Abstract

Wide-field temporal focusing is a novel technique that provides optical sectioning for imaging without the need for beam scanning. However, illuminating over large areas greatly reduces the photon density which limits the technique applicability to small regions, precluding functional imaging of cellular networks. Here we present a strategy that combines beam shaping and temporal focusing of amplified pulses (>1 µJ/pulse) for fast imaging of cells from the central nervous system in acute slices. Multiphoton video-rate imaging over total areas as wide as 4800 µm2 with an optical sectioning under 10 µm at 800 nm is achieved with our setup, leading to imaging of calcium dynamics of multiple cells simultaneously in thick tissue.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [CrossRef] [PubMed]
  2. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
    [CrossRef] [PubMed]
  3. J. Palero, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “A simple scanless two-photon fluorescence microscope using selective plane illumination,” Opt. Express 18(8), 8491–8498 (2010).
    [CrossRef] [PubMed]
  4. P. Saggau, “New methods and uses for fast optical scanning,” Curr. Opin. Neurobiol. 16(5), 543–550 (2006).
    [CrossRef] [PubMed]
  5. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [CrossRef] [PubMed]
  6. G. H. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [CrossRef] [PubMed]
  7. D. Oron and Y. Silberberg, “Harmonic generation with temporally focused ultrashort pulses,” J. Opt. Soc. Am. B 22(12), 2660–2663 (2005).
    [CrossRef]
  8. J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
    [CrossRef]
  9. J. Y. Hwang, S. Wachsmann-Hogiu, V. K. Ramanujan, A. G. Nowatzyk, Y. Koronyo, L. K. Medina-Kauwe, Z. Gross, H. B. Gray, and D. L. Farkas, “Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications,” Biomed. Opt. Express 2(2), 356–364 (2011).
    [CrossRef]
  10. A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
    [CrossRef] [PubMed]
  11. E. Papagiakoumou, F. Anselmi, A. B`egue, V. deSars, J. Gl¨uckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods (2010).
  12. B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
    [CrossRef] [PubMed]
  13. D. Oron and Y. Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express 13(24), 9903–9908 (2005).
    [CrossRef] [PubMed]
  14. H. Suchowski, D. Oron, and Y. Silberberg, “Generation of a dark nonlinear focus by spatio-temporal coherent control,” Opt. Commun. 264(2), 482–487 (2006).
    [CrossRef]
  15. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).
    [CrossRef] [PubMed]
  16. E. Papagiakoumou, V. de Sars, V. Emiliani, and D. Oron, “Temporal focusing with spatially modulated excitation,” Opt. Express 17(7), 5391–5401 (2009).
    [CrossRef] [PubMed]
  17. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
    [CrossRef] [PubMed]
  18. L. Topolnik, M. Azzi, F. Morin, A. Kougioumoutzakis, and J. C. Lacaille, “mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones,” J. Physiol. 575(1), 115–131 (2006).
    [CrossRef] [PubMed]
  19. R. Yuste, and A. Konnerth, Imaging in Neuroscience and Development (CSHL Press, 2005).
  20. L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
    [CrossRef] [PubMed]
  21. I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
    [CrossRef]
  22. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  23. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
    [CrossRef] [PubMed]
  24. W. Akemann, H. Mutoh, A. Perron, J. Rossier, and T. Knöpfel, “Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins,” Nat. Methods 7(8), 643–649 (2010).
    [CrossRef] [PubMed]
  25. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
    [CrossRef] [PubMed]

2011

2010

J. Palero, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “A simple scanless two-photon fluorescence microscope using selective plane illumination,” Opt. Express 18(8), 8491–8498 (2010).
[CrossRef] [PubMed]

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

W. Akemann, H. Mutoh, A. Perron, J. Rossier, and T. Knöpfel, “Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins,” Nat. Methods 7(8), 643–649 (2010).
[CrossRef] [PubMed]

2009

2008

A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[CrossRef] [PubMed]

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[CrossRef] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[CrossRef] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[CrossRef] [PubMed]

E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).
[CrossRef] [PubMed]

2007

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

2006

P. Saggau, “New methods and uses for fast optical scanning,” Curr. Opin. Neurobiol. 16(5), 543–550 (2006).
[CrossRef] [PubMed]

H. Suchowski, D. Oron, and Y. Silberberg, “Generation of a dark nonlinear focus by spatio-temporal coherent control,” Opt. Commun. 264(2), 482–487 (2006).
[CrossRef]

L. Topolnik, M. Azzi, F. Morin, A. Kougioumoutzakis, and J. C. Lacaille, “mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones,” J. Physiol. 575(1), 115–131 (2006).
[CrossRef] [PubMed]

2005

1997

Akemann, W.

W. Akemann, H. Mutoh, A. Perron, J. Rossier, and T. Knöpfel, “Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins,” Nat. Methods 7(8), 643–649 (2010).
[CrossRef] [PubMed]

Andrasfalvy, B. K.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[CrossRef] [PubMed]

Artigas, D.

Azzi, M.

