Abstract

The near infrared spectroscopy (NIRS) frequency-domain multi-distance (FD-MD) method allows for the estimation of optical properties in biological tissue using the phase and intensity of radiofrequency modulated light at different source-detector separations. In this study, we evaluated the accuracy of this method to retrieve the absorption coefficient of the brain at different ages. Synthetic measurements were generated with Monte Carlo simulations in magnetic resonance imaging (MRI)-based heterogeneous head models for four ages: newborn, 6 and 12 month old infants, and adult. For each age, we determined the optimal set of source-detector separations and estimated the corresponding errors. Errors arise from different origins: methodological (FD-MD) and anatomical (curvature, head size and contamination by extra-cerebral tissues). We found that the brain optical absorption could be retrieved with an error between 8–24% in neonates and infants, while the error increased to 19–44% in adults over all source-detector distances. The dominant contribution to the error was found to be the head curvature in neonates and infants, and the extra-cerebral tissues in adults.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010).
    [CrossRef] [PubMed]
  2. T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11(3), 361–370 (2008).
    [CrossRef] [PubMed]
  3. T. Karen, G. Morren, D. Haensse, A. S. Bauschatz, H. U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy,” Hum. Brain Mapp. 29(4), 453–460 (2008).
    [CrossRef] [PubMed]
  4. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
    [CrossRef] [PubMed]
  5. K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
    [PubMed]
  6. P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
    [CrossRef] [PubMed]
  7. M. Schecklmann, A. C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency,” Neuroimage 43(1), 147–155 (2008).
    [CrossRef] [PubMed]
  8. H. Bortfeld, E. Fava, and D. A. Boas, “Identifying cortical lateralization of speech processing in infants using near-infrared spectroscopy,” Dev. Neuropsychol. 34(1), 52–65 (2009).
    [CrossRef] [PubMed]
  9. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
    [CrossRef] [PubMed]
  10. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
    [PubMed]
  11. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
    [CrossRef] [PubMed]
  12. P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
    [CrossRef] [PubMed]
  13. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
    [CrossRef] [PubMed]
  14. G. Naulaers, G. Morren, S. Van Huffel, P. Casaer, and H. Devlieger, “Cerebral tissue oxygenation index in very premature infants,” Arch. Dis. Child. Fetal Neonatal Ed. 87(3), F189–F192 (2002).
    [CrossRef] [PubMed]
  15. T. S. Leung, I. Tachtsidis, M. Smith, D. T. Delpy, and C. E. Elwell, “Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy,” Phys. Med. Biol. 51(3), 703–717 (2006).
    [CrossRef] [PubMed]
  16. G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
    [CrossRef] [PubMed]
  17. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  18. S. Fantini, M. Franceschini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
    [CrossRef]
  19. S. J. Matcher, “Closed-form expressions for obtaining the absorption and scattering coefficients of a turbid medium with time-resolved spectroscopy,” Appl. Opt. 36(31), 8298–8302 (1997).
    [CrossRef] [PubMed]
  20. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
    [CrossRef] [PubMed]
  21. V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28(6), 1115–1124 (2001).
    [CrossRef] [PubMed]
  22. A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26(24), 1963–1965 (2001).
    [CrossRef] [PubMed]
  23. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003).
    [CrossRef] [PubMed]
  24. F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements,” Opt. Lett. 29(17), 2037–2039 (2004).
    [CrossRef] [PubMed]
  25. C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express 12(17), 4103–4112 (2004).
    [CrossRef] [PubMed]
  26. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
    [CrossRef] [PubMed]
  27. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
    [CrossRef] [PubMed]
  28. L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
    [CrossRef] [PubMed]
  29. S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
    [CrossRef] [PubMed]
  30. J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10(2), 024028 (2005).
    [CrossRef] [PubMed]
  31. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
    [CrossRef] [PubMed]
  32. D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46(10), 1717–1725 (2007).
    [CrossRef] [PubMed]
  33. E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
    [CrossRef] [PubMed]
  34. A. Kienle, M. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37(4), 779–791 (1998).
    [CrossRef] [PubMed]
  35. F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52(10), 2827–2843 (2007).
    [CrossRef] [PubMed]
  36. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42(16), 3095–3108 (2003).
    [CrossRef] [PubMed]
  37. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
    [PubMed]
  38. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
    [CrossRef] [PubMed]
  39. S. Prahl, “Optical absorption of hemoglobin,” http://omlcogiedu/spectra/hemoglobin/summary.html (2002).
  40. A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
    [CrossRef]
  41. S. Fantini, M. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11(10), 2128–2138 (1994).
    [CrossRef]
  42. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
    [CrossRef] [PubMed]
  43. S. Meyer, Data Analysis for Scientists and Engineers (Wiley, 1975).
  44. J. Heiskala, T. Neuvonen, P. E. Grant, and I. Nissilä, “Significance of tissue anisotropy in optical tomography of the infant brain,” Appl. Opt. 46(10), 1633–1640 (2007).
    [CrossRef] [PubMed]
  45. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1(1), 165–175 (2010).
    [CrossRef] [PubMed]

