Abstract

Femtosecond laser at 780 nm excitation wavelength was used to photo-convert the physiological sarcomeric single band (SB) second harmonic generation (SHG) pattern into double band (DB) in Xenopus laevis premetamorphic tail muscles. This photo-conversion was found to be a third order non-linear optical process and was drastically reduced at 940 nm excitation wavelength. This effect was no longer observed in paraformaldehyde fixed muscles and was enhanced by hydrogen peroxide. The action of hydrogen peroxide suggests that reactive oxygen species (ROS) could contribute to this photo-conversion. These results demonstrate that sarcomeric DB SHG pattern is a marker of sarcomere photodamage in xenopus tadpole muscles and highlight the need of being very careful at using two-photon excitation while observing living tissues. Moreover they open new avenues for in situ intravital investigation of oxidative stress effects in muscle dysfunctions and diseases.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
    [CrossRef] [PubMed]
  2. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
    [CrossRef] [PubMed]
  3. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
    [CrossRef] [PubMed]
  4. M. Rubart, “Two-photon microscopy of cells and tissue,” Circ. Res. 95(12), 1154–1166 (2004).
    [CrossRef] [PubMed]
  5. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, “““Two-photon laser scanning fluorescence microscopy,” Science (New York, N,” Y 248, 73–76 (1990).
  7. K. Svoboda, D. W. Tank, and W. Denk, “Direct measurement of coupling between dendritic spines and shafts,” Science 272(5262), 716–719 (1996).
    [CrossRef] [PubMed]
  8. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
    [CrossRef] [PubMed]
  9. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
    [CrossRef] [PubMed]
  10. M. A. Aon, S. Cortassa, E. Marbán, and B. O’Rourke, “Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes,” J. Biol. Chem. 278(45), 44735–44744 (2003).
    [CrossRef] [PubMed]
  11. W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66(2), 141–155 (1997).
    [CrossRef] [PubMed]
  12. T. Boulesteix, E. Beaurepaire, M. P. Sauviat, and M. C. Schanne-Klein, “Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy,” Opt. Lett. 29(17), 2031–2033 (2004).
    [CrossRef] [PubMed]
  13. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
    [CrossRef] [PubMed]
  14. C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt. 46(10), 1852–1859 (2007).
    [CrossRef] [PubMed]
  15. N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008).
    [CrossRef] [PubMed]
  16. F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
    [CrossRef] [PubMed]
  17. M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
    [CrossRef] [PubMed]
  18. G. Recher, D. Rouède, P. Richard, A. Simon, J.-J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF microscopy,” Opt. Express 17(22), 19763–19777 (2009).
    [CrossRef] [PubMed]
  19. G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc. 241(2), 207–211 (2011).
    [CrossRef] [PubMed]
  20. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
    [CrossRef] [PubMed]
  21. E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
    [CrossRef] [PubMed]
  22. I. Agarkova, E. Ehler, S. Lange, R. Schoenauer, and J. C. Perriard, “M-band: a safeguard for sarcomere stability?” J. Muscle Res. Cell Motil. 24(2/3), 191–203 (2003).
    [CrossRef] [PubMed]
  23. R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, “A physiological role for titin and nebulin in skeletal muscle,” Nature 323(6084), 160–164 (1986).
    [CrossRef] [PubMed]
  24. R. W. Ogilvie, R. B. Armstrong, K. E. Baird, and C. L. Bottoms, “Lesions in the rat soleus muscle following eccentrically biased exercise,” Am. J. Anat. 182(4), 335–346 (1988).
    [CrossRef] [PubMed]
  25. S. G. Page and H. E. Huxley, “Filament Lengths in Striated Muscle,” J. Cell Biol. 19(2), 369–390 (1963).
    [CrossRef] [PubMed]
  26. J. L. Thompson, E. M. Balog, R. H. Fitts, and D. A. Riley, “Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model,” Anat. Rec. 254(1), 39–52 (1999).
    [CrossRef] [PubMed]
  27. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996).
    [CrossRef] [PubMed]
  28. K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999).
    [CrossRef] [PubMed]
  29. K. König, P. T. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett. 22(2), 135–136 (1997).
    [CrossRef] [PubMed]
  30. D. Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser solid interaction,” J. Opt. Soc. Am. B 13(1), 216–222 (1996).
    [CrossRef]
  31. J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
    [CrossRef] [PubMed]
  32. J. De Ruyck, M. Famerée, J. Wouters, E. A. Perpète, J. Preat, and D. Jacquemin, “Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity,” Chem. Phys. Lett. 450(1–3), 119–122 (2007).
    [CrossRef]
  33. W. Ying, “NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences,” Antioxid. Redox Signal. 10(2), 179–206 (2008).
    [CrossRef] [PubMed]
  34. C. J. Bertling, F. Lin, and A. W. Girotti, “Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells,” Photochem. Photobiol. 64(1), 137–142 (1996).
    [CrossRef] [PubMed]
  35. P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
    [CrossRef] [PubMed]
  36. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
    [CrossRef] [PubMed]
  37. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
    [CrossRef] [PubMed]
  38. D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
    [CrossRef] [PubMed]
  39. H. Oehring, I. Riemann, P. Fischer, K. J. Halbhuber, and K. Konig, “Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses,” Scanning 22(4), 263–270 (2000).
    [CrossRef] [PubMed]

