Abstract

Differential image contrast (DIC), through the numerical managing and manipulation of complex wavefronts obtained by digital holography (DH), is investigated. We name the approach Dynamical Differential Holographic Image Contrast (DDHIC). DDHIC dispenses from special optics and/or complex setup configurations with moveable components, as usually occurs in classical DIC, that is not well-suited for investigating objects experiencing dynamic evolution during the measurement. In fact, the technique presented here, is useful for floating samples since it allows, from a single recording, to set a posteriori the best conditions for DIC imaging in conjunction with the numerical focusing feature of DH. By DDHIC, the movies can be easily built-up to offering dynamic representation of phase-contrast along all directions, thus improving the visualization. Furthermore, the dynamic representation is useful for making the proper choice of other key parameters of DIC such as the amount of shear and the bias, with the aim to optimize the visualized phase-contrast imaging as favorite representation for bio-scientists. Investigation is performed on various biological samples.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent object,” Physica 9(7), 686–698 (1942).
    [CrossRef]
  2. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).
    [CrossRef]
  3. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
    [CrossRef] [PubMed]
  4. T. J. McIntyre, C. Maurer, S. Fassl, S. Khan, S. Bernet, and M. Ritsch-Marte, “Quantitative SLM-based differential interference contrast imaging,” Opt. Express 18(13), 14063–14078 (2010).
    [CrossRef] [PubMed]
  5. C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18(5), 4717–4726 (2010).
    [CrossRef] [PubMed]
  6. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35(14), 2370–2372 (2010).
    [CrossRef] [PubMed]
  7. M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13(1), 014011 (2008).
    [CrossRef] [PubMed]
  8. S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
    [CrossRef] [PubMed]
  9. S. S. Kou, L. Waller, G. Barbastathis, and C. J. Sheppard, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging,” Opt. Lett. 35(3), 447–449 (2010).
    [CrossRef] [PubMed]
  10. E. B. Van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188(2), 149–157 (1997).
    [CrossRef] [PubMed]
  11. C. Preza and J. A. O’Sullivan, “Quantitative phase and amplitude imaging using differential-interference contrast (DIC) microscopy,” Proc. SPIE 7246, 724604 (2009).
  12. M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Appl. Opt. 45(3), 460–469 (2006).
    [CrossRef] [PubMed]
  13. G. Franz and J. Kross, “Generation of two-dimensional surface profiles from differential interference contrast (DIC)-images,” Optik (Stuttg.) 112(8), 363–367 (2001).
    [CrossRef]
  14. B. P. Kouskousis, D. J. Kitcher, S. F. Collins, A. Roberts, and G. W. Baxter, “Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy,” Appl. Opt. 47, 5182–5189 (2007).
    [CrossRef]
  15. W. Sun, G. Wang, N. Fang, and E. S. Yeung, “Wavelength-dependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells,” Anal. Chem. 81(22), 9203–9208 (2009).
    [CrossRef] [PubMed]
  16. X. Cui, M. lew, and C. Yang, “Quantitative differential interference contrast microscopy based on structured-aperture interference,” Appl. Phys. Lett. 93(9), 091113 (2008).
    [CrossRef]
  17. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
    [CrossRef] [PubMed]
  18. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009)
    [CrossRef] [PubMed]
  19. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
    [CrossRef] [PubMed]
  20. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31(10), 1405–1407 (2006).
    [CrossRef] [PubMed]
  21. L. Miccio, D. Alfieri, S. Grilli, A. Finizio, L. De Petrocellis, S. D. Nicola, and P. Ferraro, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
    [CrossRef]
  22. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9(6), 294–302 (2001).
    [CrossRef] [PubMed]
  23. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [CrossRef] [PubMed]
  24. X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18(16), 16685–16701 (2010).
    [CrossRef] [PubMed]
  25. F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
    [CrossRef] [PubMed]
  26. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
    [CrossRef] [PubMed]
  27. G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
    [CrossRef]

2010 (7)

2009 (4)

2008 (3)