L. Topolnik, M. Azzi, F. Morin, A. Kougioumoutzakis, and J. C. Lacaille, “mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones,” J. Physiol. 575(1), 115–131 (2006).
[CrossRef] [PubMed]

Biss, D. P.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Charpak, S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[CrossRef] [PubMed]

Chu, K. K.

Cote, D.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

de Sars, V.

DeSars, V.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[CrossRef] [PubMed]

DiGregorio, D. A.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[CrossRef] [PubMed]

Durst, M.

Emiliani, V.

Equils, O.

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Farah, N.

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[CrossRef] [PubMed]

Farkas, D. L.

J. Y. Hwang, S. Wachsmann-Hogiu, V. K. Ramanujan, A. G. Nowatzyk, Y. Koronyo, L. K. Medina-Kauwe, Z. Gross, H. B. Gray, and D. L. Farkas, “Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications,” Biomed. Opt. Express 2(2), 356–364 (2011).
[CrossRef]

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Fujita, M.

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Golan, L.

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
[CrossRef] [PubMed]

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[CrossRef] [PubMed]

Gray, H. B.

Gross, Z.

Hwang, J. Y.

J. Y. Hwang, S. Wachsmann-Hogiu, V. K. Ramanujan, A. G. Nowatzyk, Y. Koronyo, L. K. Medina-Kauwe, Z. Gross, H. B. Gray, and D. L. Farkas, “Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications,” Biomed. Opt. Express 2(2), 356–364 (2011).
[CrossRef]

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Jeong, J.

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Juskaitis, R.

Khazenzon, N. M.

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Knöpfel, T.

W. Akemann, H. Mutoh, A. Perron, J. Rossier, and T. Knöpfel, “Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins,” Nat. Methods 7(8), 643–649 (2010).
[CrossRef] [PubMed]

Koronyo, Y.

Kougioumoutzakis, A.

L. Topolnik, M. Azzi, F. Morin, A. Kougioumoutzakis, and J. C. Lacaille, “mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones,” J. Physiol. 575(1), 115–131 (2006).
[CrossRef] [PubMed]

Lacaille, J. C.

L. Topolnik, M. Azzi, F. Morin, A. Kougioumoutzakis, and J. C. Lacaille, “mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones,” J. Physiol. 575(1), 115–131 (2006).
[CrossRef] [PubMed]

Lim, D.

Lin, C. P.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Lindsley, E.

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Ljubimova, J.

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Loza-Alvarez, P.

Lutz, C.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[CrossRef] [PubMed]

Medina-Kauwe, L. K.

Mertz, J.

Moffatt-Blue, C.

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Morin, F.

L. Topolnik, M. Azzi, F. Morin, A. Kougioumoutzakis, and J. C. Lacaille, “mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones,” J. Physiol. 575(1), 115–131 (2006).
[CrossRef] [PubMed]

Mutoh, H.

W. Akemann, H. Mutoh, A. Perron, J. Rossier, and T. Knöpfel, “Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins,” Nat. Methods 7(8), 643–649 (2010).
[CrossRef] [PubMed]

Neil, M. A.

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[CrossRef] [PubMed]

Nowatzyk, A. G.

J. Y. Hwang, S. Wachsmann-Hogiu, V. K. Ramanujan, A. G. Nowatzyk, Y. Koronyo, L. K. Medina-Kauwe, Z. Gross, H. B. Gray, and D. L. Farkas, “Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications,” Biomed. Opt. Express 2(2), 356–364 (2011).
[CrossRef]

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Oron, D.

Otis, T. S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[CrossRef] [PubMed]

Palero, J.

Papagiakoumou, E.

Perron, A.

W. Akemann, H. Mutoh, A. Perron, J. Rossier, and T. Knöpfel, “Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins,” Nat. Methods 7(8), 643–649 (2010).
[CrossRef] [PubMed]

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[CrossRef] [PubMed]

Ramanujan, V. K.

Reutsky, I.

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[CrossRef] [PubMed]

Rossier, J.

W. Akemann, H. Mutoh, A. Perron, J. Rossier, and T. Knöpfel, “Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins,” Nat. Methods 7(8), 643–649 (2010).
[CrossRef] [PubMed]

Saggau, P.

P. Saggau, “New methods and uses for fast optical scanning,” Curr. Opin. Neurobiol. 16(5), 543–550 (2006).
[CrossRef] [PubMed]

Santos, S. I. C. O.

Shank, C. V.

A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[CrossRef] [PubMed]

Shoham, S.

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[CrossRef] [PubMed]

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
[CrossRef] [PubMed]

Shroff, H.

A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[CrossRef] [PubMed]

Silberberg, Y.

Spencer, J. A.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Suchowski, H.

H. Suchowski, D. Oron, and Y. Silberberg, “Generation of a dark nonlinear focus by spatio-temporal coherent control,” Opt. Commun. 264(2), 482–487 (2006).
[CrossRef]

Tal, E.

Tang, J.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[CrossRef] [PubMed]

Topolnik, L.

L. Topolnik, M. Azzi, F. Morin, A. Kougioumoutzakis, and J. C. Lacaille, “mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones,” J. Physiol. 575(1), 115–131 (2006).
[CrossRef] [PubMed]

van Howe, J.

