Abstract

We present a Monte Carlo model, which we use to calculate the depth dependent sensitivity or sampling volume of different single fiber and multi-fiber Raman probes. A two-layer skin model is employed to investigate the dependency of the sampling volume on the absorption and reduced scattering coefficients in the near infrared wavelength range (NIR). The shape of the sampling volume is mainly determined by the scattering coefficient and the wavelength dependency of absorption and scattering has only a small effect on the sampling volume of a typical fingerprint spectrum. An increase in the sampling depth in nonmelanoma skin cancer, compared to normal skin, is obtained.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue

Jianhua Mo, Wei Zheng, and Zhiwei Huang
Biomed. Opt. Express 1(1) 17-30 (2010)

Snapshot depth sensitive Raman spectroscopy in layered tissues

Wei Liu, Yi Hong Ong, Xiao Jun Yu, Jian Ju, Clint Michael Perlaki, Lin Bo Liu, and Quan Liu
Opt. Express 24(25) 28312-28325 (2016)

Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties

Andrew J. Gomes, Vladimir Turzhitsky, Sarah Ruderman, and Vadim Backman
Appl. Opt. 51(20) 4627-4637 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
    [Crossref] [PubMed]
  2. N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
    [Crossref] [PubMed]
  3. M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
    [PubMed]
  4. C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
    [Crossref] [PubMed]
  5. A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
    [Crossref] [PubMed]
  6. J. Mo, W. Zheng, J. J. H. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81(21), 8908–8915 (2009).
    [Crossref] [PubMed]
  7. E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009).
    [Crossref] [PubMed]
  8. M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of Fiber-Optic Probes for in Vivo Medical Raman Spectroscopy,” Appl. Spectrosc. 53(6), 619–627 (1999).
    [Crossref]
  9. N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
    [Crossref] [PubMed]
  10. R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jonges, J. A. Kummer, and J. L. H. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82(14), 5993–5999 (2010).
    [Crossref] [PubMed]
  11. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43(3), 542–554 (2004).
    [Crossref] [PubMed]
  12. Z. Huang, S. K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K. Y. Ho, M. Teh, and K. G. Yeoh, “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Opt. Lett. 34(6), 758–760 (2009).
    [Crossref] [PubMed]
  13. J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express 1(1), 17–30 (2010).
    [Crossref] [PubMed]
  14. P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
    [Crossref] [PubMed]
  15. N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
    [Crossref] [PubMed]
  16. M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009).
    [Crossref] [PubMed]
  17. P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.) 134(6), 1058–1066 (2009).
    [Crossref] [PubMed]
  18. J. R. Maher and A. J. Berger, “Determination of ideal offset for spatially offset Raman spectroscopy,” Appl. Spectrosc. 64(1), 61–65 (2010).
    [Crossref] [PubMed]
  19. J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
    [Crossref] [PubMed]
  20. T. Katagiri, Y. S. Yamamoto, Y. Ozaki, Y. Matsuura, and H. Sato, “High axial resolution Raman probe made of a single hollow optical fiber,” Appl. Spectrosc. 63(1), 103–107 (2009).
    [Crossref] [PubMed]
  21. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41(22), 4712–4721 (2002).
    [Crossref] [PubMed]
  22. C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
    [Crossref] [PubMed]
  23. A. M. K. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy,” Opt. Lett. 27(22), 2004–2006 (2002).
    [Crossref] [PubMed]
  24. P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(12), 1485–1492 (2005).
    [Crossref] [PubMed]
  25. W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part I: theory and simulations,” Opt. Express 16(17), 12726–12736 (2008).
    [PubMed]
  26. N. Everall, P. Matousek, N. MacLeod, K. L. Ronayne, and I. P. Clark, “Temporal and spatial resolution in transmission Raman spectroscopy,” Appl. Spectrosc. 64(1), 52–60 (2010).
    [Crossref] [PubMed]
  27. M. D. Keller, R. H. Wilson, M.-A. Mycek, and A. Mahadevan-Jansen, “Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis,” Appl. Spectrosc. 64(6), 607–614 (2010).
    [Crossref] [PubMed]
  28. A. Ishimaru, “Wave Propagation and Scattering in Random Media,” IEEE Press, Oxford University Press: Oxford 1997.
  29. C. Reble, I. Gersonde, S. Andree, H. J. Eichler, and J. Helfmann, “Quantitative Raman spectroscopy in turbid media,” J. Biomed. Opt. 15(3), 037016 (2010).
    [Crossref] [PubMed]
  30. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  31. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
    [Crossref] [PubMed]
  32. S.-H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
    [Crossref] [PubMed]
  33. G. Zonios and A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17(3), 1256–1267 (2009).
    [Crossref] [PubMed]
  34. S.-H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
    [Crossref] [PubMed]
  35. S. Jacques, http://omlc.ogi.edu/news/jan98/skinoptics.html , last accessed 15.5.2010.
  36. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
    [Crossref] [PubMed]
  37. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
    [Crossref] [PubMed]
  38. I. Barman, G. P. Singh, R. R. Dasari, and M. S. Feld, “Turbidity-corrected Raman spectroscopy for blood analyte detection,” Anal. Chem. 81(11), 4233–4240 (2009).
    [Crossref] [PubMed]
  39. R. Steponavičius and S. N. Thennadil, “Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects: application to a model two-component system,” Anal. Chem. 81(18), 7713–7723 (2009).
    [Crossref] [PubMed]