2010

Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010).
[CrossRef] [PubMed]

K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
[PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[CrossRef] [PubMed]

Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1(1), 165–175 (2010).
[CrossRef] [PubMed]

2009

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

H. Bortfeld, E. Fava, and D. A. Boas, “Identifying cortical lateralization of speech processing in infants using near-infrared spectroscopy,” Dev. Neuropsychol. 34(1), 52–65 (2009).
[CrossRef] [PubMed]

2008

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11(3), 361–370 (2008).
[CrossRef] [PubMed]

T. Karen, G. Morren, D. Haensse, A. S. Bauschatz, H. U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy,” Hum. Brain Mapp. 29(4), 453–460 (2008).
[CrossRef] [PubMed]

M. Schecklmann, A. C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency,” Neuroimage 43(1), 147–155 (2008).
[CrossRef] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

2007

D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46(10), 1717–1725 (2007).
[CrossRef] [PubMed]

F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52(10), 2827–2843 (2007).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

J. Heiskala, T. Neuvonen, P. E. Grant, and I. Nissilä, “Significance of tissue anisotropy in optical tomography of the infant brain,” Appl. Opt. 46(10), 1633–1640 (2007).
[CrossRef] [PubMed]

2006

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[CrossRef] [PubMed]

T. S. Leung, I. Tachtsidis, M. Smith, D. T. Delpy, and C. E. Elwell, “Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy,” Phys. Med. Biol. 51(3), 703–717 (2006).
[CrossRef] [PubMed]

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

2005

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10(2), 024028 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

2004

2003

2002

D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[PubMed]

G. Naulaers, G. Morren, S. Van Huffel, P. Casaer, and H. Devlieger, “Cerebral tissue oxygenation index in very premature infants,” Arch. Dis. Child. Fetal Neonatal Ed. 87(3), F189–F192 (2002).
[CrossRef] [PubMed]

2001

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
[CrossRef] [PubMed]

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28(6), 1115–1124 (2001).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26(24), 1963–1965 (2001).
[CrossRef] [PubMed]

1999

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

1998

1997

1996

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

1995

S. Fantini, M. Franceschini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

1994

1992

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

1989

Abrahamsson, C.

Amigoni, A.

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
[CrossRef] [PubMed]

Andersson-Engels, S.

Arridge, S. R.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Arvin, K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

Austin, T.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

Avrillier, S.

Barbieri, B.

S. Fantini, M. Franceschini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
[CrossRef] [PubMed]

Barnett, A. H.

Bassi, A.

Bauschatz, A. S.

T. Karen, G. Morren, D. Haensse, A. S. Bauschatz, H. U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy,” Hum. Brain Mapp. 29(4), 453–460 (2008).
[CrossRef] [PubMed]

Bays, R.

Berghold, A.

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

Boas, D.

Boas, D. A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[CrossRef] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

H. Bortfeld, E. Fava, and D. A. Boas, “Identifying cortical lateralization of speech processing in infants using near-infrared spectroscopy,” Dev. Neuropsychol. 34(1), 52–65 (2009).
[CrossRef] [PubMed]

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11(3), 361–370 (2008).
[CrossRef] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[CrossRef] [PubMed]

A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42(16), 3095–3108 (2003).
[CrossRef] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

Bortfeld, H.

H. Bortfeld, E. Fava, and D. A. Boas, “Identifying cortical lateralization of speech processing in infants using near-infrared spectroscopy,” Dev. Neuropsychol. 34(1), 52–65 (2009).
[CrossRef] [PubMed]

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11(3), 361–370 (2008).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

Bucher, H. U.

T. Karen, G. Morren, D. Haensse, A. S. Bauschatz, H. U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy,” Hum. Brain Mapp. 29(4), 453–460 (2008).
[CrossRef] [PubMed]

Carp, S. A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[CrossRef] [PubMed]

Casaer, P.