Vaziri, A.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[CrossRef] [PubMed]

Veilleux, I.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Wachsmann-Hogiu, S.

J. Y. Hwang, S. Wachsmann-Hogiu, V. K. Ramanujan, A. G. Nowatzyk, Y. Koronyo, L. K. Medina-Kauwe, Z. Gross, H. B. Gray, and D. L. Farkas, “Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications,” Biomed. Opt. Express 2(2), 356–364 (2011).
[CrossRef]

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[CrossRef] [PubMed]

Wilson, T.

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[CrossRef] [PubMed]

Xu, C.

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[CrossRef] [PubMed]

Zemelman, B. V.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

Zhu, G. H.

Zipfel, W.

Biomed. Opt. Express

Curr. Opin. Neurobiol.

P. Saggau, “New methods and uses for fast optical scanning,” Curr. Opin. Neurobiol. 16(5), 543–550 (2006).
[CrossRef] [PubMed]

Front. Neural Circuits

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

J. Neural Eng.

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Physiol.

L. Topolnik, M. Azzi, F. Morin, A. Kougioumoutzakis, and J. C. Lacaille, “mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones,” J. Physiol. 575(1), 115–131 (2006).
[CrossRef] [PubMed]

Nat. Methods

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008).
[CrossRef] [PubMed]

W. Akemann, H. Mutoh, A. Perron, J. Rossier, and T. Knöpfel, “Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins,” Nat. Methods 7(8), 643–649 (2010).
[CrossRef] [PubMed]

Opt. Commun.

H. Suchowski, D. Oron, and Y. Silberberg, “Generation of a dark nonlinear focus by spatio-temporal coherent control,” Opt. Commun. 264(2), 482–487 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008).
[CrossRef] [PubMed]

Proc. SPIE

J. Y. Hwang, C. Moffatt-Blue, O. Equils, M. Fujita, J. Jeong, N. M. Khazenzon, E. Lindsley, J. Ljubimova, A. G. Nowatzyk, D. L. Farkas, and S. Wachsmann-Hogiu, “Multimode optical imaging of small animals: Development and applications,” Proc. SPIE 6441, 644105, 644105-10 (2007).
[CrossRef]

Other

E. Papagiakoumou, F. Anselmi, A. B`egue, V. deSars, J. Gl¨uckstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods (2010).

R. Yuste, and A. Konnerth, Imaging in Neuroscience and Development (CSHL Press, 2005).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Microscopy Setup. HWP: half-wave plate, PC: polarizer cube, S: camera-controlled shutter, T: telescope comprised of two achromatic lenses (f = −75 mm and +125 mm), SLM: spatial light modulator, FP: Fourier plane, F F : Fourier achromatic lens (f = 300 mm), DG: diffractive grating, IP: image plane, F G : achromatic lens for collimating the diffracted beam (f = 300 mm), Hg: mercury arc lamp, M1: Flip mirror, DM: excitation-detection dichroic filters, O: microscope objective, CCD: EMCCD camera. (b) Fluorescence intensity of a thin layer of fluorescein scanned through the focal plane with and without TF by replacing the DG by a mirror. (c) Fluorescence of live cultured cells loaded with Fluo-4 AM calcium indicator. (Green) Wide-field mercury arc lamp excitation (λexc = 450 nm, λem = 525 nm longpass), (Dashed line) targeted illumination, (Red) TF patterned illumination (λexc = 800 nm, λem = 535/40 nm). All scale bars are 20 µm.

Fig. 2.
Fig. 2.

Comparison between one-photon and TF imaging of astrocytes in 80 µm spinal cord slice immunolabeled for glial fibrillary acidic protein (GFAP), revealed with AlexaFluo 594 secondary antibody. (a) Image of a single optical plane at 55 µm depth by one-photon (left, λexc = 450 nm, λem = 650/50 nm) and TF (right, λexc = 800 nm, λem = 650/50 nm) illumination. Total field-of-view is 4200 µm2. (b) Orthogonal view along the dashed line in (a) from a z-stack comprised of 15 images separated by 5 µm for one-photon (left) and TF (right) illumination. The axial reconstruction is done by FIJI software Volume Viewer plugin and with the Volume II interpolation to ensure continuity between imaging planes. The use of TF allows one to reduce the out-of-focus background. All scale bars are 20 µm.

Fig. 3.
Fig. 3.

Comparison between one-photon and TF functional imaging in brain slice from two independent spontaneous activity measurements. Fluorescence from Fluo-4 AM calcium indicator loaded in a P8 300 µm rat hippocampal slice. (a) one-photon wide-field imaging. (b) Wide-field TF imaging of the same region with patterned illumination. Three square subregions were selected for illumination using the SLM. (c) Fluorescence fluctuations (ΔF/F) corresponding to intracellular free calcium elevation revealed by one-photon wide-field (left) and by TF patterned illumination (right). (d) Mean (± SEM) (ΔF/F) amplitudes from 4 cells for each imaging condition. Statistical test is Mann-Whitney and the difference between means is significant (p = 0.0286). Scale bars in (a) and (b) are 20 µm.

Metrics