Abstract

The rapid identification of algae species is not only of practical importance when monitoring unwanted adverse effects such as eutrophication, but also when assessing the water quality of watersheds. Here, we demonstrate a lab-on-a-chip that functions as a compact robust tool for the fast screening, real-time monitoring, and initial classification of algae. The water-algae sample, flowing in a microfluidic channel, is side-illuminated by an integrated subsurface waveguide. The waveguide is curved to improve the device sensitivity. The changes in the transmitted optical signal are monitored using a quadrant-cell photo-detector. The signal-wavelets from the different quadrants are used to qualitatively distinguish different families of algae. The channel and waveguide are fabricated out of a monolithic fused-silica substrate using a femtosecond laser-writing process combined with chemical etching. This proof-of-concept device paves the way for more elaborate femtosecond laser-based optofluidic micro-instruments incorporating waveguide networks designed for the real-time field analysis of cells and microorganisms.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
    [CrossRef] [PubMed]
  2. L. Zhou, H. Yu, and K. Chen, “Relationship between microcystin in drinking water and colorectal cancer,” Biomed. Environ. Sci. 15(2), 166–171 (2002).
    [PubMed]
  3. I. Chorus, and J. Bartram, Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, (World Health Organization, 1999).
  4. European Parliament, “Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC,” Off. J. Eur. Union 49, 37 (2006).
  5. J. Mouawad, “Exxon to Invest Millions to Make Fuel from Algae,” The New York Times, New York ed. July 13, 2009, p. B1.
  6. D. Schneider, “Bioengineering Algae for Fuels,” IEEE Spectrum, July 22, 2009, http://spectrum.ieee.org/energywise/energy/renewables/bioengineering-algae-for-fuels .
  7. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  8. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [CrossRef] [PubMed]
  9. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
    [CrossRef] [PubMed]
  10. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
    [CrossRef] [PubMed]
  11. Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
    [CrossRef] [PubMed]
  12. Y. Bellouard, A. A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Proceedings of Materials Research Society Fall Meeting Symposium A, Vol. 782 (Materials Research Society, 2003), pp. 63–68
  13. A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. Mabesa, “Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks,” in Proc. SPIE 5339 (2004).
  14. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
    [CrossRef] [PubMed]
  15. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
    [CrossRef] [PubMed]
  16. M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
    [CrossRef] [PubMed]
  17. V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
    [CrossRef] [PubMed]
  18. V. Pahilwani, Y. Bellouard, A. A. Said, M. Dugan, and P. Bado, “In-situ optical detection of mesoscale components in glass microfluidic channel with monolithic waveguide,” Proc. SPIE 6715 (2007)
  19. Y. Bellouard, V. K. Pahilwani, T. Rohrlack, A. A. Said, M. Dugan, and P. Bado, “Towards a femtosecond laser micromachined optofluidic device for distinguishing algae species,” Proc. SPIE 7203 (2009).
  20. F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
    [CrossRef]
  21. Scandinavian Culture Collection of Algae & Protozoa, “Z8,” http://www.sccap.dk/media/freshwater/7.asp

2010 (1)

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

2009 (3)

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[CrossRef] [PubMed]

V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
[CrossRef] [PubMed]

2008 (1)

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[CrossRef] [PubMed]

2006 (2)

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

European Parliament, “Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC,” Off. J. Eur. Union 49, 37 (2006).

2005 (1)

2004 (1)

2002 (1)

L. Zhou, H. Yu, and K. Chen, “Relationship between microcystin in drinking water and colorectal cancer,” Biomed. Environ. Sci. 15(2), 166–171 (2002).
[PubMed]

2001 (1)

1998 (1)

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

1996 (1)

An, J. S.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Antunes, M. B.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Applegate, R. W.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Azevedo, S. M. F. O.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Bado, P.

Barreto, V. S.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Bellouard, Y.

Cardo, D. M.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Carmichael, W. W.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Cerullo, G.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Chen, K.

L. Zhou, H. Yu, and K. Chen, “Relationship between microcystin in drinking water and colorectal cancer,” Biomed. Environ. Sci. 15(2), 166–171 (2002).
[PubMed]

Cheng, Y.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Cookson, S. T.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Davis, K. M.

de Melo Filho, D. A.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Dongre, C.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Dugan, M.

Dugan, M. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Grenier, J. R.

Grigoropoulos, C. P.

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[CrossRef] [PubMed]

Hanada, Y.

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[CrossRef] [PubMed]

He, F.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Herman, P. R.

Hirao, K.

Hiromatsu, K.

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[CrossRef] [PubMed]

Ho, S.

Holmes, C. E. M.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Hwang, D. J.

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[CrossRef] [PubMed]

Ishikawa, I. S.

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[CrossRef] [PubMed]

Jarvis, W. R.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Jeon, H.

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[CrossRef] [PubMed]

Jochimsen, E. M.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Juodkazis, S.

Kawano, H.

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[CrossRef] [PubMed]

Kim, M.

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[CrossRef] [PubMed]

Lyra, T. M.

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Marcinkevicius, A.

Marr, D. W. M.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Maselli, V.

Matsuo, S.

Midorikawa, K.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[CrossRef] [PubMed]

Misawa, H.

Miura, K.

Miwa, M.

