Abstract

We present a system for near infrared functional tomography based on a single pulsed source and a time-gated camera, for non-contact collection over a large area. The mean penetration depth of diffusely reflected photons is dependent on the arrival time of photons, but not on the source–detector distance. Thus, time-encoded data can be used to recover depth information while photon exiting point is exploited for lateral localization. This approach was tested against simulations, demonstrating both detection and localization capabilities. Preliminary measurements on inhomogeneous phantoms showed good detection sensibility, even for a low optical perturbation, and localization capabilities, yet with decreasing spatial resolution for increasing depths. Potential application of this method to in vivo functional studies on the brain is discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  2. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
    [CrossRef] [PubMed]
  3. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
    [CrossRef] [PubMed]
  4. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
    [CrossRef] [PubMed]
  5. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
    [CrossRef] [PubMed]
  6. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
    [CrossRef] [PubMed]
  7. Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
    [CrossRef] [PubMed]
  8. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
    [CrossRef] [PubMed]
  9. J. Selb, E. M. C. Hillman, D. Joseph, and D. A. Boas, “Discrimination between superficial and cerebral signals during functional brain imaging with a time-gated system,” presented at the European Conferences on Biomedical Optics (ECBO), Munich, Germany, June 13–16, 2005.
  10. J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15(25), 16400–16412 (2007).
    [CrossRef] [PubMed]
  11. W. Becker, Advanced TCSPCwith Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, Germany 2006).
  12. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
    [CrossRef] [PubMed]
  13. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).
  14. P. Sawosz, M. Kacprzak, A. Liebert, and R. Maniewski, “Application of time-gated, intensified CCD camera for imaging of absorption changes in non-homogenous medium,” in 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, T. Jarm, P. Kramar, and A. Zupanic, eds., vol. 16 of IFMBE Proceedings (International Federation for Medical and Biological Engineering, 2007), pp. 410–412
  15. R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Comparison of noncontact and fiber-based fluorescence-mediated tomography,” Opt. Lett. 31(6), 769–771 (2006).
    [CrossRef] [PubMed]
  16. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
    [CrossRef] [PubMed]
  17. S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40(25), 4622–4632 (2001).
    [CrossRef] [PubMed]
  18. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [CrossRef]
  19. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, Dordrecht, 1996).
  20. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
    [CrossRef] [PubMed]
  21. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Diffusive Media (SPIE, Bellingham, Washington, 2010), Chaps. 4 and 7.
  22. L. Azizi, K. Zarychta, D. Ettori, E. Tinet, and J.-M. Tualle, “Ultimate spatial resolution with diffuse optical tomography,” Opt. Express 17(14), 12132–12144 (2009).
    [CrossRef] [PubMed]
  23. A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. III. Frequency-domain and time-domain results,” J. Opt. Soc. Am. A 27(7), 1723–1742 (2010).
    [CrossRef] [PubMed]
  24. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
    [CrossRef] [PubMed]

2010

2009

2008

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

2007

2006

2005

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

2004

2002

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

2001

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[CrossRef] [PubMed]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40(25), 4622–4632 (2001).
[CrossRef] [PubMed]

2000

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

1999

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

1997

1989

Arridge, S. R.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

Austin, T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Azizi, L.

Boas, D. A.

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15(25), 16400–16412 (2007).
[CrossRef] [PubMed]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef] [PubMed]

Carraresi, S.

Chance, B.

Contini, D.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[CrossRef] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
[CrossRef] [PubMed]

Cova, S.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

Cubeddu, R.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Comparison of noncontact and fiber-based fluorescence-mediated tomography,” Opt. Lett. 31(6), 769–771 (2006).
[CrossRef] [PubMed]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

D’Andrea, C.

Dale, A. M.

Del Bianco, S.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

Delpy, D. T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Ettori, D.

Everdell, N.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Fantini, S.

Farina, A.

Franceschini, M. A.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef] [PubMed]

Gibson, A.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Hillman, E. M.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

Ito, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

Joseph, D. K.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[CrossRef] [PubMed]

Liebert, A.

Macdonald, R.

Mamoru Tamura,

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

Martelli, F.

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. III. Frequency-domain and time-domain results,” J. Opt. Soc. Am. A 27(7), 1723–1742 (2010).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40(25), 4622–4632 (2001).
[CrossRef] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
[CrossRef] [PubMed]

Meek, J. H.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Möller, M.

Mora, A. D.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

Obrig, H.

Oda, I.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

Oda, K.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

Ohta, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

Paglia, F.

Patterson, M. S.

Peter, J.

Pifferi, A.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

Rinneberg, H.

Sassaroli, A.

Schulz, R. B.

Selb, J.

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15(25), 16400–16412 (2007).
[CrossRef] [PubMed]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef] [PubMed]

Semmler, W.

Shatir, T. S. M.

Sorensen, A. G.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef] [PubMed]

Spinelli, L.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

Steinbrink, J.

Stott, J. J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef] [PubMed]

Tinet, E.

Torricelli, A.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

Tosi, A.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

Tualle, J.-M.

Valentini, G.

Villringer, A.

Wabnitz, H.

