging,” Appl. Spectrosc. 64(5), 135–152 (2010).
[CrossRef] [PubMed]

Chayen, J.

J. Dunham, D. R. Shackleton, M. E. Billingham, L. Bitensky, J. Chayen, and I. H. Muir, “A reappraisal of the structure of normal canine articular cartilage,” J. Anat. 157, 89–99 (1988).
[PubMed]

Chen, R.

S. J. Curran, R. Chen, J. M. Curran, and J. A. Hunt, “Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres,” Tissue Eng. 11(9-10), 1312–1322 (2005).
[CrossRef] [PubMed]

Chung, M.

I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
[CrossRef]

Chung, U. I.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Clarke, N. W.

J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007).
[CrossRef] [PubMed]

Curran, J. M.

S. J. Curran, R. Chen, J. M. Curran, and J. A. Hunt, “Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres,” Tissue Eng. 11(9-10), 1312–1322 (2005).
[CrossRef] [PubMed]

Curran, S. J.

S. J. Curran, R. Chen, J. M. Curran, and J. A. Hunt, “Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres,” Tissue Eng. 11(9-10), 1312–1322 (2005).
[CrossRef] [PubMed]

Dluhy, R. A.

R. A. Dluhy, “Infrared spectroscopy of biophysical monomolecular films at interfaces: theory and applications, ” Appl. Spectrosc. Rev. 35(4), 315–351 (2000).
[CrossRef]

Dumas, P.

N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998).
[CrossRef] [PubMed]

Dunham, J.

J. Dunham, D. R. Shackleton, M. E. Billingham, L. Bitensky, J. Chayen, and I. H. Muir, “A reappraisal of the structure of normal canine articular cartilage,” J. Anat. 157, 89–99 (1988).
[PubMed]

DuRaine, G.

J. A. Ryan, E. A. Eisner, G. DuRaine, Z. You, and A. Hari Reddi, “Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine,” J. Tissue Eng. Regen. Med. 3(2), 107–116 (2009).
[CrossRef] [PubMed]

Dwyer, J.

J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007).
[CrossRef] [PubMed]

Eisner, E. A.

J. A. Ryan, E. A. Eisner, G. DuRaine, Z. You, and A. Hari Reddi, “Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine,” J. Tissue Eng. Regen. Med. 3(2), 107–116 (2009).
[CrossRef] [PubMed]

Evan, A. P.

Fridman, W. H.

N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998).
[CrossRef] [PubMed]

Gardner, P.

J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007).
[CrossRef] [PubMed]

Gazi, E.

J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007).
[CrossRef] [PubMed]

Gulley-Stahl, H. J.

Hall, A. C.

A. C. Hall, “Volume-sensitive taurine transport in bovine articular chondrocytes,” J. Physiol. 484(Pt 3), 755–766 (1995).
[PubMed]

Hansen, F. M.

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[CrossRef] [PubMed]

Hardingham, T.

T. Hardingham, S. Tew, and A. Murdoch, “Tissue engineering: chondrocytes and cartilage,” Arthritis Res. 4(Suppl 3), S63–S68 (2002).
[CrossRef] [PubMed]

Hardingham, T. E.

E. Kolettas, H. I. Muir, J. C. Barrett, and T. E. Hardingham, “Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor,” Rheumatology (Oxford) 40(10), 1146–1156 (2001).
[CrossRef] [PubMed]

Hari Reddi, A.

J. A. Ryan, E. A. Eisner, G. DuRaine, Z. You, and A. Hari Reddi, “Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine,” J. Tissue Eng. Regen. Med. 3(2), 107–116 (2009).
[CrossRef] [PubMed]

Hashimoto, S.

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

He, Y. H.

S. Z. Wang, Y. P. Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[CrossRef] [PubMed]

Hoshi, K.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Hu, J. N.