2011

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc. 241(2), 207–211 (2011).
[CrossRef] [PubMed]

2010

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[CrossRef] [PubMed]

2009

2008

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

W. Ying, “NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences,” Antioxid. Redox Signal. 10(2), 179–206 (2008).
[CrossRef] [PubMed]

N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008).
[CrossRef] [PubMed]

2007

2006

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

2004

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[CrossRef] [PubMed]

M. Rubart, “Two-photon microscopy of cells and tissue,” Circ. Res. 95(12), 1154–1166 (2004).
[CrossRef] [PubMed]

T. Boulesteix, E. Beaurepaire, M. P. Sauviat, and M. C. Schanne-Klein, “Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy,” Opt. Lett. 29(17), 2031–2033 (2004).
[CrossRef] [PubMed]

2003

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

M. A. Aon, S. Cortassa, E. Marbán, and B. O’Rourke, “Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes,” J. Biol. Chem. 278(45), 44735–44744 (2003).
[CrossRef] [PubMed]

I. Agarkova, E. Ehler, S. Lange, R. Schoenauer, and J. C. Perriard, “M-band: a safeguard for sarcomere stability?” J. Muscle Res. Cell Motil. 24(2/3), 191–203 (2003).
[CrossRef] [PubMed]

2002

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

2001

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

2000

H. Oehring, I. Riemann, P. Fischer, K. J. Halbhuber, and K. Konig, “Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses,” Scanning 22(4), 263–270 (2000).
[CrossRef] [PubMed]

1999

P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
[CrossRef] [PubMed]

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999).
[CrossRef] [PubMed]

J. L. Thompson, E. M. Balog, R. H. Fitts, and D. A. Riley, “Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model,” Anat. Rec. 254(1), 39–52 (1999).
[CrossRef] [PubMed]

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

1997

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66(2), 141–155 (1997).
[CrossRef] [PubMed]

K. König, P. T. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett. 22(2), 135–136 (1997).
[CrossRef] [PubMed]

1996

D. Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser solid interaction,” J. Opt. Soc. Am. B 13(1), 216–222 (1996).
[CrossRef]

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996).
[CrossRef] [PubMed]

K. Svoboda, D. W. Tank, and W. Denk, “Direct measurement of coupling between dendritic spines and shafts,” Science 272(5262), 716–719 (1996).
[CrossRef] [PubMed]

C. J. Bertling, F. Lin, and A. W. Girotti, “Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells,” Photochem. Photobiol. 64(1), 137–142 (1996).
[CrossRef] [PubMed]

1995

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[CrossRef] [PubMed]

1990

W. Denk, J. H. Strickler, and W. W. Webb, “““Two-photon laser scanning fluorescence microscopy,” Science (New York, N,” Y 248, 73–76 (1990).

1989

J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
[CrossRef] [PubMed]

1988

R. W. Ogilvie, R. B. Armstrong, K. E. Baird, and C. L. Bottoms, “Lesions in the rat soleus muscle following eccentrically biased exercise,” Am. J. Anat. 182(4), 335–346 (1988).
[CrossRef] [PubMed]

1986

R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, “A physiological role for titin and nebulin in skeletal muscle,” Nature 323(6084), 160–164 (1986).
[CrossRef] [PubMed]

1963

S. G. Page and H. E. Huxley, “Filament Lengths in Striated Muscle,” J. Cell Biol. 19(2), 369–390 (1963).
[CrossRef] [PubMed]

Agarkova, I.