2010 (6)

2009 (12)

G. Zonios and A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17(3), 1256–1267 (2009).
[Crossref] [PubMed]

S.-H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

T. Katagiri, Y. S. Yamamoto, Y. Ozaki, Y. Matsuura, and H. Sato, “High axial resolution Raman probe made of a single hollow optical fiber,” Appl. Spectrosc. 63(1), 103–107 (2009).
[Crossref] [PubMed]

Z. Huang, S. K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K. Y. Ho, M. Teh, and K. G. Yeoh, “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Opt. Lett. 34(6), 758–760 (2009).
[Crossref] [PubMed]

M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.) 134(6), 1058–1066 (2009).
[Crossref] [PubMed]

J. Mo, W. Zheng, J. J. H. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81(21), 8908–8915 (2009).
[Crossref] [PubMed]

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009).
[Crossref] [PubMed]

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

I. Barman, G. P. Singh, R. R. Dasari, and M. S. Feld, “Turbidity-corrected Raman spectroscopy for blood analyte detection,” Anal. Chem. 81(11), 4233–4240 (2009).
[Crossref] [PubMed]

R. Steponavičius and S. N. Thennadil, “Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects: application to a model two-component system,” Anal. Chem. 81(18), 7713–7723 (2009).
[Crossref] [PubMed]

2008 (5)

S.-H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part I: theory and simulations,” Opt. Express 16(17), 12726–12736 (2008).
[PubMed]

2007 (2)

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
[Crossref] [PubMed]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

2006 (2)

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

2005 (4)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(12), 1485–1492 (2005).
[Crossref] [PubMed]

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[Crossref] [PubMed]

2002 (2)

1999 (2)

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of Fiber-Optic Probes for in Vivo Medical Raman Spectroscopy,” Appl. Spectrosc. 53(6), 619–627 (1999).
[Crossref]

Aalders, M. C.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Andree, S.

C. Reble, I. Gersonde, S. Andree, H. J. Eichler, and J. Helfmann, “Quantitative Raman spectroscopy in turbid media,” J. Biomed. Opt. 15(3), 037016 (2010).
[Crossref] [PubMed]

Baker, R.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

Bakker Schut, T. C.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
[Crossref] [PubMed]

Bargo, P.

Barman, I.