Wada, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

Wilson, B. C.

Wyatt, J. S.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Yamada,

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

Yusof, R. M.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Yutaka Yamashita, M.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

Zaccanti, G.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40(25), 4622–4632 (2001).
[CrossRef] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
[CrossRef] [PubMed]

Zappa, F.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

Zarychta, K.

Appl. Opt.

Brain Res. Cogn. Brain Res.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res. 9(3), 339–342 (2000).
[CrossRef] [PubMed]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

J. Biomed. Opt.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Med. Biol.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source-detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett. 100(138), 101 (2008).

Other

P. Sawosz, M. Kacprzak, A. Liebert, and R. Maniewski, “Application of time-gated, intensified CCD camera for imaging of absorption changes in non-homogenous medium,” in 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, T. Jarm, P. Kramar, and A. Zupanic, eds., vol. 16 of IFMBE Proceedings (International Federation for Medical and Biological Engineering, 2007), pp. 410–412

J. Selb, E. M. C. Hillman, D. Joseph, and D. A. Boas, “Discrimination between superficial and cerebral signals during functional brain imaging with a time-gated system,” presented at the European Conferences on Biomedical Optics (ECBO), Munich, Germany, June 13–16, 2005.

W. Becker, Advanced TCSPCwith Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, Germany 2006).

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, Dordrecht, 1996).

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Diffusive Media (SPIE, Bellingham, Washington, 2010), Chaps. 4 and 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Use of time to explore different depths in the medium. Left: upon increasing the photon arrival time, the probability function of photon paths (banana shape) gets deeper, in a same way for all source-detector couples. Right: mean depth of photon paths as a function of the photon traveling time, calculated for μ s ' = 10 cm−1 as described in Ref [16]. The plot is the same for any source-detector separation.

Fig. 2
Fig. 2

Use of a large collection area. Left: assuming a source-detector pair with a detector radius of 0.15 cm, compared to the useful area with radius of 3 cm, the spatial coverage (detector area over total area) is only 0.25% of the physical limit. Right: signal level calculated as a function of distance from the source for different values of the photon arrival time. All curves are normalized to the value at 1 cm, which is the minimum distance used in this paper. Upon increasing time, the signal gets more uniform over the whole collection area.

Fig. 3
Fig. 3

Geometry of the problem. A single injection source is set on the origin of the Cartesian system. The volume is divided into nvoxels cubic voxels, addressed by r*. The surface not covered by the black circular shield around the injection source is divided into nSD square detectors, addressed by r.

Fig. 4
Fig. 4

(a) Experimental set-up. Light source: pulsed diode laser, operated at 690 nm with 80 MHz repetition rate. Detection: time-gated intensified CCD camera, gate width 1 ns, risetime 120 ps. The launching fiber is embedded into a black cylinder (1 cm radius) to shield the camera from early photons at short source-detector distances. (b) One raw image captured by the ICCD camera. The red rectangle shows the imaging region in X-Y plane for reconstruction. The black circle indicates the position of the black cylinder. The region enclosed by the black lines and the bottom line of the rectangle was removed to avoid influence of the optical fiber.

Fig. 5
Fig. 5

Vertical section along the yz plane of 3D reconstructions of Δ μ a from simulated data, using α = 0.01 . A localized perturbation (sphere with radius 0.6 cm) with increasing values of μ a I N C compared to μ a B K G (rows) is set at increasing depths z (columns). The first and last row represent a completely homogeneous case ( μ a I N C = 1 × μ a B K G ), and a very high (completely absorbing) inhomogeneity ( μ a I N C = 20 × μ a B K G ), respectively. Axis dimensions are in cm, while colorbar is in cm−1.

Fig. 6
Fig. 6

Vertical section along the yz plane of 3D reconstructions of Δ μ a from simulated data, generated as in Fig. 5, apart from a lower SNR = 40 and a value of α = 0.1 . A localized perturbation (sphere with radius 0.6 cm) with increasing values of μ a I N C compared to μ a B K G (rows) is set at increasing depths z (columns). The first and last row represent a completely homogeneous case ( μ a I N C = 1 × μ a B K G ), and a very high (completely absorbing) inhomogeneity ( μ a I N C = 20 × μ a B K G ), respectively. Axis dimensions are in cm, colorbar is in cm−1.

Fig. 7
Fig. 7

Vertical section along the yz plane with x = 0 cm of tomographies of Δ μ a from phantom measurements, using α = 0.1 . From left to right the depth (Z) of the inclusion is increased. From top to bottom, the volume of the PVC cylinder is increased. Axis dimensions are in cm, while colorbar is in cm−1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ = Φ 0 exp ( Δ μ a ( r * ) int ( r , r * , t ) )
Δ A ( Δ μ a , r , r * , t ) = ln ( Φ / Φ 0 ) = Δ μ a ( r * ) int ( r , r * , t )
Δ A = L Δ μ a
Δ μ a = L T ( L L T + α I ) 1 Δ O D
Φ ( r , t ) = ( 1 int ( r , r , t ) Δ μ a ( r ) exp ( int ( r , r , t ) Δ μ a ( r ) ) ) Φ 0 ( r , t )

Metrics