I. Agarkova, E. Ehler, S. Lange, R. Schoenauer, and J. C. Perriard, “M-band: a safeguard for sarcomere stability?” J. Muscle Res. Cell Motil. 24(2/3), 191–203 (2003).
[CrossRef] [PubMed]

Antolini, R.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Aon, M. A.

M. A. Aon, S. Cortassa, E. Marbán, and B. O’Rourke, “Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes,” J. Biol. Chem. 278(45), 44735–44744 (2003).
[CrossRef] [PubMed]

Armstrong, R. B.

R. W. Ogilvie, R. B. Armstrong, K. E. Baird, and C. L. Bottoms, “Lesions in the rat soleus muscle following eccentrically biased exercise,” Am. J. Anat. 182(4), 335–346 (1988).
[CrossRef] [PubMed]

Baird, K. E.

R. W. Ogilvie, R. B. Armstrong, K. E. Baird, and C. L. Bottoms, “Lesions in the rat soleus muscle following eccentrically biased exercise,” Am. J. Anat. 182(4), 335–346 (1988).
[CrossRef] [PubMed]

Balaban, R. S.

J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
[CrossRef] [PubMed]

Balog, E. M.

J. L. Thompson, E. M. Balog, R. H. Fitts, and D. A. Riley, “Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model,” Anat. Rec. 254(1), 39–52 (1999).
[CrossRef] [PubMed]

Barzda, V.

N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008).
[CrossRef] [PubMed]

C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt. 46(10), 1852–1859 (2007).
[CrossRef] [PubMed]

Baur, D.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

Bavister, B. D.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

Beaurepaire, E.

Becker, T. W.

Bellanger, J.-J.

Bembi, B.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Berns, M. W.

Bertling, C. J.

C. J. Bertling, F. Lin, and A. W. Girotti, “Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells,” Photochem. Photobiol. 64(1), 137–142 (1996).
[CrossRef] [PubMed]

Bisher, M. E.

R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, “A physiological role for titin and nebulin in skeletal muscle,” Nature 323(6084), 160–164 (1986).
[CrossRef] [PubMed]

Both, M.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[CrossRef] [PubMed]

Bottinelli, R.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Bottoms, C. L.

R. W. Ogilvie, R. B. Armstrong, K. E. Baird, and C. L. Bottoms, “Lesions in the rat soleus muscle following eccentrically biased exercise,” Am. J. Anat. 182(4), 335–346 (1988).
[CrossRef] [PubMed]

Boulesteix, T.

Campagnola, P. J.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Canepari, M.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Capitanio, M.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Centonze, V. E.

P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
[CrossRef] [PubMed]

Chien, Y. H.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Chu, S.

P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
[CrossRef] [PubMed]

Cicchi, R.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Cisek, R.

N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008).
[CrossRef] [PubMed]

C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt. 46(10), 1852–1859 (2007).
[CrossRef] [PubMed]

Cortassa, S.

M. A. Aon, S. Cortassa, E. Marbán, and B. O’Rourke, “Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes,” J. Biol. Chem. 278(45), 44735–44744 (2003).
[CrossRef] [PubMed]

Czapiga, M.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

D’Amico, L. A.

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc. 241(2), 207–211 (2011).
[CrossRef] [PubMed]

Dadras, S.

P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
[CrossRef] [PubMed]

De Ruyck, J.

J. De Ruyck, M. Famerée, J. Wouters, E. A. Perpète, J. Preat, and D. Jacquemin, “Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity,” Chem. Phys. Lett. 450(1–3), 119–122 (2007).
[CrossRef]

Dees, C.

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66(2), 141–155 (1997).
[CrossRef] [PubMed]

Deibler, M.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[CrossRef] [PubMed]

Denk, W.

K. Svoboda, D. W. Tank, and W. Denk, “Direct measurement of coupling between dendritic spines and shafts,” Science 272(5262), 716–719 (1996).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “““Two-photon laser scanning fluorescence microscopy,” Science (New York, N,” Y 248, 73–76 (1990).

Ehler, E.

I. Agarkova, E. Ehler, S. Lange, R. Schoenauer, and J. C. Perriard, “M-band: a safeguard for sarcomere stability?” J. Muscle Res. Cell Motil. 24(2/3), 191–203 (2003).
[CrossRef] [PubMed]

Eng, J.

J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
[CrossRef] [PubMed]

Famerée, M.