Y. Xia, J. B. Moody, H. Alhadlaq, and J. N. Hu, “Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution,” J. Magn. Reson. Imaging 17(3), 365–374 (2003).
[CrossRef] [PubMed]

Huang, Y. P.

S. Z. Wang, Y. P. Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[CrossRef] [PubMed]

Hunt, J. A.

S. J. Curran, R. Chen, J. M. Curran, and J. A. Hunt, “Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres,” Tissue Eng. 11(9-10), 1312–1322 (2005).
[CrossRef] [PubMed]

Hwang, W. S.

K. Tavakol, R. G. Miller, D. P. Bazett-Jones, W. S. Hwang, L. E. McGann, and N. S. Schachar, “Ultrastructural changes of articular cartilage chondrocytes associated with freeze-thawing,” J. Orthop. Res. 11(1), 1–9 (1993).
[CrossRef] [PubMed]

Isaksson, O.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” N. Engl. J. Med. 331(14), 889–895 (1994).
[CrossRef] [PubMed]

Jamin, N.

N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998).
[CrossRef] [PubMed]

Kawaguchi, H.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Kazarian, S. G.

S. G. Kazarian and K. L. A. Chan, “Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging,” Appl. Spectrosc. 64(5), 135–152 (2010).
[CrossRef] [PubMed]

Kolettas, E.

E. Kolettas, H. I. Muir, J. C. Barrett, and T. E. Hardingham, “Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor,” Rheumatology (Oxford) 40(10), 1146–1156 (2001).
[CrossRef] [PubMed]

Koshima, I.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Koulis, C. V.

C. V. Koulis, J. A. Reffner, and A. M. Bibby, “Comparison of transmission and internal reflection infrared spectra of cocaine,” J. Forensic Sci. 46(4), 822–829 (2001).
[PubMed]

Lee, J.

J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007).
[CrossRef] [PubMed]

Les, C. M.

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[CrossRef] [PubMed]

Liang, S.

I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
[CrossRef]

Lindahl, A.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” N. Engl. J. Med. 331(14), 889–895 (1994).
[CrossRef] [PubMed]

Lo, I. K. Y.

I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
[CrossRef]

Lotz, M.

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

Lu, M.

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[CrossRef] [PubMed]

Lust, G.

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[CrossRef] [PubMed]

Luttge, A.

C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72A(1), 83–90 (2005).
[CrossRef] [PubMed]

McCabe, G.

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

McGann, L. E.

K. Tavakol, R. G. Miller, D. P. Bazett-Jones, W. S. Hwang, L. E. McGann, and N. S. Schachar, “Ultrastructural changes of articular cartilage chondrocytes associated with freeze-thawing,” J. Orthop. Res. 11(1), 1–9 (1993).
[CrossRef] [PubMed]

Mendelsohn, R.

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[CrossRef] [PubMed]

Miller, R. G.

K. Tavakol, R. G. Miller, D. P. Bazett-Jones, W. S. Hwang, L. E. McGann, and N. S. Schachar, “Ultrastructural changes of articular cartilage chondrocytes associated with freeze-thawing,” J. Orthop. Res. 11(1), 1–9 (1993).
[CrossRef] [PubMed]

Moncuit, J.

N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998).
[CrossRef] [PubMed]

Moody, J. B.

Y. Xia, J. B. Moody, H. Alhadlaq, and J. N. Hu, “Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution,” J. Magn. Reson. Imaging 17(3), 365–374 (2003).
[CrossRef] [PubMed]

Muir, H. I.

E. Kolettas, H. I. Muir, J. C. Barrett, and T. E. Hardingham, “Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor,” Rheumatology (Oxford) 40(10), 1146–1156 (2001).
[CrossRef] [PubMed]

Muir, I. H.

J. Dunham, D. R. Shackleton, M. E. Billingham, L. Bitensky, J. Chayen, and I. H. Muir, “A reappraisal of the structure of normal canine articular cartilage,” J. Anat. 157, 89–99 (1988).
[PubMed]

Muldrew, K.

