Abstract

We report the fabrication and characterization of an optical fiber biochemical sensing probe based on localized surface plasmon resonance (LSPR) and spectra reflection. Ordered array of gold nanodots was fabricated on the optical fiber end facet using electron-beam lithography (EBL). We experimentally demonstrated for the first time the blue shift of the LSPR scattering spectrum with respected to the LSPR extinction spectrum, which had been predicted theoretically. High sensitivity [195.72 nm/refractive index unit (RIU)] of this sensor for detecting changes in the bulk refractive indices has been demonstrated. The label-free affinity bio-molecules sensing capability has also been demonstrated using biotin and streptavidin as the receptor and the analyte.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
    [CrossRef]
  2. W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49(1), 569–638 (1998).
    [CrossRef] [PubMed]
  3. S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994).
    [CrossRef]
  4. A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, “Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters,” J. Phys. Chem. B 104(3), 564–570 (2000).
    [CrossRef]
  5. C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
    [CrossRef]
  6. J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle Spectroscopy: Dipole Coupling in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
    [CrossRef]
  7. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
    [CrossRef]
  8. D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
    [CrossRef]
  9. A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
    [CrossRef] [PubMed]
  10. K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231 (2004).
    [CrossRef]
  11. Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, “Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip,” J. Biomed. Opt. 11(1), 014032 (2006).
    [CrossRef] [PubMed]
  12. C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108, 591108-66 (2005).
    [CrossRef]
  13. A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
    [CrossRef]
  14. A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
    [CrossRef]
  15. Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing,” Sensors (Basel Switzerland) 10(10), 9397–9406 (2010).
    [CrossRef]
  16. P. M. Gouvêa, I. C. Carvalho, H. Jang, M. Cremona, A. M. Braga, and M. Fokine, “Characterization of a Fiber Optic Sensor Based on LSPR and Specular Reflection,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper STuA4.
  17. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  18. G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Biological and Chemical Gold Nanosensors Based on Localized Surface Plasmon Resonance,” Gold Bull. 40, 240–244 (2007).
  19. A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
    [CrossRef] [PubMed]

2010 (2)

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing,” Sensors (Basel Switzerland) 10(10), 9397–9406 (2010).
[CrossRef]

A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
[CrossRef] [PubMed]

2008 (2)

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[CrossRef]

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

2007 (3)

G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Biological and Chemical Gold Nanosensors Based on Localized Surface Plasmon Resonance,” Gold Bull. 40, 240–244 (2007).

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle Spectroscopy: Dipole Coupling in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[CrossRef]

2006 (2)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, “Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip,” J. Biomed. Opt. 11(1), 014032 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108, 591108-66 (2005).
[CrossRef]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

2004 (2)

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231 (2004).
[CrossRef]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

2001 (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[CrossRef]

2000 (1)

A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, “Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters,” J. Phys. Chem. B 104(3), 564–570 (2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[CrossRef]

1998 (1)

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49(1), 569–638 (1998).
[CrossRef] [PubMed]

1994 (1)

S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994).
[CrossRef]

Adam, P. M.

G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Biological and Chemical Gold Nanosensors Based on Localized Surface Plasmon Resonance,” Gold Bull. 40, 240–244 (2007).

Barbillon, G.

G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Biological and Chemical Gold Nanosensors Based on Localized Surface Plasmon Resonance,” Gold Bull. 40, 240–244 (2007).

Bijeon, J. L.

G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Biological and Chemical Gold Nanosensors Based on Localized Surface Plasmon Resonance,” Gold Bull. 40, 240–244 (2007).

Chang, Y. J.

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, “Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip,” J. Biomed. Opt. 11(1), 014032 (2006).
[CrossRef] [PubMed]

Chen, W.

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[CrossRef]

Chen, Y. C.

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, “Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip,” J. Biomed. Opt. 11(1), 014032 (2006).
[CrossRef] [PubMed]

Dahlin, A.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

de la Chapelle, M. L.

G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Biological and Chemical Gold Nanosensors Based on Localized Surface Plasmon Resonance,” Gold Bull. 40, 240–244 (2007).

Dhawan, A.

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[CrossRef]

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Gao, D.

A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
[CrossRef] [PubMed]

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[CrossRef]

Gao, L.

A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[CrossRef]

Gerhold, M. D.

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[CrossRef]

Gleeson, J.

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

Gu, C.

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108, 591108-66 (2005).
[CrossRef]

Guo, J.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing,” Sensors (Basel Switzerland) 10(10), 9397–9406 (2010).
[CrossRef]

Hanarp, P.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Handa, Y.

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231 (2004).
[CrossRef]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[CrossRef]

Hicks, E. M.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle Spectroscopy: Dipole Coupling in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[CrossRef]

Höök, F.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Kajikawa, K.

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231 (2004).
[CrossRef]

Käll, M.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Knoll, W.

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49(1), 569–638 (1998).
[CrossRef] [PubMed]

Kuo, H. L.

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, “Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip,” J. Biomed. Opt. 11(1), 014032 (2006).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Leonard, D. N.

