Abstract

Magneto-photo-acoustic imaging, a technique based on the synergy of magneto-motive ultrasound, photoacoustic and ultrasound imaging, is introduced. Hybrid nanoconstructs, liposomes encapsulating gold nanorods and iron oxide nanoparticles, were used as a dual-contrast agent for magneto-photo-acoustic imaging. Tissue-mimicking phantom and macrophage cells embedded in ex vivo porcine tissue were used to demonstrate that magneto-photo-acoustic imaging is capable of visualizing the location of cells or tissues labeled with dual-contrast nanoparticles with sufficient contrast, excellent contrast resolution and high spatial resolution in the context of the anatomical structure of the surrounding tissues. Therefore, magneto-photo-acoustic imaging is capable of identifying the nanoparticle-labeled pathological regions from the normal tissue, providing a promising platform to noninvasively diagnose and characterize pathologies.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Foster, G. R. Lockwood, L. K. Ryan, K. A. Harasiewicz, L. Berube, and A. M. Rauth, “Principles and applications of ultrasound backscatter microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(5), 608–617 (1993).
    [CrossRef] [PubMed]
  2. S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. W. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, 2006), pp. 405–415.
  3. A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).
  4. R. A. Kruger and P. Liu, “Photoacoustic ultrasound: pulse production and detection of 0.5% Liposyn,” Med. Phys. 21(7), 1179–1184 (1994).
    [CrossRef] [PubMed]
  5. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).
  6. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  7. S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
    [CrossRef] [PubMed]
  8. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
    [CrossRef] [PubMed]
  9. J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
    [CrossRef]
  10. M. Mehrmohammadi, L. M. J. Oh, E. Yantsen, T. Larson, S. Mallidi, S. Park, K. P. Johnston, K. Sokolov, T. Milner, and S. Emelianov, “Imaging of iron oxide nanoparticles using magneto-motive ultrasound,” in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, 2007), pp. 652–655.
  11. M. Mehrmohammadi, J. Oh, L. Ma, S. Roo, E. Yantsen, S. Mallidi, K. P. Johnston, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Pulsed magneto-motive ultrasound imaging,” in Proceedings of 25th Annual Houston Conference on Biomedical Engineering Research (Kluwer Academic, 2008), p. 75.
  12. M. Mehrmohammadi, S. R. Aglyamov, A. B. Karpiouk, J. Oh, and S. Y. Emelianov, “Pulsed magneto-motive ultrasound to assess viscoelastic properties of soft tissues,” in Proceedings of the Seventh International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity (International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity, 2008), p. 106.
  13. M. Mehrmohammadi, L. L. Ma, Y. Chen, M. Qu, P. Joshi, R. M. Chen, K. P. Johnston, and S. Emelianov, “Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles,” Proc. SPIE 7574(757405), 757405, 757405–8 (2010).
  14. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  15. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
    [CrossRef] [PubMed]
  16. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
    [PubMed]
  17. X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
    [CrossRef] [PubMed]
  18. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
    [CrossRef] [PubMed]
  19. A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
    [CrossRef] [PubMed]
  20. R. L. Truby, K. A. Homan, M. Qu, M. Mehrmohammadi, and S. Emelianov, “Synthesis of a hybrid plasmonic-superparamagnetic contrast agent for magneto-photo-acoustic imaging,” presented at the Biomecial Engineering Society 2010 Annual Meeting, Austin, Tex., Oct. 6–9, 2010).
  21. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [CrossRef]
  22. C. Wang, J. Chen, T. Talavage, and J. Irudayaraj, ““““Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simutaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells,” Angew. Chem. Int. Ed. 48(15), 2759–2763 (2009).
    [CrossRef]
  23. M. A. Lubinski, S. Y. Emelianov, and M. O’Donnell, “Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(1), 82–96 (1999).
    [CrossRef] [PubMed]
  24. Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
    [CrossRef] [PubMed]
  25. C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
    [CrossRef] [PubMed]
  26. P. P. Joshi, Y. Chen, S. Kim, J. Shah, K. Sokolov, and S. Emelianov, “Molecular therapeutic agents for noninvasive photoacoustic image-guided photothermal therapy,” in Conference Proceedings—IEEE Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, 2009), pp. 4106–4109.