J. De Ruyck, M. Famerée, J. Wouters, E. A. Perpète, J. Preat, and D. Jacquemin, “Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity,” Chem. Phys. Lett. 450(1–3), 119–122 (2007).
[CrossRef]

Ferrando-May, E.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[CrossRef] [PubMed]

Fink, R. H. A.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[CrossRef] [PubMed]

Fischer, P.

H. Oehring, I. Riemann, P. Fischer, K. J. Halbhuber, and K. Konig, “Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses,” Scanning 22(4), 263–270 (2000).
[CrossRef] [PubMed]

K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999).
[CrossRef] [PubMed]

Fisher, W. G.

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66(2), 141–155 (1997).
[CrossRef] [PubMed]

Fitts, R. H.

J. L. Thompson, E. M. Balog, R. H. Fitts, and D. A. Riley, “Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model,” Anat. Rec. 254(1), 39–52 (1999).
[CrossRef] [PubMed]

Friedrich, O.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[CrossRef] [PubMed]

Girotti, A. W.

C. J. Bertling, F. Lin, and A. W. Girotti, “Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells,” Photochem. Photobiol. 64(1), 137–142 (1996).
[CrossRef] [PubMed]

Gratton, E.

Green, C.

N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008).
[CrossRef] [PubMed]

C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt. 46(10), 1852–1859 (2007).
[CrossRef] [PubMed]

Greenhalgh, C.

N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008).
[CrossRef] [PubMed]

C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt. 46(10), 1852–1859 (2007).
[CrossRef] [PubMed]

Halbhuber, K. J.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

H. Oehring, I. Riemann, P. Fischer, K. J. Halbhuber, and K. Konig, “Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses,” Scanning 22(4), 263–270 (2000).
[CrossRef] [PubMed]

K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999).
[CrossRef] [PubMed]

Hell, S. W.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

Hockberger, P. E.

P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
[CrossRef] [PubMed]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Hopt, A.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

Horowits, R.

R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, “A physiological role for titin and nebulin in skeletal muscle,” Nature 323(6084), 160–164 (1986).
[CrossRef] [PubMed]

Huxley, H. E.

S. G. Page and H. E. Huxley, “Filament Lengths in Striated Muscle,” J. Cell Biol. 19(2), 369–390 (1963).
[CrossRef] [PubMed]

Hwu, W. L.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Jacquemin, D.

J. De Ruyck, M. Famerée, J. Wouters, E. A. Perpète, J. Preat, and D. Jacquemin, “Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity,” Chem. Phys. Lett. 450(1–3), 119–122 (2007).
[CrossRef]

Kempner, E. S.

R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, “A physiological role for titin and nebulin in skeletal muscle,” Nature 323(6084), 160–164 (1986).
[CrossRef] [PubMed]

Koester, H. J.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

Konig, K.

H. Oehring, I. Riemann, P. Fischer, K. J. Halbhuber, and K. Konig, “Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses,” Scanning 22(4), 263–270 (2000).
[CrossRef] [PubMed]

König, K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999).
[CrossRef] [PubMed]

K. König, P. T. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett. 22(2), 135–136 (1997).
[CrossRef] [PubMed]

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996).
[CrossRef] [PubMed]

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[CrossRef] [PubMed]

Krieg, R.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

Künsting, T.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[CrossRef] [PubMed]

Lange, S.

I. Agarkova, E. Ehler, S. Lange, R. Schoenauer, and J. C. Perriard, “M-band: a safeguard for sarcomere stability?” J. Muscle Res. Cell Motil. 24(2/3), 191–203 (2003).
[CrossRef] [PubMed]

Lavin, C.

P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
[CrossRef] [PubMed]

Leitenstorfer, A.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[CrossRef] [PubMed]

Liang, H.

Lin, F.

C. J. Bertling, F. Lin, and A. W. Girotti, “Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells,” Photochem. Photobiol. 64(1), 137–142 (1996).
[CrossRef] [PubMed]

Linari, M.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Linde, D.

Lombardi, V.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Lynch, R. M.

J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
[CrossRef] [PubMed]

Maffei, M.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Major, A.

N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008).
[CrossRef] [PubMed]

C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt. 46(10), 1852–1859 (2007).
[CrossRef] [PubMed]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Mantulin, W. W.

Marbán, E.

