Abstract

Diffuse optical imaging (DOI) is a non invasive technique allowing the recovery of hemodynamic changes in the brain. Due to the diffusive nature of photon propagation in turbid media and the fact that cerebral tissues are located around 1.5 cm under the adult human scalp, DOI measurements are subject to partial volume errors. DOI measurements are also sensitive to large pial vessels because oxygenated and deoxygenated hemoglobin are the dominant chromophores in the near infrared window. In this study, the effect of the extra-cerebral vasculature in proximity of the sagittal sinus was investigated for its impact on DOI measurements simulated over the human adult visual cortex. Numerical Monte Carlo simulations were performed on two specific models of the human head derived from magnetic resonance imaging (MRI) scans. The first model included the extra-cerebral vasculature in which constant hemoglobin concentrations were assumed while the second did not. The screening effect of the vasculature was quantified by comparing recovered hemoglobin changes from each model for different optical arrays and regions of activation. A correction factor accounting for the difference between the recovered and the simulated hemoglobin changes was computed in each case. The results show that changes in hemoglobin concentration are better estimated when the extra-cerebral vasculature is modeled and the correction factors obtained in this case were at least 1.4-fold lower. The effect of the vasculature was also examined in a high-density diffuse optical tomography configuration. In this case, the difference between changes in hemoglobin concentration recovered with each model was reduced down to 10%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. du Plessis, “Near-infrared spectroscopy for the in vivo study of cerebral hemodynamics and oxygenation,” Curr. Opin. Pediatr. 7(6), 632–639 (1995).
    [PubMed]
  2. C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
    [PubMed]
  3. G. Blasdel and D. Campbell, “Functional retinotopy of monkey visual cortex,” J. Neurosci. 21(20), 8286–8301 (2001).
    [PubMed]
  4. M. P. Vanni, J. Provost, C. Casanova, and F. Lesage, “Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity,” Neuroimage 49(2), 1416–1431 (2010).
    [CrossRef] [PubMed]
  5. D. S. Kim, Y. Matsuda, K. Ohki, A. Ajima, and S. Tanaka, “Geometrical and topological relationships between multiple functional maps in cat primary visual cortex,” Neuroreport 10(12), 2515–2522 (1999).
    [CrossRef] [PubMed]
  6. C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” Neuroimage 24(1), 200–206 (2005).
    [CrossRef] [PubMed]
  7. T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 13(3), 516–520 (1993).
    [PubMed]
  8. A. Villringer, J. Planck, S. Stodieck, K. Bötzel, L. Schleinkofer, and U. Dirnagl, “Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy,” Adv. Exp. Med. Biol. 345, 559–565 (1994).
    [PubMed]
  9. J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995).
    [CrossRef] [PubMed]
  10. Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
    [CrossRef] [PubMed]
  11. R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
    [CrossRef]
  12. R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
    [CrossRef] [PubMed]
  13. B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” Neuroimage 49(1), 568–577 (2010).
    [CrossRef] [PubMed]
  14. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
    [CrossRef] [PubMed]
  15. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
    [CrossRef] [PubMed]
  16. G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
    [CrossRef] [PubMed]
  17. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
    [CrossRef] [PubMed]
  18. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
    [CrossRef] [PubMed]
  19. R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39(6), 855–864 (1998).
    [CrossRef] [PubMed]
  20. R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” Neuroimage 25(3), 701–707 (2005).
    [CrossRef] [PubMed]
  21. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
    [CrossRef] [PubMed]
  22. C. Zhou, “In-vivo optical imaging and spectroscopy of cerebral hemodynamics,” Ph.D. thesis, University of Pennsylvania (2007).
  23. T. S. Leung, I. Tachtsidis, M. Tisdall, M. Smith, D. T. Delpy, and C. E. Elwell, “Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy,” Appl. Opt. 46(10), 1604–1614 (2007).
    [CrossRef] [PubMed]
  24. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
    [CrossRef] [PubMed]
  25. P. Moran, “A flow velocityzeugmatographic interlace for NMR imaging in humans,” Magn. Reson. Med. 1, 197–203 (1982).
  26. C. L. Dumoulin, S. P. Souza, M. F. Walker, and W. Wagle, “Three-dimensional phase contrast angiography,” Magn. Reson. Med. 9(1), 139–149 (1989).
    [CrossRef] [PubMed]
  27. S. Prahl, “Optical Absorption of Hemoglobin,” http://omlcogiedu/spectra/hemoglobin/ summaryhtml (2002).
  28. R. Buxton, Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques (Cambridge Univ. Press, 2001).
  29. A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
    [CrossRef]
  30. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
    [CrossRef] [PubMed]
  31. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
    [CrossRef] [PubMed]
  32. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
    [PubMed]
  33. S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41 (1999).
    [CrossRef]
  34. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
    [CrossRef] [PubMed]
  35. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
    [CrossRef] [PubMed]
  36. M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput. 26(3), 289–294 (1988).
    [CrossRef] [PubMed]
  37. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
    [CrossRef] [PubMed]
  38. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
    [CrossRef] [PubMed]
  39. J. M. Lina, M. Dehaes, C. Matteau-Pelletier, and F. Lesage, “Complex wavelets applied to diffuse optical spectroscopy for brain activity detection,” Opt. Express 16(2), 1029–1050 (2008).
    [CrossRef] [PubMed]
  40. H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
    [CrossRef] [PubMed]
  41. R. Penrose and J. A. Todd, “A generalized inverse for matrices,” Proc. Camb. Philos. Soc. 51(03), 406–413 (1955).
    [CrossRef]
  42. F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Phys. Med. Biol. 49(7), 1183–1201 (2004).
    [CrossRef] [PubMed]
  43. Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
    [CrossRef] [PubMed]
  44. T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
    [CrossRef] [PubMed]
  45. J. Markham, B. R. White, B. W. Zeff, and J. P. Culver, “Blind identification of evoked human brain activity with independent component analysis of optical data,” Hum. Brain Mapp. 30(8), 2382–2392 (2009).
    [CrossRef] [PubMed]
  46. J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
    [CrossRef] [PubMed]
  47. J. Frahm, K. D. Merboldt, W. Hänicke, A. Kleinschmidt, and H. Boecker, “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed. 7(1-2), 45–53 (1994).
    [CrossRef] [PubMed]
  48. J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995).
    [CrossRef] [PubMed]
  49. T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
    [CrossRef] [PubMed]
  50. T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Signal nonlinearity in fMRI: a comparison between BOLD and MION,” IEEE Trans. Med. Imaging 22(5), 636–644 (2003).
    [CrossRef] [PubMed]
  51. J. P. Culver, A. M. Siegel, M. A. Franceschini, J. B. Mandeville, and D. A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947–959 (2005).
    [CrossRef] [PubMed]
  52. Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, “A three-compartment model of the hemodynamic response and oxygen delivery to brain,” Neuroimage 28(4), 925–939 (2005).
    [CrossRef] [PubMed]
  53. T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, “A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation,” J. Cereb. Blood Flow Metab. 27(6), 1262–1279 (2007).
    [CrossRef] [PubMed]
  54. Y. Tong and B. D. Frederick, “Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain,” Neuroimage 53(2), 553–564 (2010).
    [CrossRef] [PubMed]