I. Barman, G. P. Singh, R. R. Dasari, and M. S. Feld, “Turbidity-corrected Raman spectroscopy for blood analyte detection,” Anal. Chem. 81(11), 4233–4240 (2009).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Beaven, R. B.

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

Bechtel, K. L.

Bennett, R.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

Berger, A. J.

Billheimer, D. D.

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

Born, C.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

Caspers, P. J.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
[Crossref] [PubMed]

Clark, I. P.

Cross, F. W.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Dasari, R. R.

I. Barman, G. P. Singh, R. R. Dasari, and M. S. Feld, “Turbidity-corrected Raman spectroscopy for blood analyte detection,” Anal. Chem. 81(11), 4233–4240 (2009).
[Crossref] [PubMed]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43(3), 542–554 (2004).
[Crossref] [PubMed]

Day, J. C.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

den Hollander, J. C.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
[Crossref] [PubMed]

Dimou, A.

Ding, H.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Doornbos, R. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Draga, R. O. P.

R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jonges, J. A. Kummer, and J. L. H. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82(14), 5993–5999 (2010).
[Crossref] [PubMed]

Draper, E.

Draper, E. R. C.

Durkin, A.

Durkin, A. J.

S.-H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

Ediger, M. N.

Eichler, H. J.

C. Reble, I. Gersonde, S. Andree, H. J. Eichler, and J. Helfmann, “Quantitative Raman spectroscopy in turbid media,” J. Biomed. Opt. 15(3), 037016 (2010).
[Crossref] [PubMed]

Elborn, J. S.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

Ellis, D. L.

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

Enejder, A. M. K.

Ennis, M.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

Everall, N.

Feld, M. S.

Finney, W. F.

Fitzmaurice, M.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Galindo, L. H.

Gardecki, J. A.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Gersonde, I.

C. Reble, I. Gersonde, S. Andree, H. J. Eichler, and J. Helfmann, “Quantitative Raman spectroscopy in turbid media,” J. Biomed. Opt. 15(3), 037016 (2010).
[Crossref] [PubMed]

Goodship, A.

Goodship, A. E.

Grant, A.

S.-H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

Grimbergen, M. C. M.

R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jonges, J. A. Kummer, and J. L. H. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82(14), 5993–5999 (2010).
[Crossref] [PubMed]

Haka, A. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Helfmann, J.

C. Reble, I. Gersonde, S. Andree, H. J. Eichler, and J. Helfmann, “Quantitative Raman spectroscopy in turbid media,” J. Biomed. Opt. 15(3), 037016 (2010).
[Crossref] [PubMed]

Ho, K. Y.

Horowitz, G. L.

Hu, X. H.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Huang, Z.

Hunter, M.

Hutchings, J.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

Ilancheran, A.

J. Mo, W. Zheng, J. J. H. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81(21), 8908–8915 (2009).
[Crossref] [PubMed]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Jonges, T. G. N.

R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jonges, J. A. Kummer, and J. L. H. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82(14), 5993–5999 (2010).
[Crossref] [PubMed]

Kanter, E. M.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009).
[Crossref] [PubMed]

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

Katagiri, T.

Keller, M. D.

M. D. Keller, R. H. Wilson, M.-A. Mycek, and A. Mahadevan-Jansen, “Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis,” Appl. Spectrosc. 64(6), 607–614 (2010).
[Crossref] [PubMed]

M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009).
[Crossref] [PubMed]

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009).
[Crossref] [PubMed]

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

Kendall, C.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Kollias, N.

Koo, T.-W.

Kragel, P. J.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Kramer, J. R.

Kummer, J. A.

R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jonges, J. A. Kummer, and J. L. H. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82(14), 5993–5999 (2010).
[Crossref] [PubMed]

Lang, R.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Lieber, C. A.

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

Lin, K.

Liu, Q.

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[Crossref] [PubMed]

Low, J. J. H.

J. Mo, W. Zheng, J. J. H. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81(21), 8908–8915 (2009).
[Crossref] [PubMed]

Lu, J. Q.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

MacLeod, N.