M. A. Aon, S. Cortassa, E. Marbán, and B. O’Rourke, “Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes,” J. Biol. Chem. 278(45), 44735–44744 (2003).
[CrossRef] [PubMed]

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Mohler, W. A.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Neher, E.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

Nucciotti, V.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

O’Rourke, B.

M. A. Aon, S. Cortassa, E. Marbán, and B. O’Rourke, “Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes,” J. Biol. Chem. 278(45), 44735–44744 (2003).
[CrossRef] [PubMed]

Oehring, H.

H. Oehring, I. Riemann, P. Fischer, K. J. Halbhuber, and K. Konig, “Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses,” Scanning 22(4), 263–270 (2000).
[CrossRef] [PubMed]

Ogilvie, R. W.

R. W. Ogilvie, R. B. Armstrong, K. E. Baird, and C. L. Bottoms, “Lesions in the rat soleus muscle following eccentrically biased exercise,” Am. J. Anat. 182(4), 335–346 (1988).
[CrossRef] [PubMed]

Page, S. G.

S. G. Page and H. E. Huxley, “Filament Lengths in Striated Muscle,” J. Cell Biol. 19(2), 369–390 (1963).
[CrossRef] [PubMed]

Partridge, W. P.

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66(2), 141–155 (1997).
[CrossRef] [PubMed]

Pavone, F. S.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Perpète, E. A.

J. De Ruyck, M. Famerée, J. Wouters, E. A. Perpète, J. Preat, and D. Jacquemin, “Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity,” Chem. Phys. Lett. 450(1–3), 119–122 (2007).
[CrossRef]

Perriard, J. C.

I. Agarkova, E. Ehler, S. Lange, R. Schoenauer, and J. C. Perriard, “M-band: a safeguard for sarcomere stability?” J. Muscle Res. Cell Motil. 24(2/3), 191–203 (2003).
[CrossRef] [PubMed]

Peuckert, C.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

Piazzesi, G.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Piroddi, N.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Pittis, M. G.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Plotnikov, S. V.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

Plotz, P.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Podolsky, R. J.

R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, “A physiological role for titin and nebulin in skeletal muscle,” Nature 323(6084), 160–164 (1986).
[CrossRef] [PubMed]

Poggesi, C.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Preat, J.

J. De Ruyck, M. Famerée, J. Wouters, E. A. Perpète, J. Preat, and D. Jacquemin, “Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity,” Chem. Phys. Lett. 450(1–3), 119–122 (2007).
[CrossRef]

Prent, N.

N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008).
[CrossRef] [PubMed]

C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt. 46(10), 1852–1859 (2007).
[CrossRef] [PubMed]

Raben, N.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Ralston, E.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Recher, G.

Reddy, J. K.

P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
[CrossRef] [PubMed]

Richard, P.

Riemann, I.

H. Oehring, I. Riemann, P. Fischer, K. J. Halbhuber, and K. Konig, “Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses,” Scanning 22(4), 263–270 (2000).
[CrossRef] [PubMed]

K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999).
[CrossRef] [PubMed]

Riley, D. A.

J. L. Thompson, E. M. Balog, R. H. Fitts, and D. A. Riley, “Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model,” Anat. Rec. 254(1), 39–52 (1999).
[CrossRef] [PubMed]

Rouède, D.

Rubart, M.

M. Rubart, “Two-photon microscopy of cells and tissue,” Circ. Res. 95(12), 1154–1166 (2004).
[CrossRef] [PubMed]

Sacconi, L.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Sauviat, M. P.

Schanne-Klein, M. C.

Schoenauer, R.

I. Agarkova, E. Ehler, S. Lange, R. Schoenauer, and J. C. Perriard, “M-band: a safeguard for sarcomere stability?” J. Muscle Res. Cell Motil. 24(2/3), 191–203 (2003).
[CrossRef] [PubMed]

Schüler, H.

Schwartz, O.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Simon, A.

Skimina, T. A.

P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
[CrossRef] [PubMed]

So, P. T.

Squirrell, J. M.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

Stewart, B.

N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008).
[CrossRef] [PubMed]

C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt. 46(10), 1852–1859 (2007).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “““Two-photon laser scanning fluorescence microscopy,” Science (New York, N,” Y 248, 73–76 (1990).

Stringari, C.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda, D. W. Tank, and W. Denk, “Direct measurement of coupling between dendritic spines and shafts,” Science 272(5262), 716–719 (1996).
[CrossRef] [PubMed]

Swaim, B.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Tank, D. W.