G. Naulaers, G. Morren, S. Van Huffel, P. Casaer, and H. Devlieger, “Cerebral tissue oxygenation index in very premature infants,” Arch. Dis. Child. Fetal Neonatal Ed. 87(3), F189–F192 (2002).
[CrossRef] [PubMed]

Chance, B.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10(2), 024028 (2005).
[CrossRef] [PubMed]

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28(6), 1115–1124 (2001).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Chiandetti, L.

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
[CrossRef] [PubMed]

Choi, J.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

Comelli, D.

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Cubeddu, R.

Culver, J.

Culver, J. P.

Dale, A.

Dam, J. S.

Del Bianco, S.

F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52(10), 2827–2843 (2007).
[CrossRef] [PubMed]

F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements,” Opt. Lett. 29(17), 2037–2039 (2004).
[CrossRef] [PubMed]

Delpy, D. T.

T. S. Leung, I. Tachtsidis, M. Smith, D. T. Delpy, and C. E. Elwell, “Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy,” Phys. Med. Biol. 51(3), 703–717 (2006).
[CrossRef] [PubMed]

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Devlieger, H.

G. Naulaers, G. Morren, S. Van Huffel, P. Casaer, and H. Devlieger, “Cerebral tissue oxygenation index in very premature infants,” Arch. Dis. Child. Fetal Neonatal Ed. 87(3), F189–F192 (2002).
[CrossRef] [PubMed]

Diamond, S. G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

Ding, H. S.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10(2), 024028 (2005).
[CrossRef] [PubMed]

Dögnitz, N.

Dunn, A.

Ehlis, A. C.

M. Schecklmann, A. C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency,” Neuroimage 43(1), 147–155 (2008).
[CrossRef] [PubMed]

Elwell, C. E.

T. S. Leung, I. Tachtsidis, M. Smith, D. T. Delpy, and C. E. Elwell, “Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy,” Phys. Med. Biol. 51(3), 703–717 (2006).
[CrossRef] [PubMed]

Everdell, N. L.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

Fallgatter, A. J.

M. Schecklmann, A. C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency,” Neuroimage 43(1), 147–155 (2008).
[CrossRef] [PubMed]

Fang, Q.

Fantini, S.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

S. Fantini, M. Franceschini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

S. Fantini, M. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11(10), 2128–2138 (1994).
[CrossRef]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
[CrossRef] [PubMed]

Fava, E.

H. Bortfeld, E. Fava, and D. A. Boas, “Identifying cortical lateralization of speech processing in infants using near-infrared spectroscopy,” Dev. Neuropsychol. 34(1), 52–65 (2009).
[CrossRef] [PubMed]

Fellman, V.

K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
[PubMed]

Fishkin, J. B.

Folestad, S.

Franceschini, M.

S. Fantini, M. Franceschini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

S. Fantini, M. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11(10), 2128–2138 (1994).
[CrossRef]

Franceschini, M. A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[CrossRef] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
[CrossRef] [PubMed]

Freato, F.

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
[CrossRef] [PubMed]

Futatsubashi, M.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

Gagnon, L.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

Gaster, A.

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

Gauthier, C.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

Goldbach, T.

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Grant, P. E.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[CrossRef] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

J. Heiskala, T. Neuvonen, P. E. Grant, and I. Nissilä, “Significance of tissue anisotropy in optical tomography of the infant brain,” Appl. Opt. 46(10), 1633–1640 (2007).
[CrossRef] [PubMed]

Gratton, E.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

S. Fantini, M. Franceschini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

S. Fantini, M. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11(10), 2128–2138 (1994).
[CrossRef]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
[CrossRef] [PubMed]

Grosenick, D.

Grossauer, K.

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

Gupta, R.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

Haensse, D.

T. Karen, G. Morren, D. Haensse, A. S. Bauschatz, H. U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy,” Hum. Brain Mapp. 29(4), 453–460 (2008).
[CrossRef] [PubMed]

Hebden, J. C.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

Heiskala, J.

Hoge, R. D.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

Honda, Y.

Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010).
[CrossRef] [PubMed]

Hou, X. L.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10(2), 024028 (2005).
[CrossRef] [PubMed]

Hueber, D.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Huotilainen, M.

K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
[PubMed]

Ijichi, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

Imai, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

Isobe, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

Itoh, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

Johansson, J.

Joseph, D. K.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[CrossRef] [PubMed]

Kakigi, R.

Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010).
[CrossRef] [PubMed]

Kanazawa, S.

Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010).
[CrossRef] [PubMed]

Kanno, T.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

Karen, T.

T. Karen, G. Morren, D. Haensse, A. S. Bauschatz, H. U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy,” Hum. Brain Mapp. 29(4), 453–460 (2008).
[CrossRef] [PubMed]

Kawada, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

Kienle, A.

Kojima, S.

Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010).
[CrossRef] [PubMed]

Kotilahti, K.

K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
[PubMed]

Krishnamoorthy, K. K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

Krishnamoorthy, K. S.

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

Kusaka, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

Lesage, F.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

Leung, T. S.

T. S. Leung, I. Tachtsidis, M. Smith, D. T. Delpy, and C. E. Elwell, “Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy,” Phys. Med. Biol. 51(3), 703–717 (2006).
[CrossRef] [PubMed]

Liebert, A.

Lipiäinen, L.

K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
[PubMed]

Macdonald, R.

Maier, J.

S. Fantini, M. Franceschini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

Mantulin, W.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

Marangoni, P.

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
[CrossRef] [PubMed]

Martelli, F.

Matcher, S. J.

Maulik, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Meek, J. H.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

Meriläinen, P.

K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
[PubMed]

Michalos, A.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

Möller, M.

Morren, G.

T. Karen, G. Morren, D. Haensse, A. S. Bauschatz, H. U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy,” Hum. Brain Mapp. 29(4), 453–460 (2008).
[CrossRef] [PubMed]

G. Naulaers, G. Morren, S. Van Huffel, P. Casaer, and H. Devlieger, “Cerebral tissue oxygenation index in very premature infants,” Arch. Dis. Child. Fetal Neonatal Ed. 87(3), F189–F192 (2002).
[CrossRef] [PubMed]

Müller, W.

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

Nakato, E.

Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010).
[CrossRef] [PubMed]

Namba, M.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

Näsi, T.

K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
[PubMed]

Naulaers, G.

G. Naulaers, G. Morren, S. Van Huffel, P. Casaer, and H. Devlieger, “Cerebral tissue oxygenation index in very premature infants,” Arch. Dis. Child. Fetal Neonatal Ed. 87(3), F189–F192 (2002).
[CrossRef] [PubMed]

Neuvonen, T.

Nghiem, H. L.

Nishida, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

Nissilä, I.

K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
[PubMed]

J. Heiskala, T. Neuvonen, P. E. Grant, and I. Nissilä, “Significance of tissue anisotropy in optical tomography of the infant brain,” Appl. Opt. 46(10), 1633–1640 (2007).
[CrossRef] [PubMed]

Nobesawa, S.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

Noponen, T.

K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
[PubMed]

Ntziachristos, V.

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28(6), 1115–1124 (2001).
[CrossRef] [PubMed]

Oda, M.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

Ohmae, E.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

Okada, H.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

Okubo, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

Otsuka, Y.

Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010).
[CrossRef] [PubMed]

Ouchi, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

Patel, M.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[CrossRef] [PubMed]

Patterson, M.

Patterson, M. S.

Peichl, E.

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

Pichler, G.

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

Pifferi, A.

Plichta, M. M.

M. Schecklmann, A. C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency,” Neuroimage 43(1), 147–155 (2008).
[CrossRef] [PubMed]

Polzonetti, C.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

Rinneberg, H.

Roche-Labarbe, N.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[CrossRef] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

Rosenfeld, W.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Safonova, L. P.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

Salvadori, S.

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
[CrossRef] [PubMed]

Sassaroli, A.

F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52(10), 2827–2843 (2007).
[CrossRef] [PubMed]

Schecklmann, M.

M. Schecklmann, A. C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency,” Neuroimage 43(1), 147–155 (2008).
[CrossRef] [PubMed]

Schiavo, B.

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
[CrossRef] [PubMed]

Schwantzer, G.

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

Schwarzmaier, H.-J.

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Schweiger, M.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

Selb, J.

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[CrossRef] [PubMed]

Smith, M.

T. S. Leung, I. Tachtsidis, M. Smith, D. T. Delpy, and C. E. Elwell, “Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy,” Phys. Med. Biol. 51(3), 703–717 (2006).
[CrossRef] [PubMed]

Sorensen, A. G.

Stamm, H.

Stankovic, M. R.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Sterenborg, H. J.

Stott, J.

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

Stubblefield, P. G.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Suppjei, A.