2010 (3)

M. P. Vanni, J. Provost, C. Casanova, and F. Lesage, “Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity,” Neuroimage 49(2), 1416–1431 (2010).
[CrossRef] [PubMed]

B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” Neuroimage 49(1), 568–577 (2010).
[CrossRef] [PubMed]

Y. Tong and B. D. Frederick, “Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain,” Neuroimage 53(2), 553–564 (2010).
[CrossRef] [PubMed]

2009 (4)

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[CrossRef] [PubMed]

J. Markham, B. R. White, B. W. Zeff, and J. P. Culver, “Blind identification of evoked human brain activity with independent component analysis of optical data,” Hum. Brain Mapp. 30(8), 2382–2392 (2009).
[CrossRef] [PubMed]

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
[CrossRef] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (4)

T. S. Leung, I. Tachtsidis, M. Tisdall, M. Smith, D. T. Delpy, and C. E. Elwell, “Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy,” Appl. Opt. 46(10), 1604–1614 (2007).
[CrossRef] [PubMed]

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, “A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation,” J. Cereb. Blood Flow Metab. 27(6), 1262–1279 (2007).
[CrossRef] [PubMed]

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
[CrossRef] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

2006 (2)

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef] [PubMed]

2005 (6)

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[CrossRef] [PubMed]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[CrossRef] [PubMed]

R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” Neuroimage 25(3), 701–707 (2005).
[CrossRef] [PubMed]

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” Neuroimage 24(1), 200–206 (2005).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, M. A. Franceschini, J. B. Mandeville, and D. A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947–959 (2005).
[CrossRef] [PubMed]

Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, “A three-compartment model of the hemodynamic response and oxygen delivery to brain,” Neuroimage 28(4), 925–939 (2005).
[CrossRef] [PubMed]

2004 (3)

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Phys. Med. Biol. 49(7), 1183–1201 (2004).
[CrossRef] [PubMed]

2003 (2)

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Signal nonlinearity in fMRI: a comparison between BOLD and MION,” IEEE Trans. Med. Imaging 22(5), 636–644 (2003).
[CrossRef] [PubMed]

2002 (3)

T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
[CrossRef] [PubMed]

D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

2001 (2)

G. Blasdel and D. Campbell, “Functional retinotopy of monkey visual cortex,” J. Neurosci. 21(20), 8286–8301 (2001).
[PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[CrossRef] [PubMed]

2000 (1)

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

1999 (2)

D. S. Kim, Y. Matsuda, K. Ohki, A. Ajima, and S. Tanaka, “Geometrical and topological relationships between multiple functional maps in cat primary visual cortex,” Neuroreport 10(12), 2515–2522 (1999).
[CrossRef] [PubMed]

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41 (1999).
[CrossRef]

1998 (1)