Magee, N. D.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

M. D. Keller, R. H. Wilson, M.-A. Mycek, and A. Mahadevan-Jansen, “Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis,” Appl. Spectrosc. 64(6), 607–614 (2010).
[Crossref] [PubMed]

M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009).
[Crossref] [PubMed]

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009).
[Crossref] [PubMed]

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

Maher, J. R.

Majumder, S.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009).
[Crossref] [PubMed]

Majumder, S. K.

M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009).
[Crossref] [PubMed]

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

Maquelin, K.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
[Crossref] [PubMed]

Marple, E.

Marple, E. T.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

Matousek, P.

N. Everall, P. Matousek, N. MacLeod, K. L. Ronayne, and I. P. Clark, “Temporal and spatial resolution in transmission Raman spectroscopy,” Appl. Spectrosc. 64(1), 52–60 (2010).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.) 134(6), 1058–1066 (2009).
[Crossref] [PubMed]

N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(12), 1485–1492 (2005).
[Crossref] [PubMed]

Matsuura, Y.

McGarvey, J. J.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

Meaden, G. M.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

Mo, J.

Morris, M. D.

Motz, J. T.

Mycek, M.-A.

Neumann, M. H.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
[Crossref] [PubMed]

Ng, J.

J. Mo, W. Zheng, J. J. H. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81(21), 8908–8915 (2009).
[Crossref] [PubMed]

Nijssen, A.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
[Crossref] [PubMed]

Nishioka, N. S.

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Oh, J.

Ozaki, Y.

Parker, A. W.

Pfefer, T. J.

Puppels, G. J.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
[Crossref] [PubMed]

Ramanujam, N.

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[Crossref] [PubMed]

Rao, G. G.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009).
[Crossref] [PubMed]

Reble, C.

C. Reble, I. Gersonde, S. Andree, H. J. Eichler, and J. Helfmann, “Quantitative Raman spectroscopy in turbid media,” J. Biomed. Opt. 15(3), 037016 (2010).
[Crossref] [PubMed]

Rogers, K.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

Ronayne, K. L.

Ruud Bosch, J. L. H.

R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jonges, J. A. Kummer, and J. L. H. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82(14), 5993–5999 (2010).
[Crossref] [PubMed]

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Santos, L. F.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
[Crossref] [PubMed]

Sasic, S.

Sato, H.

Schomacker, K. T.

Shafer-Peltier, K. E.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Shao, X.

Shih, W. C.

Shim, M. G.

Singh, G. P.

I. Barman, G. P. Singh, R. R. Dasari, and M. S. Feld, “Turbidity-corrected Raman spectroscopy for blood analyte detection,” Anal. Chem. 81(11), 4233–4240 (2009).
[Crossref] [PubMed]

Smith, B.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

Steponavicius, R.

R. Steponavičius and S. N. Thennadil, “Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects: application to a model two-component system,” Anal. Chem. 81(18), 7713–7723 (2009).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Stone, N.

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.) 134(6), 1058–1066 (2009).
[Crossref] [PubMed]

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

Teh, M.

Teh, S. K.

Thennadil, S. N.

R. Steponavičius and S. N. Thennadil, “Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects: application to a model two-component system,” Anal. Chem. 81(18), 7713–7723 (2009).
[Crossref] [PubMed]

Towrie, M.

Tseng, S.-H.

S.-H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

S.-H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

van Swol, C. F. P.

R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jonges, J. A. Kummer, and J. L. H. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82(14), 5993–5999 (2010).
[Crossref] [PubMed]

Vargis, E.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009).
[Crossref] [PubMed]

Vijverberg, P. L. M.

R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jonges, J. A. Kummer, and J. L. H. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82(14), 5993–5999 (2010).
[Crossref] [PubMed]

Villaumie, J. S.

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

Wach, M.

Wilson, B. C.