2009

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

C. Wang, J. Chen, T. Talavage, and J. Irudayaraj, ““““Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simutaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells,” Angew. Chem. Int. Ed. 48(15), 2759–2763 (2009).
[CrossRef]

Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

2008

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[CrossRef] [PubMed]

2007

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

2006

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[CrossRef] [PubMed]

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[CrossRef]

2004

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

2003

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

1999

M. A. Lubinski, S. Y. Emelianov, and M. O’Donnell, “Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(1), 82–96 (1999).
[CrossRef] [PubMed]

1994

R. A. Kruger and P. Liu, “Photoacoustic ultrasound: pulse production and detection of 0.5% Liposyn,” Med. Phys. 21(7), 1179–1184 (1994).
[CrossRef] [PubMed]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

1993

F. S. Foster, G. R. Lockwood, L. K. Ryan, K. A. Harasiewicz, L. Berube, and A. M. Rauth, “Principles and applications of ultrasound backscatter microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(5), 608–617 (1993).
[CrossRef] [PubMed]

1880

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).

Aaron, J.

Aglyamov, S. R.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Barton, J.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Bell, A. G.

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).

Berube, L.

F. S. Foster, G. R. Lockwood, L. K. Ryan, K. A. Harasiewicz, L. Berube, and A. M. Rauth, “Principles and applications of ultrasound backscatter microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(5), 608–617 (1993).
[CrossRef] [PubMed]

Chen, J.

C. Wang, J. Chen, T. Talavage, and J. Irudayaraj, ““““Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simutaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells,” Angew. Chem. Int. Ed. 48(15), 2759–2763 (2009).
[CrossRef]

Chin, Y. E.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

Condit, C.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[CrossRef]

Copland, J. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Drezek, R.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Eghtedari, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[CrossRef] [PubMed]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

Emelianov, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[CrossRef]

Emelianov, S. Y.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

M. A. Lubinski, S. Y. Emelianov, and M. O’Donnell, “Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(1), 82–96 (1999).
[CrossRef] [PubMed]

Esenaliev, R. O.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Eustis, S.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[CrossRef] [PubMed]

Feldman, M. D.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[CrossRef]

Foster, F. S.

F. S. Foster, G. R. Lockwood, L. K. Ryan, K. A. Harasiewicz, L. Berube, and A. M. Rauth, “Principles and applications of ultrasound backscatter microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(5), 608–617 (1993).
[CrossRef] [PubMed]

Halas, N.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Hale, J. A.

Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
[CrossRef] [PubMed]

Harasiewicz, K. A.

F. S. Foster, G. R. Lockwood, L. K. Ryan, K. A. Harasiewicz, L. Berube, and A. M. Rauth, “Principles and applications of ultrasound backscatter microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(5), 608–617 (1993).
[CrossRef] [PubMed]

Hirsch, L.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Ho, D.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

Hu, S.

Ilinskii, Y. A.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Irudayaraj, J.

C. Wang, J. Chen, T. Talavage, and J. Irudayaraj, ““““Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simutaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells,” Angew. Chem. Int. Ed. 48(15), 2759–2763 (2009).
[CrossRef]

Jacques, S. L.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Jain, P. K.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[CrossRef] [PubMed]

Joshi, P. P.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Karpiouk, A.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Karpiouk, A. B.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Kim, J.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[CrossRef]

Kohler, N.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

Kotov, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger and P. Liu, “Photoacoustic ultrasound: pulse production and detection of 0.5% Liposyn,” Med. Phys. 21(7), 1179–1184 (1994).
[CrossRef] [PubMed]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Larson, T.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

Lee, M. H.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Leonov, A. P.

Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
[CrossRef] [PubMed]

Li, Z. Y.

X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

Lin, A.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Liu, P.

R. A. Kruger and P. Liu, “Photoacoustic ultrasound: pulse production and detection of 0.5% Liposyn,” Med. Phys. 21(7), 1179–1184 (1994).
[CrossRef] [PubMed]

Lockwood, G. R.