R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39(6), 855–864 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (2)

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
[CrossRef]

1995 (4)

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995).
[CrossRef] [PubMed]

A. J. du Plessis, “Near-infrared spectroscopy for the in vivo study of cerebral hemodynamics and oxygenation,” Curr. Opin. Pediatr. 7(6), 632–639 (1995).
[PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995).
[CrossRef] [PubMed]

1994 (2)

J. Frahm, K. D. Merboldt, W. Hänicke, A. Kleinschmidt, and H. Boecker, “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed. 7(1-2), 45–53 (1994).
[CrossRef] [PubMed]

A. Villringer, J. Planck, S. Stodieck, K. Bötzel, L. Schleinkofer, and U. Dirnagl, “Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy,” Adv. Exp. Med. Biol. 345, 559–565 (1994).
[PubMed]

1993 (2)

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 13(3), 516–520 (1993).
[PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

1992 (1)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

1989 (1)

C. L. Dumoulin, S. P. Souza, M. F. Walker, and W. Wagle, “Three-dimensional phase contrast angiography,” Magn. Reson. Med. 9(1), 139–149 (1989).
[CrossRef] [PubMed]

1988 (2)

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput. 26(3), 289–294 (1988).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

1982 (1)

P. Moran, “A flow velocityzeugmatographic interlace for NMR imaging in humans,” Magn. Reson. Med. 1, 197–203 (1982).

1955 (1)

R. Penrose and J. A. Todd, “A generalized inverse for matrices,” Proc. Camb. Philos. Soc. 51(03), 406–413 (1955).
[CrossRef]

Adriany, G.

T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
[CrossRef] [PubMed]

Ajima, A.

D. S. Kim, Y. Matsuda, K. Ohki, A. Ajima, and S. Tanaka, “Geometrical and topological relationships between multiple functional maps in cat primary visual cortex,” Neuroreport 10(12), 2515–2522 (1999).
[CrossRef] [PubMed]

Allen, M. S.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, “A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation,” J. Cereb. Blood Flow Metab. 27(6), 1262–1279 (2007).
[CrossRef] [PubMed]

Arridge, S.

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41 (1999).
[CrossRef]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Arridge, S. R.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Baker, J. R.

J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995).
[CrossRef] [PubMed]

Bandettini, P. A.

J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995).
[CrossRef] [PubMed]

Benav, H.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, “A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation,” J. Cereb. Blood Flow Metab. 27(6), 1262–1279 (2007).
[CrossRef] [PubMed]

Bernading, J.

R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
[CrossRef]

Berwick, J.

Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, “A three-compartment model of the hemodynamic response and oxygen delivery to brain,” Neuroimage 28(4), 925–939 (2005).
[CrossRef] [PubMed]

Billings, S.

Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, “A three-compartment model of the hemodynamic response and oxygen delivery to brain,” Neuroimage 28(4), 925–939 (2005).
[CrossRef] [PubMed]

Blasdel, G.

G. Blasdel and D. Campbell, “Functional retinotopy of monkey visual cortex,” J. Neurosci. 21(20), 8286–8301 (2001).
[PubMed]

Boas, D.

Boas, D. A.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, “A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation,” J. Cereb. Blood Flow Metab. 27(6), 1262–1279 (2007).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” Neuroimage 25(3), 701–707 (2005).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, M. A. Franceschini, J. B. Mandeville, and D. A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947–959 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[CrossRef] [PubMed]

Boecker, H.

J. Frahm, K. D. Merboldt, W. Hänicke, A. Kleinschmidt, and H. Boecker, “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed. 7(1-2), 45–53 (1994).
[CrossRef] [PubMed]

Bötzel, K.

A. Villringer, J. Planck, S. Stodieck, K. Bötzel, L. Schleinkofer, and U. Dirnagl, “Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy,” Adv. Exp. Med. Biol. 345, 559–565 (1994).
[PubMed]

Boxerman, J. L.

J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995).
[CrossRef] [PubMed]

Bramer, S.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Brandt, S. A.

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

Brown, E. N.

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
[CrossRef] [PubMed]

Buxton, R. B.

R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39(6), 855–864 (1998).
[CrossRef] [PubMed]

Campbell, D.

G. Blasdel and D. Campbell, “Functional retinotopy of monkey visual cortex,” J. Neurosci. 21(20), 8286–8301 (2001).
[PubMed]

Casanova, C.

M. P. Vanni, J. Provost, C. Casanova, and F. Lesage, “Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity,” Neuroimage 49(2), 1416–1431 (2010).
[CrossRef] [PubMed]

Chance, B.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Chen, D.

Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, “A three-compartment model of the hemodynamic response and oxygen delivery to brain,” Neuroimage 28(4), 925–939 (2005).
[CrossRef] [PubMed]

Cheng, X.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[CrossRef] [PubMed]

Coffey, P. J.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” Neuroimage 24(1), 200–206 (2005).
[CrossRef] [PubMed]

Cohen, A. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

Cope, M.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput. 26(3), 289–294 (1988).
[CrossRef] [PubMed]

Covolan, R. J.