Wilson, R. H.

Woeste, E.

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009).
[Crossref] [PubMed]

Wooden, W. A.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Yamamoto, Y. S.

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Yeoh, K. G.

Yu, S.

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

Zheng, W.

Zhu, C.

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[Crossref] [PubMed]

Zonios, G.

Anal. Chem. (4)

J. Mo, W. Zheng, J. J. H. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81(21), 8908–8915 (2009).
[Crossref] [PubMed]

R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jonges, J. A. Kummer, and J. L. H. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82(14), 5993–5999 (2010).
[Crossref] [PubMed]

I. Barman, G. P. Singh, R. R. Dasari, and M. S. Feld, “Turbidity-corrected Raman spectroscopy for blood analyte detection,” Anal. Chem. 81(11), 4233–4240 (2009).
[Crossref] [PubMed]

R. Steponavičius and S. N. Thennadil, “Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects: application to a model two-component system,” Anal. Chem. 81(18), 7713–7723 (2009).
[Crossref] [PubMed]

Analyst (Lond.) (2)

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.) 134(6), 1058–1066 (2009).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (7)

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(12), 1485–1492 (2005).
[Crossref] [PubMed]

N. Everall, P. Matousek, N. MacLeod, K. L. Ronayne, and I. P. Clark, “Temporal and spatial resolution in transmission Raman spectroscopy,” Appl. Spectrosc. 64(1), 52–60 (2010).
[Crossref] [PubMed]

M. D. Keller, R. H. Wilson, M.-A. Mycek, and A. Mahadevan-Jansen, “Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis,” Appl. Spectrosc. 64(6), 607–614 (2010).
[Crossref] [PubMed]

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

J. R. Maher and A. J. Berger, “Determination of ideal offset for spatially offset Raman spectroscopy,” Appl. Spectrosc. 64(1), 61–65 (2010).
[Crossref] [PubMed]

M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of Fiber-Optic Probes for in Vivo Medical Raman Spectroscopy,” Appl. Spectrosc. 53(6), 619–627 (1999).
[Crossref]

T. Katagiri, Y. S. Yamamoto, Y. Ozaki, Y. Matsuura, and H. Sato, “High axial resolution Raman probe made of a single hollow optical fiber,” Appl. Spectrosc. 63(1), 103–107 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Cancer Res. (1)

N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008).
[Crossref] [PubMed]

Dis. Markers (1)

M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008).
[PubMed]

J Biophotonics (1)

E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007).
[Crossref] [PubMed]

C. Reble, I. Gersonde, S. Andree, H. J. Eichler, and J. Helfmann, “Quantitative Raman spectroscopy in turbid media,” J. Biomed. Opt. 15(3), 037016 (2010).
[Crossref] [PubMed]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[Crossref] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

S.-H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Lasers Surg. Med. (1)

C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Med. Biol. (3)

J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009).
[Crossref] [PubMed]

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Other (2)