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
[CrossRef] [PubMed]

Surova, A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[CrossRef] [PubMed]

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

Suzuki, T.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

Svanberg, S.

Svensson, T.

Swartling, J.

Tachtsidis, I.

T. S. Leung, I. Tachtsidis, M. Smith, D. T. Delpy, and C. E. Elwell, “Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy,” Phys. Med. Biol. 51(3), 703–717 (2006).
[CrossRef] [PubMed]

Taroni, P.

Thaker, S.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

Themelis, G.

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

Toronov, V.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

Torricelli, A.

Tualle, J. M.

Ueda, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

Urlesberger, B.

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

van den Bergh, H.

Van Huffel, S.

G. Naulaers, G. Morren, S. Van Huffel, P. Casaer, and H. Devlieger, “Cerebral tissue oxygenation index in very premature infants,” Arch. Dis. Child. Fetal Neonatal Ed. 87(3), F189–F192 (2002).
[CrossRef] [PubMed]

van Veen, R. L.

Wabnitz, H.

Wagnières, G.

Walker, S.

S. Fantini, M. Franceschini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

Warren, E. K.

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

Whelan, M.

Wilcox, T.

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11(3), 361–370 (2008).
[CrossRef] [PubMed]

Wilson, B. C.

Wolf, M.

T. Karen, G. Morren, D. Haensse, A. S. Bauschatz, H. U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy,” Hum. Brain Mapp. 29(4), 453–460 (2008).
[CrossRef] [PubMed]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

Wolf, U.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

Woods, R.

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11(3), 361–370 (2008).
[CrossRef] [PubMed]

Wruck, E.

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11(3), 361–370 (2008).
[CrossRef] [PubMed]

Wyatt, J. S.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

Yamaguchi, M. K.

Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010).
[CrossRef] [PubMed]

Yamashita, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

Yaroslavsky, A.

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Yaroslavsky, I.

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Yoshikawa, E.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

Zaccanti, G.

Zaramella, P.

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10(2), 024028 (2005).
[CrossRef] [PubMed]

Zhou, C. L.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10(2), 024028 (2005).
[CrossRef] [PubMed]

Zotter, H.

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

Appl. Opt.

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

S. J. Matcher, “Closed-form expressions for obtaining the absorption and scattering coefficients of a turbid medium with time-resolved spectroscopy,” Appl. Opt. 36(31), 8298–8302 (1997).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[CrossRef] [PubMed]

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46(10), 1717–1725 (2007).
[CrossRef] [PubMed]

A. Kienle, M. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37(4), 779–791 (1998).
[CrossRef] [PubMed]

A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42(16), 3095–3108 (2003).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
[CrossRef] [PubMed]

J. Heiskala, T. Neuvonen, P. E. Grant, and I. Nissilä, “Significance of tissue anisotropy in optical tomography of the infant brain,” Appl. Opt. 46(10), 1633–1640 (2007).
[CrossRef] [PubMed]

Arch. Dis. Child. Fetal Neonatal Ed.

G. Naulaers, G. Morren, S. Van Huffel, P. Casaer, and H. Devlieger, “Cerebral tissue oxygenation index in very premature infants,” Arch. Dis. Child. Fetal Neonatal Ed. 87(3), F189–F192 (2002).
[CrossRef] [PubMed]

Biomed. Opt. Express

Brain Res.

Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010).
[CrossRef] [PubMed]

Dev. Neuropsychol.

H. Bortfeld, E. Fava, and D. A. Boas, “Identifying cortical lateralization of speech processing in infants using near-infrared spectroscopy,” Dev. Neuropsychol. 34(1), 52–65 (2009).
[CrossRef] [PubMed]

Dev. Sci.

T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11(3), 361–370 (2008).
[CrossRef] [PubMed]

Hum. Brain Mapp.

T. Karen, G. Morren, D. Haensse, A. S. Bauschatz, H. U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy,” Hum. Brain Mapp. 29(4), 453–460 (2008).
[CrossRef] [PubMed]

K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010).
[PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10(2), 024028 (2005).
[CrossRef] [PubMed]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004).
[CrossRef] [PubMed]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[CrossRef] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Med. Phys.

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28(6), 1115–1124 (2001).
[CrossRef] [PubMed]

Neuroimage

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[CrossRef] [PubMed]

M. Schecklmann, A. C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency,” Neuroimage 43(1), 147–155 (2008).
[CrossRef] [PubMed]

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006).
[CrossRef] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

Opt. Eng.