F. S. Foster, G. R. Lockwood, L. K. Ryan, K. A. Harasiewicz, L. Berube, and A. M. Rauth, “Principles and applications of ultrasound backscatter microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(5), 608–617 (1993).
[CrossRef] [PubMed]

Loo, C.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Lubinski, M. A.

M. A. Lubinski, S. Y. Emelianov, and M. O’Donnell, “Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(1), 82–96 (1999).
[CrossRef] [PubMed]

Mallidi, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

Mamedova, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Maslov, K.

Milner, T. E.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[CrossRef]

Morgan, J. R.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

Motamedi, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

O’Donnell, M.

M. A. Lubinski, S. Y. Emelianov, and M. O’Donnell, “Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(1), 82–96 (1999).
[CrossRef] [PubMed]

Oh, D.

Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
[CrossRef] [PubMed]

Oh, J.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[CrossRef]

Ong, Q. K.

Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
[CrossRef] [PubMed]

Oraevsky, A. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Popov, V. L.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Rauth, A. M.

F. S. Foster, G. R. Lockwood, L. K. Ryan, K. A. Harasiewicz, L. Berube, and A. M. Rauth, “Principles and applications of ultrasound backscatter microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(5), 608–617 (1993).
[CrossRef] [PubMed]

Ritchie, K.

Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
[CrossRef] [PubMed]

Ryan, L. K.

F. S. Foster, G. R. Lockwood, L. K. Ryan, K. A. Harasiewicz, L. Berube, and A. M. Rauth, “Principles and applications of ultrasound backscatter microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(5), 608–617 (1993).
[CrossRef] [PubMed]

Skrabalak, S. E.

X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

Sokolov, K.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007).
[CrossRef] [PubMed]

Song, H. M.

Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
[CrossRef] [PubMed]

Stoica, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Sun, S.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

Talavage, T.

C. Wang, J. Chen, T. Talavage, and J. Irudayaraj, ““““Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simutaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells,” Angew. Chem. Int. Ed. 48(15), 2759–2763 (2009).
[CrossRef]

Tam, J.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Walsh, E. G.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

Wang, C.

C. Wang, J. Chen, T. Talavage, and J. Irudayaraj, ““““Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simutaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells,” Angew. Chem. Int. Ed. 48(15), 2759–2763 (2009).
[CrossRef]

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

Wang, L. V.

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[CrossRef] [PubMed]

X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wei, A.

Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
[CrossRef] [PubMed]

Wei, Q.

Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
[CrossRef] [PubMed]

West, J.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Xia, Y.

X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

Xie, J.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xu, C.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

Yang, X.

X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

Zabolotskaya, E. A.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Zhang, H. F.

Am. J. Sci.

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).

Angew. Chem. Int. Ed.

C. Wang, J. Chen, T. Talavage, and J. Irudayaraj, ““““Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simutaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells,” Angew. Chem. Int. Ed. 48(15), 2759–2763 (2009).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[CrossRef] [PubMed]

Chem. Mater.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

F. S. Foster, G. R. Lockwood, L. K. Ryan, K. A. Harasiewicz, L. Berube, and A. M. Rauth, “Principles and applications of ultrasound backscatter microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(5), 608–617 (1993).
[CrossRef] [PubMed]

M. A. Lubinski, S. Y. Emelianov, and M. O’Donnell, “Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(1), 82–96 (1999).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

Q. Wei, H. M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei, “Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores,” J. Am. Chem. Soc. 131(28), 9728–9734 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[CrossRef] [PubMed]

Med. Phys.

R. A. Kruger and P. Liu, “Photoacoustic ultrasound: pulse production and detection of 0.5% Liposyn,” Med. Phys. 21(7), 1179–1184 (1994).
[CrossRef] [PubMed]

Mol. Imaging Biol.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Nano Lett.

X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Nanotechnology

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[CrossRef]

Nat. Biotechnol.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Technol. Cancer Res. Treat.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Other

R. L. Truby, K. A. Homan, M. Qu, M. Mehrmohammadi, and S. Emelianov, “Synthesis of a hybrid plasmonic-superparamagnetic contrast agent for magneto-photo-acoustic imaging,” presented at the Biomecial Engineering Society 2010 Annual Meeting, Austin, Tex., Oct. 6–9, 2010).