S. Jacques, http://omlc.ogi.edu/news/jan98/skinoptics.html , last accessed 15.5.2010.

A. Ishimaru, “Wave Propagation and Scattering in Random Media,” IEEE Press, Oxford University Press: Oxford 1997.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 2
Fig. 2 Dependency of wz(z) / ∫wz(z) dz on optical properties of skin (in mm−1) for the 7-around-1 fiber probe. a) Optical properties corresponding to the case of maximal Stokes shift and zero Stokes shift are used. In addition, the maximal Stokes shift case is compared to the case when mean optical parameters of excitation and maximal Stokes shift photons are used. b) Optical properties of normal skin, nodular basal cell carcinoma (BCC) as well as squamous cell carcinoma (SCC) are used.
Fig. 1
Fig. 1 Dependency of wz(z) / ∫wz(z) dz on µa and µs´ in mm−1 for a) single fiber measurement with d = 0.2 mm b) single fiber measurement with d = 2 mm c) SORS measurement with d = 0.2 mm and r = 0.4 mm d) 7-around-1 probe with dex = 0.4 mm, ddet = 0.3 mm and r = 0.385 mm e) Dependency of Фexc on µa and µs´ in mm−1 for 7-around-1 probe e) Dependency of wz(z) on µa and µs´ in mm−1 for 7-around-1 probe. Error bars are not shown to maintain clarity, but deviation from a smooth curve shape is due to statistical errors.
Fig. 3
Fig. 3 Dependency of wz(z)/∫wz(z)dz on typical optical properties of skin for the 7-around-1 fiber probe. a) µa_epi and µa_derm (in mm−1) are varied independently. b) µs´_epi is varied independently
Fig. 4
Fig. 4 Dependency of wz(z)/∫wz(z)dz on the refractive index of the medium which is in contact with the skin for the 7-around-1 probe. The µa and µs´ (in mm−1) of both layers is matched.

Tables (3)

Tables Icon

Table 1 Signal contribution from z<0.1 mm, z<0.7 mm and z<1.0 mm for the 7-around-1 fiber probe, the SORS geometry and single fibers with different diameters

Tables Icon

Table 2 Signal contribution from z<0.1 mm, z<0.7 mm and z<1.0 mm for the 7-around 1 fiber probe for the optical properties specified in Fig. 2

Tables Icon

Table 3 Signal contribution from z<0.1 mm, z<0.7 mm and z<1.0 mm for the 7-around 1 fiber probe for representative parameter combinations of the data in Fig. 4

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d L ( r , s ) d s = μ t ( r ) L ( r , s ) + μ s ( r ) Ω ¯ p ( s , s ¯ ) L ( r , s ¯ ) d Ω ¯ + Q ( r , s ) Ω ¯ p ( s , s ¯ ) d Ω ¯ = Ω p ( s , s ¯ ) d Ω = 1
Q R a m a n ( r , s ) = μ R a m a n ( r ) Ω p R a m a n ( s , s ¯ ) L e x c ( r , s ¯ ) d Ω = μ R a m a n ( r ) 4 π Φ e x c ( r )
Ω Q R a m a n ( r , s ) d Ω = μ R a m a n ( r ) Φ e x c ( r ) = n R a m a n ( r )
L R a m a n ( r , s ) = r ¯ Ω ¯ G ( r , s , r ¯ , s ¯ ) Q R a m a n ( r ¯ , s ¯ ) d Ω ¯ d 3 r ¯
S R a m a n = r f ( r ) Φ e x c ( r ) μ R a m a n ( r ) d 3 r = r f ( r ) n R a m a n ( r ) d 3 r
w ( r ) : = f ( r ) Φ e x c ( r ) S R a m a n = r w ( r ) μ R a m a n ( r ) d 3 r
Φ e x c ( r ) = n R a m a n ( r ) μ R a m a n ( r ) = n a b s e x c ( r ) μ a ( r ) = n s c a t t e r e x c ( r ) μ s ( r )
S R a m a n = r f ( r ) μ R a m a n ( r ) μ a ( r ) n a b s e x c ( r ) d 3 r = r f ( r ) μ R a m a n ( r ) μ s ( r ) n s c a t t e x c ( r ) d 3 r w ( r ) = f ( r ) n a b s e x c ( r ) μ a ( r ) = f ( r ) n s c a t t e x c ( r ) μ s ( r )
f ( r ) = lim N p h o t o n 1 N p h o t o n i = 1 N p h o t o n d i ; d i = { 1 if photon hits detector 0 else
S R a m a n = r f ( r ) μ R a m a n ( r ) μ a ( r ) n a b s e x c ( r ) d 3 r = lim N p h o t o n 1 N p h o t o n i = 1 N a b s d i μ R a m a n ( r a b s , i ) μ a ( r a b s , i )
S R a m a n = z w z ( z ) μ R a m a n ( z ) d z

Metrics