K. Svoboda, D. W. Tank, and W. Denk, “Direct measurement of coupling between dendritic spines and shafts,” Science 272(5262), 716–719 (1996).
[CrossRef] [PubMed]

Tascon, C.

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc. 241(2), 207–211 (2011).
[CrossRef] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

Tesi, C.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Thompson, J. L.

J. L. Thompson, E. M. Balog, R. H. Fitts, and D. A. Riley, “Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model,” Anat. Rec. 254(1), 39–52 (1999).
[CrossRef] [PubMed]

Tiaho, F.

Tirlapur, U. K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

Träutlein, D.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[CrossRef] [PubMed]

Tromberg, B. J.

Uhl, R.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

Uttenweiler, D.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[CrossRef] [PubMed]

Vanzi, F.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Vogel, M.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[CrossRef] [PubMed]

von Wegner, F.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[CrossRef] [PubMed]

Wachter, E. A.

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66(2), 141–155 (1997).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “““Two-photon laser scanning fluorescence microscopy,” Science (New York, N,” Y 248, 73–76 (1990).

White, J. G.

P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
[CrossRef] [PubMed]

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wokosin, D. L.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

Wouters, J.

J. De Ruyck, M. Famerée, J. Wouters, E. A. Perpète, J. Preat, and D. Jacquemin, “Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity,” Chem. Phys. Lett. 450(1–3), 119–122 (2007).
[CrossRef]

Ying, W.

W. Ying, “NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences,” Antioxid. Redox Signal. 10(2), 179–206 (2008).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Am. J. Anat.

R. W. Ogilvie, R. B. Armstrong, K. E. Baird, and C. L. Bottoms, “Lesions in the rat soleus muscle following eccentrically biased exercise,” Am. J. Anat. 182(4), 335–346 (1988).
[CrossRef] [PubMed]

Anat. Rec.

J. L. Thompson, E. M. Balog, R. H. Fitts, and D. A. Riley, “Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model,” Anat. Rec. 254(1), 39–52 (1999).
[CrossRef] [PubMed]

Antioxid. Redox Signal.

W. Ying, “NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences,” Antioxid. Redox Signal. 10(2), 179–206 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
[CrossRef] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef] [PubMed]

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

Chem. Phys. Lett.

J. De Ruyck, M. Famerée, J. Wouters, E. A. Perpète, J. Preat, and D. Jacquemin, “Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity,” Chem. Phys. Lett. 450(1–3), 119–122 (2007).
[CrossRef]

Circ. Res.

M. Rubart, “Two-photon microscopy of cells and tissue,” Circ. Res. 95(12), 1154–1166 (2004).
[CrossRef] [PubMed]

Exp. Cell Res.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001).
[CrossRef] [PubMed]

J. Biol. Chem.

M. A. Aon, S. Cortassa, E. Marbán, and B. O’Rourke, “Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes,” J. Biol. Chem. 278(45), 44735–44744 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt.

N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008).
[CrossRef] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[CrossRef] [PubMed]

J. Cell Biol.

S. G. Page and H. E. Huxley, “Filament Lengths in Striated Muscle,” J. Cell Biol. 19(2), 369–390 (1963).
[CrossRef] [PubMed]

J. Microsc.

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc. 241(2), 207–211 (2011).
[CrossRef] [PubMed]

J. Muscle Res. Cell Motil.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

I. Agarkova, E. Ehler, S. Lange, R. Schoenauer, and J. C. Perriard, “M-band: a safeguard for sarcomere stability?” J. Muscle Res. Cell Motil. 24(2/3), 191–203 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Struct. Biol.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Nature

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995).
[CrossRef] [PubMed]

R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, “A physiological role for titin and nebulin in skeletal muscle,” Nature 323(6084), 160–164 (1986).
[CrossRef] [PubMed]

Nucleic Acids Res.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66(2), 141–155 (1997).
[CrossRef] [PubMed]

C. J. Bertling, F. Lin, and A. W. Girotti, “Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells,” Photochem. Photobiol. 64(1), 137–142 (1996).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999).
[CrossRef] [PubMed]

Scanning

H. Oehring, I. Riemann, P. Fischer, K. J. Halbhuber, and K. Konig, “Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses,” Scanning 22(4), 263–270 (2000).
[CrossRef] [PubMed]