R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” Neuroimage 25(3), 701–707 (2005).
[CrossRef] [PubMed]

Culver, J.

Culver, J. P.

B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” Neuroimage 49(1), 568–577 (2010).
[CrossRef] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

J. Markham, B. R. White, B. W. Zeff, and J. P. Culver, “Blind identification of evoked human brain activity with independent component analysis of optical data,” Hum. Brain Mapp. 30(8), 2382–2392 (2009).
[CrossRef] [PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[CrossRef] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, M. A. Franceschini, J. B. Mandeville, and D. A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947–959 (2005).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

Dale, A. M.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Davis, T. L.

J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995).
[CrossRef] [PubMed]

Dehaes, M.

Dehghani, H.

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[CrossRef] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Delpy, D. T.

T. S. Leung, I. Tachtsidis, M. Tisdall, M. Smith, D. T. Delpy, and C. E. Elwell, “Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy,” Appl. Opt. 46(10), 1604–1614 (2007).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[CrossRef] [PubMed]

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput. 26(3), 289–294 (1988).
[CrossRef] [PubMed]

Diamond, S. G.

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

Dirnagl, U.

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
[CrossRef]

A. Villringer, J. Planck, S. Stodieck, K. Bötzel, L. Schleinkofer, and U. Dirnagl, “Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy,” Adv. Exp. Med. Biol. 345, 559–565 (1994).
[PubMed]

du Plessis, A. J.

A. J. du Plessis, “Near-infrared spectroscopy for the in vivo study of cerebral hemodynamics and oxygenation,” Curr. Opin. Pediatr. 7(6), 632–639 (1995).
[PubMed]

Dumoulin, C. L.

C. L. Dumoulin, S. P. Souza, M. F. Walker, and W. Wagle, “Three-dimensional phase contrast angiography,” Magn. Reson. Med. 9(1), 139–149 (1989).
[CrossRef] [PubMed]

Dunn, A.

Duong, T. Q.

T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
[CrossRef] [PubMed]

Elwell, C. E.

T. S. Leung, I. Tachtsidis, M. Tisdall, M. Smith, D. T. Delpy, and C. E. Elwell, “Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy,” Appl. Opt. 46(10), 1604–1614 (2007).
[CrossRef] [PubMed]

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995).
[CrossRef] [PubMed]

Essenpreis, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

Fabbri, F.

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Phys. Med. Biol. 49(7), 1183–1201 (2004).
[CrossRef] [PubMed]

Fantini, S.

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Phys. Med. Biol. 49(7), 1183–1201 (2004).
[CrossRef] [PubMed]

Firbank, M.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

Frahm, J.

J. Frahm, K. D. Merboldt, W. Hänicke, A. Kleinschmidt, and H. Boecker, “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed. 7(1-2), 45–53 (1994).
[CrossRef] [PubMed]

Franceschini, M. A.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” Neuroimage 25(3), 701–707 (2005).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, M. A. Franceschini, J. B. Mandeville, and D. A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947–959 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

Frank, L. R.

R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39(6), 855–864 (1998).
[CrossRef] [PubMed]

Frederick, B. D.

Y. Tong and B. D. Frederick, “Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain,” Neuroimage 53(2), 553–564 (2010).
[CrossRef] [PubMed]

Gaudette, T.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[CrossRef] [PubMed]

Gautama, T.

T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Signal nonlinearity in fMRI: a comparison between BOLD and MION,” IEEE Trans. Med. Imaging 22(5), 636–644 (2003).
[CrossRef] [PubMed]

Gias, C.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” Neuroimage 24(1), 200–206 (2005).
[CrossRef] [PubMed]

Goldbach, T.

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Hänicke, W.

J. Frahm, K. D. Merboldt, W. Hänicke, A. Kleinschmidt, and H. Boecker, “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed. 7(1-2), 45–53 (1994).
[CrossRef] [PubMed]

Harscher, S.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Heekeren, H. H.

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

Heiskala, J.

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
[CrossRef] [PubMed]

Henry, M. E.

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Phys. Med. Biol. 49(7), 1183–1201 (2004).
[CrossRef] [PubMed]

Hewson-Stoate, N.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” Neuroimage 24(1), 200–206 (2005).
[CrossRef] [PubMed]

Hielscher, A. H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Hiltunen, P.

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
[CrossRef] [PubMed]

Hiraoka, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

Hoge, R. D.

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef] [PubMed]

R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” Neuroimage 25(3), 701–707 (2005).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[CrossRef] [PubMed]

Hu, X.

T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
[CrossRef] [PubMed]

Huppert, T.

R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” Neuroimage 25(3), 701–707 (2005).
[CrossRef] [PubMed]

Huppert, T. J.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, “A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation,” J. Cereb. Blood Flow Metab. 27(6), 1262–1279 (2007).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

Iguchi, Y.

