Abstract

Scanning backscattering imaging and independent component analysis (ICA) are used to probe targets hidden in the subsurface of a turbid medium. A new correction procedure is proposed and used to synthesize a “clean” image of a homogeneous host medium numerically from a set of raster-scanned “dirty” backscattering images of the medium with embedded targets. The independent intensity distributions on the surface of the medium corresponding to individual targets are then unmixed using ICA of the difference between the set of dirty images and the clean image. The target positions are localized by a novel analytical method, which marches the target to the surface of the turbid medium until a match with the retrieved independent component is accomplished. The unknown surface property of the turbid medium is automatically accounted for by this method. Employing clean image synthesis and target numerical marching, three-dimensional (3D) localization of objects embedded inside a turbid medium using independent component analysis in a backscattering geometry is demonstrated for the first time, using as an example, imaging a small piece of cancerous prostate tissue embedded in a host consisting of normal prostate tissue.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
    [CrossRef]
  2. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
    [CrossRef]
  3. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
    [CrossRef]
  4. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical imaging of turbid media using independent component analysis: Theory and Simulation,” J. Biomed. Opt. 10(5), 051705 (2005).
    [CrossRef]
  5. M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
    [CrossRef]
  6. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
    [CrossRef]
  7. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
    [CrossRef]
  8. M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid media using independent component analysis,” Appl. Phys. Lett. 87, 191112 (2005).
    [CrossRef]
  9. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
    [CrossRef]
  10. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Scientific, 2006).
  11. J. Ripoll and V. Ntziachristos, “From Finite to Infinite Volumes: Removal of Boundaries in Diffuse Wave Imaging,” Phys. Rev. Lett. 96(17), 173903 (2006).
    [CrossRef]
  12. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69(18), 2658–2661 (1992).
    [CrossRef]
  13. K. M. Case, “Transfer problems and the reciprocity principle,” Rev. Mod. Phys. 29(4), 651–663 (1957).
    [CrossRef]
  14. W. Cai, M. Lax, and R. R. Alfano, “Analytical solution of the elastic Boltzmann transport equation in an infinite uniform medium using cumulant expansion,” J. Phys. Chem. B 104(16), 3996–4000 (2000).
    [CrossRef]
  15. M. Xu, W. Cai, M. Lax, and R. R. Alfano, “A photon transport forward model for imaging in turbid media,” Opt. Lett. 26(14), 1066–1068 (2001).
    [CrossRef]
  16. M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066609 (2002).
    [CrossRef]
  17. J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3, 491–497 (2004).
  18. T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy,” J. Photochem. Photobiol. B 79(3), 231–241 (2005).
    [CrossRef]
  19. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
    [CrossRef]
  20. Y. Pu, “Time-resolved spectroscopy and near infrared imaging for prostate cancer detection: receptor-targeted and native biomarker,” Ph D. thesis (City University of New York, 2010).
  21. V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E 70(5), 056616 (2004).
    [CrossRef]
  22. C. H. Huh, M. S. Bhutani, and E. B. Farfan, “andW. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Clin. Phys. Physiol. Meas. 24(15–N), 22 (2003).

2009 (2)

2008 (1)

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

2007 (1)

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef]

2006 (2)

J. Ripoll and V. Ntziachristos, “From Finite to Infinite Volumes: Removal of Boundaries in Diffuse Wave Imaging,” Phys. Rev. Lett. 96(17), 173903 (2006).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

2005 (4)

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical imaging of turbid media using independent component analysis: Theory and Simulation,” J. Biomed. Opt. 10(5), 051705 (2005).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid media using independent component analysis,” Appl. Phys. Lett. 87, 191112 (2005).
[CrossRef]

T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy,” J. Photochem. Photobiol. B 79(3), 231–241 (2005).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef]

2004 (3)

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[CrossRef]

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3, 491–497 (2004).

V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E 70(5), 056616 (2004).
[CrossRef]

2003 (1)

C. H. Huh, M. S. Bhutani, and E. B. Farfan, “andW. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Clin. Phys. Physiol. Meas. 24(15–N), 22 (2003).

2002 (1)

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066609 (2002).
[CrossRef]

2001 (1)

2000 (1)

W. Cai, M. Lax, and R. R. Alfano, “Analytical solution of the elastic Boltzmann transport equation in an infinite uniform medium using cumulant expansion,” J. Phys. Chem. B 104(16), 3996–4000 (2000).
[CrossRef]

1999 (1)

1992 (1)

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69(18), 2658–2661 (1992).
[CrossRef]

1957 (1)

K. M. Case, “Transfer problems and the reciprocity principle,” Rev. Mod. Phys. 29(4), 651–663 (1957).
[CrossRef]

Alfano, R. R.