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

Lin, Y.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing,” Sensors (Basel Switzerland) 10(10), 9397–9406 (2010).
[CrossRef]

Lindquist, R. G.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing,” Sensors (Basel Switzerland) 10(10), 9397–9406 (2010).
[CrossRef]

Mitsui, K.

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231 (2004).
[CrossRef]

Mo, Y.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing,” Sensors (Basel Switzerland) 10(10), 9397–9406 (2010).
[CrossRef]

Mulchandani, A.

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[CrossRef]

Mulvaney, P.

A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, “Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters,” J. Phys. Chem. B 104(3), 564–570 (2000).
[CrossRef]

S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994).
[CrossRef]

Murray, R. W.

A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, “Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters,” J. Phys. Chem. B 104(3), 564–570 (2000).
[CrossRef]

Muth, J. F.

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[CrossRef]

Olofsson, L.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Pietron, J. J.

A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, “Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters,” J. Phys. Chem. B 104(3), 564–570 (2000).
[CrossRef]

Plain, J.

G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Biological and Chemical Gold Nanosensors Based on Localized Surface Plasmon Resonance,” Gold Bull. 40, 240–244 (2007).

Prikulis, J.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Rindzevicius, T.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Royer, P.

G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Biological and Chemical Gold Nanosensors Based on Localized Surface Plasmon Resonance,” Gold Bull. 40, 240–244 (2007).

Russell, P. E.

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

Schultz, J. S.

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[CrossRef]

Schwartzberg, A. M.

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108, 591108-66 (2005).
[CrossRef]

Spears, K. G.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle Spectroscopy: Dipole Coupling in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

Sung, J.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle Spectroscopy: Dipole Coupling in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

Sutherland, D.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Sutherland, D. S.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Templeton, A. C.

A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, “Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters,” J. Phys. Chem. B 104(3), 564–570 (2000).
[CrossRef]

Underwood, S.

S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994).
[CrossRef]

Van Duyne, R. P.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle Spectroscopy: Dipole Coupling in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[CrossRef]

Vo-Dinh, T.

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

Wei, P. K.

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, “Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip,” J. Biomed. Opt. 11(1), 014032 (2006).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[CrossRef]

Yeri, A. S.

A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
[CrossRef] [PubMed]

Zäch, M.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Zhang, J. Z.

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108, 591108-66 (2005).
[CrossRef]

Zhang, Y.

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108, 591108-66 (2005).
[CrossRef]

Zou, Y.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing,” Sensors (Basel Switzerland) 10(10), 9397–9406 (2010).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49(1), 569–638 (1998).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[CrossRef]

K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231 (2004).
[CrossRef]

Gold Bull. (1)

G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Biological and Chemical Gold Nanosensors Based on Localized Surface Plasmon Resonance,” Gold Bull. 40, 240–244 (2007).

IEEE Sens. J. (1)

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, “Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip,” J. Biomed. Opt. 11(1), 014032 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (4)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, “Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters,” J. Phys. Chem. B 104(3), 564–570 (2000).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[CrossRef]

A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle Spectroscopy: Dipole Coupling in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (1)

A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008).
[CrossRef]

Langmuir (1)

S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994).
[CrossRef]

Nano Lett. (1)

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Proc. SPIE (1)

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108, 591108-66 (2005).
[CrossRef]

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[CrossRef]

Sensors (Basel Switzerland) (1)

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing,” Sensors (Basel Switzerland) 10(10), 9397–9406 (2010).
[CrossRef]

Other (1)

P. M. Gouvêa, I. C. Carvalho, H. Jang, M. Cremona, A. M. Braga, and M. Fokine, “Characterization of a Fiber Optic Sensor Based on LSPR and Specular Reflection,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper STuA4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scanning electron micrographs of a gold nanodot array on an optical fiber tip. (a) Overview of the optical fiber end facet, and (b) the gold nanodot array on the optical fiber facet.

Fig. 2
Fig. 2

Optical setup for the fiber tip LSPR sensor based on reflection spectra measurement.

Fig. 3
Fig. 3

(a) The transmission spectrum (top) and reflection spectrum of the fiber tip LSPR sensor in the air, and (b) the calculated spectra for extinction (solid line) and scattering (dash line) for the LSPR on the gold nanodot array.

Fig. 4
Fig. 4

(a) Measured transmission spectra for the fiber sensor in various solvents. (b) Dependence of the LSPR peak wavelength on the index of refraction of the solvents, methanol (1.329), water (1.333), acetone (1.359), ethanol (1.362), and isopropyl alcohol (1.378).

Fig. 5
Fig. 5

The reflection spectra of the Au nanodots array on the optical fiber end facet when it is in air (red solid curve), functionalized with biotin (blue doted curve), and bound with streptavidin (green dash-dot curve). Plasmonic peaks shift due to the functionalization of biotin and specific binding of streptavidin can be clearly observed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M λ = S λ D λ R λ D λ × 100 %

Metrics