I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
[CrossRef]

Murdoch, A.

T. Hardingham, S. Tew, and A. Murdoch, “Tissue engineering: chondrocytes and cartilage,” Arthritis Res. 4(Suppl 3), S63–S68 (2002).
[CrossRef] [PubMed]

Nakamura, K.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Nakatsuka, T.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Nicholson, J. M.

J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007).
[CrossRef] [PubMed]

Nilsson, A.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” N. Engl. J. Med. 331(14), 889–895 (1994).
[CrossRef] [PubMed]

Nishizawa, S.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Ochs, R. L.

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

Ogasawara, T.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Ohlsson, C.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” N. Engl. J. Med. 331(14), 889–895 (1994).
[CrossRef] [PubMed]

Peterson, L.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” N. Engl. J. Med. 331(14), 889–895 (1994).
[CrossRef] [PubMed]

Quach, J.

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

Ramakrishnan, N.

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[CrossRef] [PubMed]

Y. Xia, N. Ramakrishnan, and A. Bidthanapally, “The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI),” Osteoarthritis Cartilage 15(7), 780–788 (2007).
[CrossRef] [PubMed]

N. Ramakrishnan, Y. Xia, and A. Bidthanapally, “Polarized IR microscopic imaging of articular cartilage,” Phys. Med. Biol. 52(15), 4601–4614 (2007).
[CrossRef] [PubMed]

Rattner, J. B.

I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
[CrossRef]

Reffner, J. A.

C. V. Koulis, J. A. Reffner, and A. M. Bibby, “Comparison of transmission and internal reflection infrared spectra of cocaine,” J. Forensic Sci. 46(4), 822–829 (2001).
[PubMed]

Rosen, F.

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

Ryan, J. A.

J. A. Ryan, E. A. Eisner, G. DuRaine, Z. You, and A. Hari Reddi, “Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine,” J. Tissue Eng. Regen. Med. 3(2), 107–116 (2009).
[CrossRef] [PubMed]

Schachar, N. S.

K. Tavakol, R. G. Miller, D. P. Bazett-Jones, W. S. Hwang, L. E. McGann, and N. S. Schachar, “Ultrastructural changes of articular cartilage chondrocytes associated with freeze-thawing,” J. Orthop. Res. 11(1), 1–9 (1993).
[CrossRef] [PubMed]

Sciore, P.

I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
[CrossRef]

Scott, C. C.

C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72A(1), 83–90 (2005).
[CrossRef] [PubMed]

Seegmiller, J. E.

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

Shackleton, D. R.

J. Dunham, D. R. Shackleton, M. E. Billingham, L. Bitensky, J. Chayen, and I. H. Muir, “A reappraisal of the structure of normal canine articular cartilage,” J. Anat. 157, 89–99 (1988).
[PubMed]

Solan, J.

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

Sommer, A. J.

Stockwell, R. A.

R. A. Stockwell, “Chondrocytes,” J. Clin. Pathol. Suppl. (R Coll Pathol) 12, 7–13 (1978).
[PubMed]

Takahashi, T.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Takato, T.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Tavakol, K.

K. Tavakol, R. G. Miller, D. P. Bazett-Jones, W. S. Hwang, L. E. McGann, and N. S. Schachar, “Ultrastructural changes of articular cartilage chondrocytes associated with freeze-thawing,” J. Orthop. Res. 11(1), 1–9 (1993).
[CrossRef] [PubMed]

Teillaud, J. L.

N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998).
[CrossRef] [PubMed]

Terkeltaub, R.

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

Tew, S.

T. Hardingham, S. Tew, and A. Murdoch, “Tissue engineering: chondrocytes and cartilage,” Arthritis Res. 4(Suppl 3), S63–S68 (2002).
[CrossRef] [PubMed]

Thornton, G. M.