S. Fantini, M. Franceschini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Pediatr. Res.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007).
[PubMed]

P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

T. S. Leung, I. Tachtsidis, M. Smith, D. T. Delpy, and C. E. Elwell, “Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy,” Phys. Med. Biol. 51(3), 703–717 (2006).
[CrossRef] [PubMed]

F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52(10), 2827–2843 (2007).
[CrossRef] [PubMed]

Proc. SPIE

A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Other

S. Prahl, “Optical absorption of hemoglobin,” http://omlcogiedu/spectra/hemoglobin/summary.html (2002).

S. Meyer, Data Analysis for Scientists and Engineers (Wiley, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Segmented head models: 3D and 2D axial views. Segmentations consist of 4 tissue types: superficial layers (superf) of scalp and skull, CSF, gray matter (GM), and white matter (WM). Sources and detectors are represented by red crosses and blue dots respectively. The black bar (3 cm) in the bottom right of the image indicates the scale of all 2D slices.

Fig. 2.
Fig. 2.

Retrieved absorption coefficients of a homogeneous slab (calibrated with μa = 0.1cm−1). Calibrated (dashed) and uncalibrated (solid) are compared to true (dash-dotted) values with respect to SDs for different homogeneous coefficients of absorption [cm−1]: 0.05 (blue); 0.10 (green); 0.15 (red); 0.20 (cyan); 0.25 (magenta); 0.30 (yellow).

Fig. 3.
Fig. 3.

Estimated μa ,brain when the head is treated as a homogeneous medium, i.e. when μa ,superf = μa ,brain = [0.05,0.06, . . . ,0.29,0.3]cm−1. For each sub-figure, solid lines represent the 7 groups of SDs used in the estimation (legend is shown in top left sub-figure) and dotted lines represent the 1-ratio between estimated and true brain absorption values.

Fig. 4.
Fig. 4.

Uncertainty and retrieved absorption for three particular cases of the homogeneous head: μa ,superf = μa ,brain = [0.05,0.15,0.3]cm−1 for the 7 sets of SDs.

Fig. 5.
Fig. 5.

Averages and standard deviations of the relative error on retrieved μa ,brain over 26 combinations of head absorption [0.05,0.06, . . . ,0.29,0.3]cm−1, for the 7 sets of SDs.

Fig. 6.
Fig. 6.

Brain absorption coefficients μa ,brain estimated across subject age (row-wise) and for two values of superficial absorption μa ,superf = [0.1,0.2]cm−1 (column-wise). For each sub-figure, solid lines represent the 7 groups of SDs used in the estimation (legend is shown in bottom left sub-figure), dotted lines represent the 1-ratio between estimated and true brain absorption values and dash-dotted lines represent the superficial absorption.

Fig. 7.
Fig. 7.

Two-tissue head model: averages and standard deviations of the relative error in retrieved μa ,brain over 52 combinations of μa ,superf = [0.1,0.2]cm−1 and μa ,brain = [0.05,0.06, . . . ,0.29,0.3]cm−1 for the 7 sets of SDs.

Fig. 8.
Fig. 8.

Brain absorption coefficients μa ,brain estimated across subject age (row-wise) and for two values of superficial absorption of μa = [0.1,0.2]cm−1 (column-wise) when the CSF tissue is taken into account. For each sub-figure, solid lines represent the 7 groups of SDs used in the estimation (legend is shown in bottom left sub-figure), dotted lines represent the 1-ratio between estimated and true brain absorption values and dash-dotted lines represent the superficial absorption. Note the presence of the axial slice of the newborn (NB) left and right hemispheres superimposed with the optical probe.

Fig. 9.
Fig. 9.

Three-tissue head model: averages and standard deviations of the relative error on retrieved μa ,brain over 52 combinations of μa ,superf = [0.1,0.2]cm−1 and μa ,brain = [0.05,0.06, . . . ,0.29,0.3]cm−1 for the 7 sets of SDs.

Tables (1)

Tables Icon

Table 1. Optical properties of tissue types selected for the Monte Carlo simulations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ln ( d 2 I AC ) = d S AC + C AC and φ = d S φ + C φ
μ a = ω 2 ν ( S φ S AC S AC S φ ) and μ s = S AC 2 S φ 2 3 μ a μ a
I AC calib = I AC theo I AC slab with I AC theo = exp ( d S AC theo ) d 2
φ calib = φ theo φ slab with φ theo = d S φ theo

Metrics