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[CrossRef] [PubMed]

Jacques, S. L.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Johnston, D.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” Neuroimage 24(1), 200–206 (2005).
[CrossRef] [PubMed]

Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, “A three-compartment model of the hemodynamic response and oxygen delivery to brain,” Neuroimage 28(4), 925–939 (2005).
[CrossRef] [PubMed]

Jones, M.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” Neuroimage 24(1), 200–206 (2005).
[CrossRef] [PubMed]

Jones, P. B.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, “A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation,” J. Cereb. Blood Flow Metab. 27(6), 1262–1279 (2007).
[CrossRef] [PubMed]

Kaipio, J. P.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[CrossRef] [PubMed]

Kamei, A.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 13(3), 516–520 (1993).
[PubMed]

Kato, T.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 13(3), 516–520 (1993).
[PubMed]

Khan, M. J.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995).
[CrossRef] [PubMed]

Kim, D. S.

D. S. Kim, Y. Matsuda, K. Ohki, A. Ajima, and S. Tanaka, “Geometrical and topological relationships between multiple functional maps in cat primary visual cortex,” Neuroreport 10(12), 2515–2522 (1999).
[CrossRef] [PubMed]

Kim, S. G.

T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
[CrossRef] [PubMed]

Kleinschmidt, A.

J. Frahm, K. D. Merboldt, W. Hänicke, A. Kleinschmidt, and H. Boecker, “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed. 7(1-2), 45–53 (1994).
[CrossRef] [PubMed]

Kohl, M.

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

Kolehmainen, V.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[CrossRef] [PubMed]

Kwong, K. K.

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995).
[CrossRef] [PubMed]

Lesage, F.

M. P. Vanni, J. Provost, C. Casanova, and F. Lesage, “Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity,” Neuroimage 49(2), 1416–1431 (2010).
[CrossRef] [PubMed]

J. M. Lina, M. Dehaes, C. Matteau-Pelletier, and F. Lesage, “Complex wavelets applied to diffuse optical spectroscopy for brain activity detection,” Opt. Express 16(2), 1029–1050 (2008).
[CrossRef] [PubMed]

Leung, T. S.

Lina, J. M.

Liu, H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Mandeville, J. B.

R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” Neuroimage 25(3), 701–707 (2005).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, M. A. Franceschini, J. B. Mandeville, and D. A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947–959 (2005).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[CrossRef] [PubMed]

Mandic, D. P.

T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Signal nonlinearity in fMRI: a comparison between BOLD and MION,” IEEE Trans. Med. Imaging 22(5), 636–644 (2003).
[CrossRef] [PubMed]

Markham, J.

J. Markham, B. R. White, B. W. Zeff, and J. P. Culver, “Blind identification of evoked human brain activity with independent component analysis of optical data,” Hum. Brain Mapp. 30(8), 2382–2392 (2009).
[CrossRef] [PubMed]

Marota, J. J.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[CrossRef] [PubMed]

Matsuda, Y.

D. S. Kim, Y. Matsuda, K. Ohki, A. Ajima, and S. Tanaka, “Geometrical and topological relationships between multiple functional maps in cat primary visual cortex,” Neuroreport 10(12), 2515–2522 (1999).
[CrossRef] [PubMed]

Matteau-Pelletier, C.

Mayhew, J.

Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, “A three-compartment model of the hemodynamic response and oxygen delivery to brain,” Neuroimage 28(4), 925–939 (2005).
[CrossRef] [PubMed]

Mayhew, J. E.

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” Neuroimage 24(1), 200–206 (2005).
[CrossRef] [PubMed]

Meek, J. H.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995).
[CrossRef] [PubMed]

Merboldt, K. D.

J. Frahm, K. D. Merboldt, W. Hänicke, A. Kleinschmidt, and H. Boecker, “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed. 7(1-2), 45–53 (1994).
[CrossRef] [PubMed]

Merkle, H.

T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
[CrossRef] [PubMed]

Moran, P.

P. Moran, “A flow velocityzeugmatographic interlace for NMR imaging in humans,” Magn. Reson. Med. 1, 197–203 (1982).

Nissilä, I.

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
[CrossRef] [PubMed]

Obrig, H.

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
[CrossRef]

Ohki, K.

D. S. Kim, Y. Matsuda, K. Ohki, A. Ajima, and S. Tanaka, “Geometrical and topological relationships between multiple functional maps in cat primary visual cortex,” Neuroreport 10(12), 2515–2522 (1999).
[CrossRef] [PubMed]

Okada, E.

Ozaki, T.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 13(3), 516–520 (1993).
[PubMed]

Penrose, R.

R. Penrose and J. A. Todd, “A generalized inverse for matrices,” Proc. Camb. Philos. Soc. 51(03), 406–413 (1955).
[CrossRef]

Petersen, S. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

Planck, J.

A. Villringer, J. Planck, S. Stodieck, K. Bötzel, L. Schleinkofer, and U. Dirnagl, “Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy,” Adv. Exp. Med. Biol. 345, 559–565 (1994).
[PubMed]

Provost, J.