S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. W. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, 2006), pp. 405–415.

M. Mehrmohammadi, L. M. J. Oh, E. Yantsen, T. Larson, S. Mallidi, S. Park, K. P. Johnston, K. Sokolov, T. Milner, and S. Emelianov, “Imaging of iron oxide nanoparticles using magneto-motive ultrasound,” in Proceedings of IEEE Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, 2007), pp. 652–655.

M. Mehrmohammadi, J. Oh, L. Ma, S. Roo, E. Yantsen, S. Mallidi, K. P. Johnston, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Pulsed magneto-motive ultrasound imaging,” in Proceedings of 25th Annual Houston Conference on Biomedical Engineering Research (Kluwer Academic, 2008), p. 75.

M. Mehrmohammadi, S. R. Aglyamov, A. B. Karpiouk, J. Oh, and S. Y. Emelianov, “Pulsed magneto-motive ultrasound to assess viscoelastic properties of soft tissues,” in Proceedings of the Seventh International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity (International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity, 2008), p. 106.

M. Mehrmohammadi, L. L. Ma, Y. Chen, M. Qu, P. Joshi, R. M. Chen, K. P. Johnston, and S. Emelianov, “Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles,” Proc. SPIE 7574(757405), 757405, 757405–8 (2010).

P. P. Joshi, Y. Chen, S. Kim, J. Shah, K. Sokolov, and S. Emelianov, “Molecular therapeutic agents for noninvasive photoacoustic image-guided photothermal therapy,” in Conference Proceedings—IEEE Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, 2009), pp. 4106–4109.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram for preparation of liposomes encapsulating gold nanorods (Au NRs) and iron oxide nanoparticles (Fe3O4 NPs).

Fig. 2
Fig. 2

(a) The TEM image of liposomes encapsulating Au NRs and Fe3O4 NPs. (b) The extinction spectra of liposomal nanoparticles (solid line) and PBS solution (dashed line) containing Au NRs and Fe3O4 NPs.

Fig. 3
Fig. 3

Darkfield images of (a) native macrophages and (b) macrophages labeled with Au NRs and Fe3O4 NPs. (c) The extinction spectra of native cells (dashed line) and cells (solid line) labeled with Au NRs and Fe3O4 NPs.

Fig. 4
Fig. 4

A block diagram for the magneto-photo-acoustic (MPA) imaging system.

Fig. 5
Fig. 5

(a) The ultrasound (US) image of the tissue-mimicking phantom with six inclusions. The background of the phantom was prepared by mixing gelatin with optical contrast agent to represent the endogenous chromophores in native tissue. The inclusions were prepared by mixing gelatin with different types of contrast agents at different concentrations. The first inclusion contained gelatin only and was used as a control (inclusion I). Other inclusions contained 0.70 mg/mL Au NRs (inclusion II), 0.60 mg/mL Fe3O4 NPs (inclusion III), high concentration (0.70 mg/mL Au and 0.60 mg/mL Fe3O4) of dual-contrast liposomal nanoparticles (inclusion IV), and low concentration (0.47 mg/mL Au and 0.40 mg/mL Fe3O4) of dual-contrast liposomal nanoparticles (inclusion V). Inclusion VI consists of two regions, which were equivalent to inclusions IV (left region) and V (right region) placed together and interconnected. (b) The magnitude of the averaged photoacoustic (PA) signal from each marked region in Fig. 5(a), and the PA image of the tissue-mimicking phantom. (c) The magneto-motive displacement of each marked region and the magneto-motive ultrasound (MMUS) image of the phantom. (f) Magneto-photo-acoustic (MPA) image of the tissue-mimicking phantom. Each image covers area measuring 7.7 mm axially and 56 mm laterally.

Fig. 6
Fig. 6

(a) US image, (b) PA image, (c) MMUS image and (d) MPA image of ex vivo tissue sample injected with macrophage labeled with Au NRs and Fe3O4 NPs. The images cover area measuring 5.4 mm axially by 4.5 mm laterally.

Metrics