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical imaging of turbid media using independent component analysis: Theory and Simulation,” J. Biomed. Opt. 10(5), 051705 (2005).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid media using independent component analysis,” Appl. Phys. Lett. 87, 191112 (2005).
[CrossRef]

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3, 491–497 (2004).

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066609 (2002).
[CrossRef]

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “A photon transport forward model for imaging in turbid media,” Opt. Lett. 26(14), 1066–1068 (2001).
[CrossRef]

W. Cai, M. Lax, and R. R. Alfano, “Analytical solution of the elastic Boltzmann transport equation in an infinite uniform medium using cumulant expansion,” J. Phys. Chem. B 104(16), 3996–4000 (2000).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef]

Ali, J. H.

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3, 491–497 (2004).

Alrubaiee, M.

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical imaging of turbid media using independent component analysis: Theory and Simulation,” J. Biomed. Opt. 10(5), 051705 (2005).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid media using independent component analysis,” Appl. Phys. Lett. 87, 191112 (2005).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef]

Andersson-Engels, S.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef]

Arridge, S. R.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[CrossRef]

Bhutani, M. S.

C. H. Huh, M. S. Bhutani, and E. B. Farfan, “andW. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Clin. Phys. Physiol. Meas. 24(15–N), 22 (2003).

Boas, D. A.

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69(18), 2658–2661 (1992).
[CrossRef]

Cai, W.

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066609 (2002).
[CrossRef]

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “A photon transport forward model for imaging in turbid media,” Opt. Lett. 26(14), 1066–1068 (2001).
[CrossRef]

W. Cai, M. Lax, and R. R. Alfano, “Analytical solution of the elastic Boltzmann transport equation in an infinite uniform medium using cumulant expansion,” J. Phys. Chem. B 104(16), 3996–4000 (2000).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef]

Case, K. M.

K. M. Case, “Transfer problems and the reciprocity principle,” Rev. Mod. Phys. 29(4), 651–663 (1957).
[CrossRef]

Chance, B.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69(18), 2658–2661 (1992).
[CrossRef]

Cuccia, D.

Dale, A. M.

Dunn, A. K.

Durkin, A. J.

Einarsdóttír, M.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef]

Farfan, E. B.

C. H. Huh, M. S. Bhutani, and E. B. Farfan, “andW. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Clin. Phys. Physiol. Meas. 24(15–N), 22 (2003).

Finlay, J. C.

T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy,” J. Photochem. Photobiol. B 79(3), 231–241 (2005).
[CrossRef]

Gayen, S. K.

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical imaging of turbid media using independent component analysis: Theory and Simulation,” J. Biomed. Opt. 10(5), 051705 (2005).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid media using independent component analysis,” Appl. Phys. Lett. 87, 191112 (2005).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef]

Hahn, S. M.

T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy,” J. Photochem. Photobiol. B 79(3), 231–241 (2005).
[CrossRef]

Hillman, E. M. C.

Huh, C. H.

C. H. Huh, M. S. Bhutani, and E. B. Farfan, “andW. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Clin. Phys. Physiol. Meas. 24(15–N), 22 (2003).

Konecky, S. D.

Lax, M.

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066609 (2002).
[CrossRef]

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “A photon transport forward model for imaging in turbid media,” Opt. Lett. 26(14), 1066–1068 (2001).
[CrossRef]

W. Cai, M. Lax, and R. R. Alfano, “Analytical solution of the elastic Boltzmann transport equation in an infinite uniform medium using cumulant expansion,” J. Phys. Chem. B 104(16), 3996–4000 (2000).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef]

Markel, V. A.

V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E 70(5), 056616 (2004).
[CrossRef]

Mazhar, A.

Ntziachristos, V.

J. Ripoll and V. Ntziachristos, “From Finite to Infinite Volumes: Removal of Boundaries in Diffuse Wave Imaging,” Phys. Rev. Lett. 96(17), 173903 (2006).
[CrossRef]

O’Leary, M. A.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69(18), 2658–2661 (1992).
[CrossRef]

Ripoll, J.

J. Ripoll and V. Ntziachristos, “From Finite to Infinite Volumes: Removal of Boundaries in Diffuse Wave Imaging,” Phys. Rev. Lett. 96(17), 173903 (2006).
[CrossRef]

Schotland, J. C.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[CrossRef]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
[CrossRef]

V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E 70(5), 056616 (2004).
[CrossRef]

Svanberg, K.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef]

Svensson, T.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef]

Tromberg, B. J.

Wang, W. B.

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3, 491–497 (2004).

Xu, M.