M. P. Vanni, J. Provost, C. Casanova, and F. Lesage, “Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity,” Neuroimage 49(2), 1416–1431 (2010).
[CrossRef] [PubMed]

Raichle, M. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

Romaya, J.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995).
[CrossRef] [PubMed]

Rosen, B. R.

J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995).
[CrossRef] [PubMed]

Ruben, J.

R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
[CrossRef]

Sassaroli, A.

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Phys. Med. Biol. 49(7), 1183–1201 (2004).
[CrossRef] [PubMed]

Sato, C.

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[CrossRef] [PubMed]

Schlaggar, B. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Schleinkofer, L.

A. Villringer, J. Planck, S. Stodieck, K. Bötzel, L. Schleinkofer, and U. Dirnagl, “Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy,” Adv. Exp. Med. Biol. 345, 559–565 (1994).
[PubMed]

Schwarzmaier, H.-J.

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Schweiger, M.

Shimada, M.

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[CrossRef] [PubMed]

Siegel, A. M.

J. P. Culver, A. M. Siegel, M. A. Franceschini, J. B. Mandeville, and D. A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947–959 (2005).
[CrossRef] [PubMed]

Simon, M.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Smith, M.

Snyder, A. Z.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

Souza, S. P.

C. L. Dumoulin, S. P. Souza, M. F. Walker, and W. Wagle, “Three-dimensional phase contrast angiography,” Magn. Reson. Med. 9(1), 139–149 (1989).
[CrossRef] [PubMed]

Stodieck, S.

A. Villringer, J. Planck, S. Stodieck, K. Bötzel, L. Schleinkofer, and U. Dirnagl, “Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy,” Adv. Exp. Med. Biol. 345, 559–565 (1994).
[PubMed]

Stott, J.

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[CrossRef] [PubMed]

Strangman, G. E.

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
[CrossRef] [PubMed]

Tachtsidis, I.

Takashima, S.

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 13(3), 516–520 (1993).
[PubMed]

Tanaka, S.

D. S. Kim, Y. Matsuda, K. Ohki, A. Ajima, and S. Tanaka, “Geometrical and topological relationships between multiple functional maps in cat primary visual cortex,” Neuroreport 10(12), 2515–2522 (1999).
[CrossRef] [PubMed]

Tarvainen, T.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[CrossRef] [PubMed]

Terborg, C.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Thiel, A.

R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
[CrossRef]

Thompson, J. H.

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

Tisdall, M.

Tittel, F. K.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Tizzard, A.

Todd, J. A.

R. Penrose and J. A. Todd, “A generalized inverse for matrices,” Proc. Camb. Philos. Soc. 51(03), 406–413 (1955).
[CrossRef]

Tong, Y.

Y. Tong and B. D. Frederick, “Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain,” Neuroimage 53(2), 553–564 (2010).
[CrossRef] [PubMed]

Ugurbil, K.

T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
[CrossRef] [PubMed]

van der Zee, P.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Van Hulle, M. M.

T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Signal nonlinearity in fMRI: a comparison between BOLD and MION,” IEEE Trans. Med. Imaging 22(5), 636–644 (2003).
[CrossRef] [PubMed]

Vanni, M. P.

M. P. Vanni, J. Provost, C. Casanova, and F. Lesage, “Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity,” Neuroimage 49(2), 1416–1431 (2010).
[CrossRef] [PubMed]

Vaughan, J. T.

T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
[CrossRef] [PubMed]

Vauhkonen, M.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[CrossRef] [PubMed]

Villringer, A.

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
[CrossRef]

A. Villringer, J. Planck, S. Stodieck, K. Bötzel, L. Schleinkofer, and U. Dirnagl, “Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy,” Adv. Exp. Med. Biol. 345, 559–565 (1994).
[PubMed]

Villringer, K.

R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
[CrossRef]

Wagle, W.

C. L. Dumoulin, S. P. Souza, M. F. Walker, and W. Wagle, “Three-dimensional phase contrast angiography,” Magn. Reson. Med. 9(1), 139–149 (1989).
[CrossRef] [PubMed]

Walker, M. F.

C. L. Dumoulin, S. P. Souza, M. F. Walker, and W. Wagle, “Three-dimensional phase contrast angiography,” Magn. Reson. Med. 9(1), 139–149 (1989).
[CrossRef] [PubMed]

Weisskoff, R. M.

J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995).
[CrossRef] [PubMed]

Wenzel, R.

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
[CrossRef]

White, B. R.

B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” Neuroimage 49(1), 568–577 (2010).
[CrossRef] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

J. Markham, B. R. White, B. W. Zeff, and J. P. Culver, “Blind identification of evoked human brain activity with independent component analysis of optical data,” Hum. Brain Mapp. 30(8), 2382–2392 (2009).
[CrossRef] [PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[CrossRef] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Witte, O. W.

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

Wobst, P.

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

Wong, E. C.

R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39(6), 855–864 (1998).
[CrossRef] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J. S.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995).
[CrossRef] [PubMed]

Yacoub, E.

T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
[CrossRef] [PubMed]

Yaroslavsky, A.

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Yaroslavsky, I.