Science

K. Svoboda, D. W. Tank, and W. Denk, “Direct measurement of coupling between dendritic spines and shafts,” Science 272(5262), 716–719 (1996).
[CrossRef] [PubMed]

Y

W. Denk, J. H. Strickler, and W. W. Webb, “““Two-photon laser scanning fluorescence microscopy,” Science (New York, N,” Y 248, 73–76 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical SHG images illustrating the laser-induced SB to DB sarcomeric SHG pattern conversion obtained at 780 nm excitation wavelength. (a) and (b) are examples of pre- and post-conversion single frame protocol images obtained respectively before and after the photo-conversion time-lapse protocol (c) (see Experimental Methods section). In (c), thumbnail strips are representative of the photo-conversion time-lapse sequence (left- right and top-down) and were realized in the dot-delimited area in (a) and (b). (d) Raw pixels intensity (Ipix ) profiles (8-bit scale) along indicated lines in the first and the last frames in (c). Note that the first and last thumbnail and their corresponding intensity profiles at indicated lines are labeled “0 s” and “286 s” which correspond to their acquisition time within the sequence. Note the progressive spatiotemporal (left to right) “wave-like” propagation of sarcomere SHG pattern duplication within the sequence. Both thumbnail and intensity profile plots indicate a great contrast reduction suggestive of photodamage. This photodamage is accompanied by a SB to DB conversion which was slightly propagated beyond the zoom area in (b) in an anisotropic manner, following the long axis of myofibrils.

Fig. 2
Fig. 2

Kinetic of laser-induced SB to DB sarcomeric SHG pattern photo-conversion. Percentages of DB were determined from the photo-conversion time lapse protocol (see Experimental Methods section). Filled circle without error bars, filled diamond without error bars and filled circle with error bars represent data respectively from the fastest, slowest and average kinetics observed.

Fig. 3
Fig. 3

Influence of the laser mean power intensity (I) on SB to DB sarcomeric SHG pattern photo-conversion kinetic. The incident laser power was varied and the half-time (τ1/2) until 50% SB to DB conversion was determined. Each symbol represents value from distinct field of view. Care was taken to maintain the focal plane at the same z position within the sample. The logarithm of the half-time latency τ1/2 was plotted against the logarithm of the laser power intensity (I) at the output of the objective lens. Fits were obtained by linear regression with the following equation: log (τ1/2) = 5.8 – 3.1log (I); R = 0.94.

Fig. 4
Fig. 4

Laser-induced alteration of sarcomeric SHG pattern at 940 nm excitation in the presence of hydrogen peroxide (5 µL, 90 mM) injected in the heart of tadpoles. (a) and (b) are examples of pre- and post-conversion single frame protocol images obtained respectively before and after the photo-conversion time lapse protocol (c) (see Experimental Methods section). (c) Thumbnail strips representative of the photo-conversion time lapse sequence (from left to right) realized in the dot-delimited area in (a) and (b).(d) Raw pixels intensity (Ipix ) profiles (8-bit scale) along indicated lines in the first and the last frames. Note that the first and last thumbnail and their corresponding intensity profiles are labeled “0 s” and “520 s” which correspond to their acquisition time within the sequence.

Fig. 5
Fig. 5

Laser-induced alteration of sarcomeric SHG pattern at 780 nm excitation in the presence of hydrogen peroxide (5 µL, 90 mM) injected in the heart of tadpoles. (a) and (b) are examples of pre- and post-conversion single frame protocol images obtained respectively before and after the photo-conversion time lapse protocol (c) (see Experimental Methods section). (c) Thumbnail strips representative of the photo-conversion time lapse sequence (from left to right) realized in the dot-delimited area in (a) and (b). (d) Raw pixels intensity (Ipix ) profiles (8-bit scale) along indicated lines in the first and the last frames are presented below the strips. Note that the first and last thumbnail and their corresponding intensity profiles are labeled “0 s” and “52 s” which correspond to their acquisition time within the sequence. Note the dark central zone of (b) corresponding to the dot-delimited area scanned during the photo-conversion time lapse protocol. The double headed continuous and dotted arrows represent respectively the favorable and unfavorable propagation direction of the effect of the laser outside the scanned area. Note that the propagation direction is quite parallel to the myofibril axis.

Tables (1)

Tables Icon

Table 1 Quantification of sarcomeric SHG signals in different experimental conditions as indicated in the table a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C t h r D τ t h .
log ( τ 1 / 2 ) = c s t e υ log ( I ) .

Metrics