I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
[CrossRef]

Torzilli, P. A.

Wang, Q.

S. Z. Wang, Y. P. Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[CrossRef] [PubMed]

Wang, S. Z.

S. Z. Wang, Y. P. Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[CrossRef] [PubMed]

West, P.

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[CrossRef] [PubMed]

West, P. A.

Williams, G. P.

N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998).
[CrossRef] [PubMed]

Xia, Y.

J.-H. Yin and Y. Xia, “Macromolecular concentrations in bovine nasal cartilage by Fourier transform infrared imaging and principal component regression,” Appl. Spectrosc. 64(11), 1199–1208 (2010).
[CrossRef] [PubMed]

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[CrossRef] [PubMed]

Y. Xia, N. Ramakrishnan, and A. Bidthanapally, “The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI),” Osteoarthritis Cartilage 15(7), 780–788 (2007).
[CrossRef] [PubMed]

N. Ramakrishnan, Y. Xia, and A. Bidthanapally, “Polarized IR microscopic imaging of articular cartilage,” Phys. Med. Biol. 52(15), 4601–4614 (2007).
[CrossRef] [PubMed]

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[CrossRef] [PubMed]

Y. Xia, J. B. Moody, H. Alhadlaq, and J. N. Hu, “Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution,” J. Magn. Reson. Imaging 17(3), 365–374 (2003).
[CrossRef] [PubMed]

Yamaoka, H.

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

Yang, X.

X. Bi, X. Yang, M. P. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta 1758(7), 934–941 (2006).
[CrossRef] [PubMed]

Yin, J.-H.

You, Z.

J. A. Ryan, E. A. Eisner, G. DuRaine, Z. You, and A. Hari Reddi, “Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine,” J. Tissue Eng. Regen. Med. 3(2), 107–116 (2009).
[CrossRef] [PubMed]

Zheng, Y. P.

S. Z. Wang, Y. P. Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[CrossRef] [PubMed]

Analyst (Lond.)

J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007).
[CrossRef] [PubMed]

Appl. Spectrosc.

Appl. Spectrosc. Rev.

R. A. Dluhy, “Infrared spectroscopy of biophysical monomolecular films at interfaces: theory and applications, ” Appl. Spectrosc. Rev. 35(4), 315–351 (2000).
[CrossRef]

Arthritis Res.

T. Hardingham, S. Tew, and A. Murdoch, “Tissue engineering: chondrocytes and cartilage,” Arthritis Res. 4(Suppl 3), S63–S68 (2002).
[CrossRef] [PubMed]

Arthroscopy J. Arthroscopic. Rel. Surg.

I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009).
[CrossRef]

Biochim. Biophys. Acta

X. Bi, X. Yang, M. P. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta 1758(7), 934–941 (2006).
[CrossRef] [PubMed]

Biopolymers

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[CrossRef] [PubMed]

Connect. Tissue Res.

H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007).
[CrossRef] [PubMed]

S. Z. Wang, Y. P. Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[CrossRef] [PubMed]

J. Anat.

J. Dunham, D. R. Shackleton, M. E. Billingham, L. Bitensky, J. Chayen, and I. H. Muir, “A reappraisal of the structure of normal canine articular cartilage,” J. Anat. 157, 89–99 (1988).
[PubMed]

J. Biomed. Mater. Res. A

H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006).
[CrossRef] [PubMed]

C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72A(1), 83–90 (2005).
[CrossRef] [PubMed]

J. Clin. Pathol. Suppl. (R Coll Pathol)

R. A. Stockwell, “Chondrocytes,” J. Clin. Pathol. Suppl. (R Coll Pathol) 12, 7–13 (1978).
[PubMed]

J. Forensic Sci.

C. V. Koulis, J. A. Reffner, and A. M. Bibby, “Comparison of transmission and internal reflection infrared spectra of cocaine,” J. Forensic Sci. 46(4), 822–829 (2001).
[PubMed]