Miyawaki, A.

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[CrossRef] [PubMed]

Nishii, J.

Nolli, D.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Oakey, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Osellame, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Pollnau, M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Qiao, L.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Ramponi, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Said, A.

Said, A. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Squier, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Sugimoto, N.

Sugioka, K.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[CrossRef] [PubMed]

van den Vlekkert, H.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Vazquez, R. M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Vestad, T.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Wang, C.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Watanabe, M.

Wu, J.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Xu, Z.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Yu, H.

L. Zhou, H. Yu, and K. Chen, “Relationship between microcystin in drinking water and colorectal cancer,” Biomed. Environ. Sci. 15(2), 166–171 (2002).
[PubMed]

Zhou, L.

L. Zhou, H. Yu, and K. Chen, “Relationship between microcystin in drinking water and colorectal cancer,” Biomed. Environ. Sci. 15(2), 166–171 (2002).
[PubMed]

Appl. Phys. Lett. (1)

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Biomed. Environ. Sci. (1)

L. Zhou, H. Yu, and K. Chen, “Relationship between microcystin in drinking water and colorectal cancer,” Biomed. Environ. Sci. 15(2), 166–171 (2002).
[PubMed]

Biomed. Microdevices (1)

Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices 10(3), 403–410 (2008).
[CrossRef] [PubMed]

Lab Chip (3)

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009).
[CrossRef] [PubMed]

N. Engl. J. Med. (1)

E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. F. O. Azevedo, and W. R. Jarvis, “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” N. Engl. J. Med. 338(13), 873–878 (1998).
[CrossRef] [PubMed]

Off. J. Eur. Union (1)

European Parliament, “Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC,” Off. J. Eur. Union 49, 37 (2006).

Opt. Express (3)

Opt. Lett. (2)

Other (8)

J. Mouawad, “Exxon to Invest Millions to Make Fuel from Algae,” The New York Times, New York ed. July 13, 2009, p. B1.

D. Schneider, “Bioengineering Algae for Fuels,” IEEE Spectrum, July 22, 2009, http://spectrum.ieee.org/energywise/energy/renewables/bioengineering-algae-for-fuels .

I. Chorus, and J. Bartram, Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, (World Health Organization, 1999).

V. Pahilwani, Y. Bellouard, A. A. Said, M. Dugan, and P. Bado, “In-situ optical detection of mesoscale components in glass microfluidic channel with monolithic waveguide,” Proc. SPIE 6715 (2007)

Y. Bellouard, V. K. Pahilwani, T. Rohrlack, A. A. Said, M. Dugan, and P. Bado, “Towards a femtosecond laser micromachined optofluidic device for distinguishing algae species,” Proc. SPIE 7203 (2009).

Y. Bellouard, A. A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Proceedings of Materials Research Society Fall Meeting Symposium A, Vol. 782 (Materials Research Society, 2003), pp. 63–68

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. Mabesa, “Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks,” in Proc. SPIE 5339 (2004).

Scandinavian Culture Collection of Algae & Protozoa, “Z8,” http://www.sccap.dk/media/freshwater/7.asp

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of our biochip working principle: the biochip consists of a fluidic channel and a curved waveguide buried in the glass. A Gaussian beam emitted by a single mode fiber is coupled into the biochip waveguide and diverges to illuminate a small length of the fluidic channel. When objects pass through the fluidic channel, they momentarily distort the beam intensity profile. The light coming out of the biochips is then refocused onto a four-quad detector to monitor small changes of intensity.

Fig. 2
Fig. 2

(Left) General structure of the biochip. Top part: 3D CAD rendering, Bottom part: cross section of the biochips. The complete biochip is made of four parts: a glass part containing a fluidic channel and a buried waveguide, a PDMS layer sealing the top of the channel, and a PDMS inlet and outlet to allow fluidic connections. The optofluidic device has a curved subsurface waveguide which is femtosecond laser-formed in the fused silica substrate. (Right) The complete, assembled lab-on-a-chip is shown in the top image. The bottom image shows the waveguide and the fluidic channel with a bead passing by, with an outline of the measurement principle.

Fig. 3
Fig. 3

Images (left) taken on the fly by the camera (with a 20X objective) overlooking the fluidic channel. Image capture is triggered by the sample signals (right) rising above a set threshold. The channel width is 100 microns. Algae as small as 10-20 microns can be detected using this technique. Note the very low signal-to-noise ratio.

Fig. 4
Fig. 4

The three test function shapes fij used in the convolution process, with an arbitrary position in the time axis. Each shape is a set of four sub-shapes, each scaled differently in time, shown with progressively lighter shades.

Fig. 5
Fig. 5

(Left) The mi values for each test, representing the maximum value found in the convolution of the test with the sets of test function shapes shown in Fig. 4. The black points are Cyanothece (216 tests), as identified visually from the microscope photos, and the lighter blue points are all other species (403 tests). The volume in m-space chosen as in Eq. (3) to distinguish the Cyanothece is marked in red . (Right) Summary of the results of the automated method for distinguishing Cyanothece from the other algae species.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

c ijk  = f ij h k (t)
m ik  = max(c ijk )
10< m 1k <22 1.1< m 2k m 1k <4 2.5< m 3k m 1k <4

Metrics