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical imaging of turbid media using independent component analysis: Theory and Simulation,” J. Biomed. Opt. 10(5), 051705 (2005).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid media using independent component analysis,” Appl. Phys. Lett. 87, 191112 (2005).
[CrossRef]

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066609 (2002).
[CrossRef]

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “A photon transport forward model for imaging in turbid media,” Opt. Lett. 26(14), 1066–1068 (2001).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef]

Yodh, A. G.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69(18), 2658–2661 (1992).
[CrossRef]

Zevallos, M.

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3, 491–497 (2004).

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef]

Zhu, T. C.

T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy,” J. Photochem. Photobiol. B 79(3), 231–241 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid media using independent component analysis,” Appl. Phys. Lett. 87, 191112 (2005).
[CrossRef]

Clin. Phys. Physiol. Meas. (1)

C. H. Huh, M. S. Bhutani, and E. B. Farfan, “andW. E. Bolch, “Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound,” Clin. Phys. Physiol. Meas. 24(15–N), 22 (2003).

IEEE J. Sel. Top. Quantum Electron. (1)

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

Inverse Probl. (1)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[CrossRef]

J. Biomed. Opt. (2)

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical imaging of turbid media using independent component analysis: Theory and Simulation,” J. Biomed. Opt. 10(5), 051705 (2005).
[CrossRef]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef]

J. Photochem. Photobiol. B (1)

T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy,” J. Photochem. Photobiol. B 79(3), 231–241 (2005).
[CrossRef]

J. Phys. Chem. B (1)

W. Cai, M. Lax, and R. R. Alfano, “Analytical solution of the elastic Boltzmann transport equation in an infinite uniform medium using cumulant expansion,” J. Phys. Chem. B 104(16), 3996–4000 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. E (1)

V. A. Markel and J. C. Schotland, “Symmetries, inversion formulas, and image reconstruction for optical tomography,” Phys. Rev. E 70(5), 056616 (2004).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066609 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

J. Ripoll and V. Ntziachristos, “From Finite to Infinite Volumes: Removal of Boundaries in Diffuse Wave Imaging,” Phys. Rev. Lett. 96(17), 173903 (2006).
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69(18), 2658–2661 (1992).
[CrossRef]

Rev. Mod. Phys. (1)

K. M. Case, “Transfer problems and the reciprocity principle,” Rev. Mod. Phys. 29(4), 651–663 (1957).
[CrossRef]

Technol. Cancer Res. Treat. (1)

J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3, 491–497 (2004).

Other (2)

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Scientific, 2006).

Y. Pu, “Time-resolved spectroscopy and near infrared imaging for prostate cancer detection: receptor-targeted and native biomarker,” Ph D. thesis (City University of New York, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experiment setup.

Fig. 2.
Fig. 2.

The clean host image and the correction ratio. The clean image is shown in a 10-base logarithm scale. The correction ratio ( ( h I c ¯ ) ) is displayed on the right pane.

Fig. 3.
Fig. 3.

The line profile of the clean host image (Left), the independent component originating from the cancerous prostate target (Middle), and the fitting of the Green's function to the independent component along the vertical direction (Right).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( ρ d , ρ s ) = I 0 G 0 ( r d , r s ) I 0 Δ z G 0 ( r d ; ρ , z ) δ μ a ( ρ , z ) G 0 ( ρ , z ; r s ) d 2 ρ .
I ¯ ( ρ d , 0 ) = I 0 G 0 ( r d , 0 ) h 1 ( ρ d , 0 ; z )
h 1 1 N s I 0 Δ z G 0 ( r d ; ρ , z ) u ( ρ , z ) G 0 ( ρ , z ; 0 ) d 2 ρ
= 1 A s I 0 δ μ Δ V G 0 ( r d ; ρ , z ) G 0 ( ρ , z ; 0 ) d 2 ρ ,
I ¯ ( ρ d , 0 ) = I 0 G 0 ( r d , 0 ) h ( ρ d , 0 )
Δ I ( ρ d , ρ s ) = Σ j I 0 G 0 ( r d ; ρ , z ) δ μ a j ( ρ , z ) G 0 ( ρ , z ; r s ) d 2 ρ d z + h ( ρ d ρ s , 0 ) .
h ( ρ d ρ s , 0 ) = 1 N B Σ ρ s B Δ I ( ρ d ρ s , 0 )
G 0 ( r d , r j ) = 1 2 π G 0 ( ρ ρ j , 0 ) g ( ρ d ρ , z d , z j ) z j d 2 ρ
G 0 j ( q ) = 1 2 π G 0 ( q , 0 ) g ( q , z d , z j ) z j .
G 0 j ( q ) = G 0 ( q , 0 ) exp ( Q z j z d * )
Σ j f j δ μ a j Δ V j = A s h I c ¯

Metrics