J. Magn. Reson. Imaging

Y. Xia, J. B. Moody, H. Alhadlaq, and J. N. Hu, “Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution,” J. Magn. Reson. Imaging 17(3), 365–374 (2003).
[CrossRef] [PubMed]

J. Orthop. Res.

K. Tavakol, R. G. Miller, D. P. Bazett-Jones, W. S. Hwang, L. E. McGann, and N. S. Schachar, “Ultrastructural changes of articular cartilage chondrocytes associated with freeze-thawing,” J. Orthop. Res. 11(1), 1–9 (1993).
[CrossRef] [PubMed]

J. Physiol.

A. C. Hall, “Volume-sensitive taurine transport in bovine articular chondrocytes,” J. Physiol. 484(Pt 3), 755–766 (1995).
[PubMed]

J. Struct. Biol.

Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008).
[CrossRef] [PubMed]

J. Tissue Eng. Regen. Med.

J. A. Ryan, E. A. Eisner, G. DuRaine, Z. You, and A. Hari Reddi, “Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine,” J. Tissue Eng. Regen. Med. 3(2), 107–116 (2009).
[CrossRef] [PubMed]

N. Engl. J. Med.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” N. Engl. J. Med. 331(14), 889–895 (1994).
[CrossRef] [PubMed]

Osteoarthritis Cartilage

Y. Xia, N. Ramakrishnan, and A. Bidthanapally, “The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI),” Osteoarthritis Cartilage 15(7), 780–788 (2007).
[CrossRef] [PubMed]

Phys. Med. Biol.

N. Ramakrishnan, Y. Xia, and A. Bidthanapally, “Polarized IR microscopic imaging of articular cartilage,” Phys. Med. Biol. 52(15), 4601–4614 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998).
[CrossRef] [PubMed]

N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998).
[CrossRef] [PubMed]

Rheumatology (Oxford)

E. Kolettas, H. I. Muir, J. C. Barrett, and T. E. Hardingham, “Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor,” Rheumatology (Oxford) 40(10), 1146–1156 (2001).
[CrossRef] [PubMed]

Tissue Eng.

S. J. Curran, R. Chen, J. M. Curran, and J. A. Hunt, “Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres,” Tissue Eng. 11(9-10), 1312–1322 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Graphical Representation of ATR.

Fig. 2
Fig. 2

(a) The visible image, (b) the FTIR image, (c) the ATR-FTIR image of the same region on a cartilage section. The articular surface is near the top of the images. (d) The IR spectra extracted from the FTIR image and ATR-FTIR image at same location with red cross in the tissue section, expressing as solid curve and dashed curve, respectively. The rectangle regions of interest in the transitional zone and superficial zone in (a) would be closely examined in Fig. 3 and Fig. 4.

Fig. 3
Fig. 3

The detailed region in the transitional zone of the tissue from both the FTIRI (a) and ATR-FTIRM (c) experiments. Four images are shown from each experiment: the visible image, the total absorption image (4000-744cm−1), the amide II image (1580-1500cm−1), and the sugar image (1100-1000cm−1). The infrared spectra from the marked spatial locations are shown in (b) and (d). Two dash lines in (d) indicate the approximate locations of amide I and amide II bands.

Fig. 4
Fig. 4

The anisotropic images of amide I to amide II absorption ratios obtained by using analyzer at (a) parallel polarization (0°) and (b) perpendicular polarization (90°), respectively. The same rectangular regions as shown in Fig. 2a were also shown. (c) and (d) show the detailed regions of the anisotropic images of absorption ratios at the superficial zone and the transitional zone. The elliptical shapes mark the locations and orientations of the individual cells, identified from the high-resolution visible image (Fig. 2a). The two plots under Fig. 4c and 4d show the statistical analysis around the cell walls at the vertical and horizontal edges at 0° and 90° polarizations, respectively.

Metrics