Abstract

Practical laser speckle contrast analysis systems face a problem of spatial averaging of speckles, due to the pixel size in the cameras used. Existing practice is to use a system factor in speckle contrast analysis to account for spatial averaging. The linearity of the system factor correction has not previously been confirmed. The problem of spatial averaging is illustrated using computer simulation of time-integrated dynamic speckle, and the linearity of the correction confirmed using both computer simulation and experimental results. The valid linear correction allows various useful compromises in the system design.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
    [CrossRef]
  2. J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [CrossRef]
  3. O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
    [CrossRef] [PubMed]
  4. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
    [CrossRef] [PubMed]
  5. P. F. Almoro, J. Glückstad, and S. G. Hanson, “Single-plane multiple speckle pattern phase retrieval using a deformable mirror,” Opt. Express 18(18), 19304–19313 (2010).
    [CrossRef] [PubMed]
  6. E. Kolenović and W. Osten, “Estimation of the phase error in interferometric measurements by evaluation of the speckle field intensity,” Appl. Opt. 46(24), 6096–6104 (2007).
    [CrossRef] [PubMed]
  7. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C. Dainty, ed. (Springer-Verlag, 1975).
  8. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
    [CrossRef] [PubMed]
  9. A. Ennos, “Speckle interferometry,” in Laser Speckle and Related Phenomena, J.C. Dainty, ed. (Springer-Verlag, 1975).
  10. B. Choi, J. Ramirez-San-Juan, and J. Nelson, “Characterization of a laser speckle imaging instrument for monitoring skin blood flow dynamics,” Proc. SPIE 5686, 36–40 (2005).
    [CrossRef]
  11. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44(10), 1823–1830 (2005).
    [CrossRef] [PubMed]
  12. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).
    [CrossRef] [PubMed]
  13. D. Duncan and S. Kirkpatrick, “Algorithms for simulation of speckle (laser and otherwise),” Proc. SPIE 6855, 685505 (2008).
    [CrossRef]
  14. J. Briers and X. He, “Laser speckle contrast analysis (LASCA) for blood flow visualization: Improved image processing,” Proc. SPIE 3252, 26–33 (1998).
    [CrossRef]
  15. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
    [CrossRef] [PubMed]
  16. http://www.ondaxinc.com/stabilized_laser.htm
  17. R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
    [CrossRef]

2010 (3)

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[CrossRef]

P. F. Almoro, J. Glückstad, and S. G. Hanson, “Single-plane multiple speckle pattern phase retrieval using a deformable mirror,” Opt. Express 18(18), 19304–19313 (2010).
[CrossRef] [PubMed]

2008 (4)

2007 (1)

2005 (2)

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

B. Choi, J. Ramirez-San-Juan, and J. Nelson, “Characterization of a laser speckle imaging instrument for monitoring skin blood flow dynamics,” Proc. SPIE 5686, 36–40 (2005).
[CrossRef]

2004 (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

1998 (1)

J. Briers and X. He, “Laser speckle contrast analysis (LASCA) for blood flow visualization: Improved image processing,” Proc. SPIE 3252, 26–33 (1998).
[CrossRef]

1996 (1)

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

1981 (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Almoro, P. F.

Andrews, M. K.

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

Au, K.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[CrossRef]

Ayers, F.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[CrossRef]

Boas, D. A.

Briers, J.

J. Briers and X. He, “Laser speckle contrast analysis (LASCA) for blood flow visualization: Improved image processing,” Proc. SPIE 3252, 26–33 (1998).
[CrossRef]

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Choi, B.

B. Choi, J. Ramirez-San-Juan, and J. Nelson, “Characterization of a laser speckle imaging instrument for monitoring skin blood flow dynamics,” Proc. SPIE 5686, 36–40 (2005).
[CrossRef]

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Devor, A.

Duncan, D.

D. Duncan and S. Kirkpatrick, “Algorithms for simulation of speckle (laser and otherwise),” Proc. SPIE 6855, 685505 (2008).
[CrossRef]

Duncan, D. D.

Dunn, A. K.

Durkin, A. J.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[CrossRef]

Fercher, A.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Glückstad, J.

Gopal, A.

Hanson, S. G.

He, X.

J. Briers and X. He, “Laser speckle contrast analysis (LASCA) for blood flow visualization: Improved image processing,” Proc. SPIE 3252, 26–33 (1998).
[CrossRef]

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Kirkpatrick, S.

D. Duncan and S. Kirkpatrick, “Algorithms for simulation of speckle (laser and otherwise),” Proc. SPIE 6855, 685505 (2008).
[CrossRef]

Kirkpatrick, S. J.

Kolenovic, E.

Kondru, C.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[CrossRef]

Nelson, J.

B. Choi, J. Ramirez-San-Juan, and J. Nelson, “Characterization of a laser speckle imaging instrument for monitoring skin blood flow dynamics,” Proc. SPIE 5686, 36–40 (2005).
[CrossRef]

Nelson, J. S.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Osten, W.

Parthasarathy, A. B.

Ramirez-San-Juan, J.

B. Choi, J. Ramirez-San-Juan, and J. Nelson, “Characterization of a laser speckle imaging instrument for monitoring skin blood flow dynamics,” Proc. SPIE 5686, 36–40 (2005).
[CrossRef]

Saager, R. B.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[CrossRef]

Sry, K.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[CrossRef]

Thompson, O. B.

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

Tom, W. J.

Webster, S.

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

Wells-Gray, E. M.

Yuan, S.

Zhang, X.

Appl. Opt. (2)

J. Biomed. Opt. (2)

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Microvasc. Res. (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (4)

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[CrossRef]

B. Choi, J. Ramirez-San-Juan, and J. Nelson, “Characterization of a laser speckle imaging instrument for monitoring skin blood flow dynamics,” Proc. SPIE 5686, 36–40 (2005).
[CrossRef]

D. Duncan and S. Kirkpatrick, “Algorithms for simulation of speckle (laser and otherwise),” Proc. SPIE 6855, 685505 (2008).
[CrossRef]

J. Briers and X. He, “Laser speckle contrast analysis (LASCA) for blood flow visualization: Improved image processing,” Proc. SPIE 3252, 26–33 (1998).
[CrossRef]

Other (3)

A. Ennos, “Speckle interferometry,” in Laser Speckle and Related Phenomena, J.C. Dainty, ed. (Springer-Verlag, 1975).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C. Dainty, ed. (Springer-Verlag, 1975).

http://www.ondaxinc.com/stabilized_laser.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Speckle contrast with changing speckle size as a ratio of pixel size, using simulated speckle data. Dashed lines and annotated points refer to speckle size criteria often described in the literature.

Fig. 2
Fig. 2

Change in measured speckle contrast with varying square contrast calculation region, using simulated speckle data.

Fig. 3
Fig. 3

Simulation results for apparent contrast of dynamic speckle measured at a range of exposures, and with a range of speckle sizes.

Fig. 4
Fig. 4

Simulated speckle contrast measured at a range of exposures, with β correction applied.

Fig. 5
Fig. 5

Simulated speckle contrast at a range of exposures, with some contrast reduction due to background light addition.

Fig. 6
Fig. 6

Simulated speckle contrast at a range of exposures, contrast reduction due to background addition corrected using B = 1/ Kmax factor.

Fig. 7
Fig. 7

Results of experimental testing of β = 1/Kmax correction for spatial averaging.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K = σ I ¯
s 1.2 ( 1 + M ) λ N
K = 1 / n

Metrics