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Zeff, B. W.

J. Markham, B. R. White, B. W. Zeff, and J. P. Culver, “Blind identification of evoked human brain activity with independent component analysis of optical data,” Hum. Brain Mapp. 30(8), 2382–2392 (2009).
[CrossRef] [PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[CrossRef] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Zeki, S.

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
[CrossRef] [PubMed]

Zheng, Y.

Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, “A three-compartment model of the hemodynamic response and oxygen delivery to brain,” Neuroimage 28(4), 925–939 (2005).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (1)

A. Villringer, J. Planck, S. Stodieck, K. Bötzel, L. Schleinkofer, and U. Dirnagl, “Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy,” Adv. Exp. Med. Biol. 345, 559–565 (1994).
[PubMed]

Appl. Opt. (3)

Curr. Opin. Pediatr. (1)

A. J. du Plessis, “Near-infrared spectroscopy for the in vivo study of cerebral hemodynamics and oxygenation,” Curr. Opin. Pediatr. 7(6), 632–639 (1995).
[PubMed]

Hum. Brain Mapp. (1)

J. Markham, B. R. White, B. W. Zeff, and J. P. Culver, “Blind identification of evoked human brain activity with independent component analysis of optical data,” Hum. Brain Mapp. 30(8), 2382–2392 (2009).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Signal nonlinearity in fMRI: a comparison between BOLD and MION,” IEEE Trans. Med. Imaging 22(5), 636–644 (2003).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41 (1999).
[CrossRef]

J. Biomed. Opt. (4)

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
[CrossRef] [PubMed]

R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996).
[CrossRef]

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (3)

R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000).
[CrossRef] [PubMed]

T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 13(3), 516–520 (1993).
[PubMed]

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, “A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation,” J. Cereb. Blood Flow Metab. 27(6), 1262–1279 (2007).
[CrossRef] [PubMed]

J. Neurol. Neurosurg. Psychiatry (1)

C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004).
[PubMed]

J. Neurosci. (1)

G. Blasdel and D. Campbell, “Functional retinotopy of monkey visual cortex,” J. Neurosci. 21(20), 8286–8301 (2001).
[PubMed]

Magn. Reson. Med. (5)

R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39(6), 855–864 (1998).
[CrossRef] [PubMed]

P. Moran, “A flow velocityzeugmatographic interlace for NMR imaging in humans,” Magn. Reson. Med. 1, 197–203 (1982).

C. L. Dumoulin, S. P. Souza, M. F. Walker, and W. Wagle, “Three-dimensional phase contrast angiography,” Magn. Reson. Med. 9(1), 139–149 (1989).
[CrossRef] [PubMed]

J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995).
[CrossRef] [PubMed]

T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput. 26(3), 289–294 (1988).
[CrossRef] [PubMed]

Med. Phys. (1)

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995).
[CrossRef] [PubMed]

Neuroimage (13)

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” Neuroimage 25(3), 701–707 (2005).
[CrossRef] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

M. P. Vanni, J. Provost, C. Casanova, and F. Lesage, “Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity,” Neuroimage 49(2), 1416–1431 (2010).
[CrossRef] [PubMed]

C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” Neuroimage 24(1), 200–206 (2005).
[CrossRef] [PubMed]

B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” Neuroimage 49(1), 568–577 (2010).
[CrossRef] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001).
[CrossRef] [PubMed]

Y. Tong and B. D. Frederick, “Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain,” Neuroimage 53(2), 553–564 (2010).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, M. A. Franceschini, J. B. Mandeville, and D. A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947–959 (2005).
[CrossRef] [PubMed]

Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, “A three-compartment model of the hemodynamic response and oxygen delivery to brain,” Neuroimage 28(4), 925–939 (2005).
[CrossRef] [PubMed]

Neuroreport (1)

D. S. Kim, Y. Matsuda, K. Ohki, A. Ajima, and S. Tanaka, “Geometrical and topological relationships between multiple functional maps in cat primary visual cortex,” Neuroreport 10(12), 2515–2522 (1999).
[CrossRef] [PubMed]

NMR Biomed. (1)

J. Frahm, K. D. Merboldt, W. Hänicke, A. Kleinschmidt, and H. Boecker, “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed. 7(1-2), 45–53 (1994).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Med. Biol. (6)

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[CrossRef] [PubMed]

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Phys. Med. Biol. 49(7), 1183–1201 (2004).
[CrossRef] [PubMed]

Proc. Biol. Sci. (1)

J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995).
[CrossRef] [PubMed]

Proc. Camb. Philos. Soc. (1)

R. Penrose and J. A. Todd, “A generalized inverse for matrices,” Proc. Camb. Philos. Soc. 51(03), 406–413 (1955).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Other (3)

C. Zhou, “In-vivo optical imaging and spectroscopy of cerebral hemodynamics,” Ph.D. thesis, University of Pennsylvania (2007).

