Abstract

Real-time 4D full-range complex-conjugate-free Fourier-domain optical coherence tomography (FD-OCT) is implemented using a dual graphics processing units (dual-GPUs) architecture. One GPU is dedicated to the FD-OCT data processing while the second one is used for the volume rendering and display. GPU accelerated non-uniform fast Fourier transform (NUFFT) is also implemented to suppress the side lobes of the point spread function to improve the image quality. Using a 128,000 A-scan/second OCT spectrometer, we obtained 5 volumes/second real-time full-range 3D OCT imaging. A complete micro-manipulation of a phantom using a microsurgical tool is monitored by multiple volume renderings of the same 3D date set with different view angles. Compared to the conventional surgical microscope, this technology would provide the surgeons a more comprehensive spatial view of the microsurgical site and could serve as an effective intraoperative guidance tool.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
    [CrossRef] [PubMed]
  2. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
    [CrossRef] [PubMed]
  3. A. Stephen, Boppart, Mark E. Brezinski and James G. Fujimoto, “Surgical guidance and intervention,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J Tearney, ed. (Marcel Dekker, New York, NY, 2001).
  4. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
    [CrossRef] [PubMed]
  5. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  6. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  7. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35(20), 3432–3434 (2010).
    [CrossRef] [PubMed]
  8. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).
    [CrossRef] [PubMed]
  9. M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland 2(3), 137–139 (2010).
  10. J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).
    [CrossRef] [PubMed]
  11. K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express 18(22), 23472–23487 (2010).
    [CrossRef] [PubMed]
  12. Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, and H. Koseki, “Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units,” Appl. Opt. 49(25), 4756–4762 (2010).
    [CrossRef] [PubMed]
  13. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15(20), 13375–13387 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13375 .
    [CrossRef] [PubMed]
  14. NVIDIA, “NVIDIA CUDA C Programming Guide Version 3.2” (2010).

2010 (10)

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
[CrossRef] [PubMed]

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35(20), 3432–3434 (2010).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).
[CrossRef] [PubMed]

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland 2(3), 137–139 (2010).

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express 18(22), 23472–23487 (2010).
[CrossRef] [PubMed]

Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, and H. Koseki, “Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units,” Appl. Opt. 49(25), 4756–4762 (2010).
[CrossRef] [PubMed]

2009 (1)

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

2007 (1)

Aoshima, K.

Barry, S.

Baumann, B.

Biedermann, B. R.

Bonin, T.

Bouma, B. E.

Cable, A. E.

Duker, J. S.

Ehlers, J. P.

Eigenwillig, C. M.

Franke, G.

Fujimoto, J. G.

Götzinger, E.

Hagen-Eggert, M.

Han, J.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Hasegawa, H.

Hillmann, D.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, D.

Huber, R.

Hüttmann, G.

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35(20), 3432–3434 (2010).
[CrossRef] [PubMed]

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).
[CrossRef] [PubMed]

Izatt, J. A.

Kang, J. U.

Klein, T.

Koch, P.

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35(20), 3432–3434 (2010).
[CrossRef] [PubMed]

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).
[CrossRef] [PubMed]

Koseki, H.

Lankenau, E.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).
[CrossRef] [PubMed]

Maeno, S.

Oelckers, S.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).
[CrossRef] [PubMed]

Oh, W.-Y.

Pircher, M.

Potsaid, B.

Probst, J.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).
[CrossRef] [PubMed]

Schuman, J. S.

Shishkov, M.

Sylwestrzak, M.

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland 2(3), 137–139 (2010).

Szkulmowski, M.

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland 2(3), 137–139 (2010).

Szlag, D.

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland 2(3), 137–139 (2010).

Tao, Y. K.

Targowski, P.

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland 2(3), 137–139 (2010).

Tearney, G. J.

Toth, C. A.

Vakoc, B. J.

Wang, W.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Watanabe, Y.

Wieser, W.

Winter, C.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).
[CrossRef] [PubMed]

Zhang, K.

Appl. Opt. (1)

IEEE Trans. Biomed. Eng. (1)

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt. 15(2), 026014 (2010).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Photonics Lett. Poland (1)

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland 2(3), 137–139 (2010).

Other (2)

A. Stephen, Boppart, Mark E. Brezinski and James G. Fujimoto, “Surgical guidance and intervention,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J Tearney, ed. (Marcel Dekker, New York, NY, 2001).

NVIDIA, “NVIDIA CUDA C Programming Guide Version 3.2” (2010).

Supplementary Material (2)

» Media 1: AVI (3865 KB)     
» Media 2: AVI (3492 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

System configuration: CMOS, CMOS line scan camera; G, grating; L1, L2, L3, L4 achromatic collimators; C, 50:50 broadband fiber coupler; CL, camera link cable; CTRL, galvanometer control signal; GVS, galvanometer pairs (only the first galvanometer is illustrated for simplicity); SL, scanning lens; DCL, dispersion compensation lens; M, reference mirror; PC, polarization controller.

Fig. 2
Fig. 2

Signal processing flow chart of the dual-GPUs architecture. Dashed arrows, thread triggering; Solid arrows, main data stream; Hollow arrows, internal data flow of the GPU. Here the graphics memory refers to global memory.

Fig. 3
Fig. 3

Optical performance of the system: (a) and (b), PSFs processed by linear interpolation with FFT, blue arrows indicate the side lobes of PSFs near positive and negative edges due to interpolation error. (c) and (d), PSFs processed by NUFFT.

Fig. 4
Fig. 4

(Media 1) In vivo human finger nail fold imaging: (a)~(d) are rendered from the same 3D data set with different view angles. The green arrows/dots on each 2D frame correspond to the same edges/ vertexes of the rendering volume frame. Volume size: 256(Y) × 100(X) × 1024(Z) voxels/ 3.5mm (Y) × 3.5mm (X) × 3mm (Z).

Fig. 5
Fig. 5

(Media 2) Real-time 4D full-range FD-OCT guided micro-manipulation using a phantom model and a vitreoretinal surgical forceps. The green arrows/dots on each 2D frame correspond to the same edges/ vertexes of the rendering volume frame. Volume size: 256(Y) × 100(X) × 1024(Z) voxels/3.5mm (Y) × 3.5mm (X) × 3mm (Z).

Metrics