S. Prahl, “Optical Absorption of Hemoglobin,” http://omlcogiedu/spectra/hemoglobin/ summaryhtml (2002).

R. Buxton, Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques (Cambridge Univ. Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Horizontal optical arrays 1–3, vertical array (V) and high density (HD) grid superimposed on a 3D coronal view of the anatomical head model including the extra-cerebral vasculature (black) and the gray matter (GM). Sources and detectors are represented by red and blue dots, respectively.

Fig. 2.
Fig. 2.

3D coronal view of the anatomical head model including the extra-cerebral vasculature (black), gray matter (GM) and the region of activation (gold). The distance between the midline and the center of regions A, B and C were 10, 20 and 30 mm, respectively.

Fig. 3.
Fig. 3.

(a)–(d) 3D coronal views of the anatomical head model including the extra-cerebral vasculature (in black) and the region of activation A (in gold) superimposed with optical arrays 1, 2, 3 and V, respectively. Sources and detectors are represented by red and blue dots, respectively. (e)–(f) Corresponding recovered changes in oxyhemoglobin concentration ΔC HbO for source-detector distances of 30 and 45 mm, respectively. Four values are represented and correspond to: (blue) true change (9µMol/) simulated in the region of activation, (cyan: Sinus-PPL) change recovered using the anatomical model including the extra-cerebral vasculature and the partial pathlength, (yellow and dark red) changes recovered using the head model with no vasculature and the partial pathlength (NoSinus-PPL), and the total differential pathlength (NoSinus-DPL).

Fig. 4.
Fig. 4.

(a)–(d) 3D coronal views of the anatomical head model including the extra-cerebral vasculature (in black) and the regions of activation B and C (in gold) superimposed with optical arrays 1 and 2, respectively. Sources and detectors are represented by red and blue dots, respectively. (e)–(f) Corresponding recovered changes in oxyhemoglobin concentration ΔC HbO for source-detector distances of 30 and 45 mm, respectively. Four values are illustrated and correspond to: (blue) true change (9µMol/) simulated in the region of activation, (cyan: Sinus-PPL) change recovered using the head model containing the extra-cerebral vasculature and the partial pathlength, (yellow and dark red) changes recovered when the vasculature was not taken into account and using the partial pathlength (NoSinus-PPL), and the total differential pathlength (NoSinus-DPL).

Fig. 5.
Fig. 5.

(a)–(c) 3D coronal views of the anatomical head model including the extra-cerebral vasculature (in black) and the regions of activation A, B and C (in gold) superimposed with the HD grid. Sources and detectors are represented by red and blue dots, respectively. A true change ΔC HbO = 9µMol/ was simulated in the region of activation. (d)–(f) Corresponding recovered changes in oxyhemoglobin concentration ΔC Sinus HbO estimated with the model including the extra-cerebral vasculature (Sinus). (g)–(i) Corresponding recovered ΔC NoSinus HbO estimated when the vasculature was not modeled (No Sinus). (j)–(l) Corresponding normalized differences in percentage between ΔC HbO reconstructed from the two anatomical models. All images were posterior coronal projections of a cortical shell of 1 cm of thickness and represent the field of view of the HD grid when removing the scalp and the skull [13]. The white dashed circle superimposed on each 9 reconstruction maps indicated the diameter of the region of activation.

Tables (4)

Tables Icon

Table 1. Optical coefficients for anatomical models described in section 2.2 including baseline absorption coefficients μ a 0 [mm−1], scattering coefficients µs [mm−1], anisotropic factors g and refractive indexes n; Note that brain tissue included gray and white matters [21]

Tables Icon

Table 2. Correction factors [no unit] for ΔC HbO computed by the ratio between the true and the recovered change

Tables Icon

Table 3. Baseline Brain partial (PPL) and total differential (DPL) pathlengths [mm]

Tables Icon

Table 4. Correction factors [no unit] when recovering ΔC HbO with traditional partial pathlength (tPPL) of detected photons within only the given region of activation for cases described in Fig. 3; Cases from Fig. 4 yield similar results

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

μ a 0 λ = 2.303 ( ξ HbO λ C HbO + ξ HbR λ C HbR )
Φ Φ 0 = exp ( μ a λ DPL λ )
Δ OD λ = ln ( [ Φ Φ 0 ] A [ Φ Φ 0 ] B ) = Δ μ a λ DPL B λ .
Δ a , Sinus-PPL λ = Δ OD Sinus λ PPL B , Sinus λ ,
Δ μ a , NoSinus PPL λ = Δ OD Sinus λ PPL B , NoSinus λ , and Δ μ a , NoSinus DPL λ = Δ OD Sinus λ DPL B , NoSinus λ .
M Δ μ a = y with M = [ M 690 , M 830 ] and M λ = Σ i = 1 N mea Σ j = 1 N vox Φ 0 ( r s , i , r j , λ ) Φ 0 ( r j , r d , i , λ )
Δ μ a = M T ( M M T + γ I ) 1 P Δ y with I = 1 diag ( M M T ) + β
Δ μ a , Sinus = P Sinus Δ y Sinus and Δ μ a , NoSinus = P NoSinus Δ y Sinus .

Metrics