X. Cui, M. lew, and C. Yang, “Quantitative differential interference contrast microscopy based on structured-aperture interference,” Appl. Phys. Lett. 93(9), 091113 (2008).
[CrossRef]

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13(1), 014011 (2008).
[CrossRef] [PubMed]

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

2007 (2)

L. Miccio, D. Alfieri, S. Grilli, A. Finizio, L. De Petrocellis, S. D. Nicola, and P. Ferraro, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

B. P. Kouskousis, D. J. Kitcher, S. F. Collins, A. Roberts, and G. W. Baxter, “Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy,” Appl. Opt. 47, 5182–5189 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (2)

S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9(6), 294–302 (2001).
[CrossRef] [PubMed]

G. Franz and J. Kross, “Generation of two-dimensional surface profiles from differential interference contrast (DIC)-images,” Optik (Stuttg.) 112(8), 363–367 (2001).
[CrossRef]

1997 (1)

E. B. Van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188(2), 149–157 (1997).
[CrossRef] [PubMed]

1942 (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent object,” Physica 9(7), 686–698 (1942).
[CrossRef]

Alferi, D.

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, A. Finizio, L. De Petrocellis, S. D. Nicola, and P. Ferraro, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Arnison, M. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[CrossRef] [PubMed]

Aten, J. A.

E. B. Van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188(2), 149–157 (1997).
[CrossRef] [PubMed]

Balduzzi, D.

G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
[CrossRef]

Barbastathis, G.

Baxter, G. W.

Bernet, S.

Biggs, D.

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13(1), 014011 (2008).
[CrossRef] [PubMed]

Bon, P.

Choi, W.

Cogswell, C. J.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[CrossRef] [PubMed]

Collins, S. F.

Colomb, T.

Coppola, G.

G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[CrossRef] [PubMed]

Cuche, E.

Cui, X.

X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18(16), 16685–16701 (2010).
[CrossRef] [PubMed]

X. Cui, M. lew, and C. Yang, “Quantitative differential interference contrast microscopy based on structured-aperture interference,” Appl. Phys. Lett. 93(9), 091113 (2008).
[CrossRef]

Dasari, R. R.

De Nicola, S.

De Petrocellis, L.

L. Miccio, D. Alfieri, S. Grilli, A. Finizio, L. De Petrocellis, S. D. Nicola, and P. Ferraro, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31(10), 1405–1407 (2006).
[CrossRef] [PubMed]

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Decaestecker, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Depeursinge, C.

Di Caprio, G.

G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
[CrossRef]

Dorn, A.

Dubois, F.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Emery, Y.

Fang, N.

W. Sun, G. Wang, N. Fang, and E. S. Yeung, “Wavelength-dependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells,” Anal. Chem. 81(22), 9203–9208 (2009).
[CrossRef] [PubMed]

Fassl, S.

Feld, M. S.

Ferraro, P.

G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
[CrossRef]

L. Miccio, D. Alfieri, S. Grilli, A. Finizio, L. De Petrocellis, S. D. Nicola, and P. Ferraro, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31(10), 1405–1407 (2006).
[CrossRef] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[CrossRef] [PubMed]

S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9(6), 294–302 (2001).
[CrossRef] [PubMed]

Finizio, A.

Franz, G.

G. Franz and J. Kross, “Generation of two-dimensional surface profiles from differential interference contrast (DIC)-images,” Optik (Stuttg.) 112(8), 363–367 (2001).
[CrossRef]

Fu, D.

Galli, A.

G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
[CrossRef]

Gioffrè, M. A.

G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
[CrossRef]

Grilli, S.

G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
[CrossRef]

L. Miccio, D. Alfieri, S. Grilli, A. Finizio, L. De Petrocellis, S. D. Nicola, and P. Ferraro, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[CrossRef] [PubMed]

S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9(6), 294–302 (2001).
[CrossRef] [PubMed]

Inoué, S.

Inouè, S.

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13(1), 014011 (2008).
[CrossRef] [PubMed]

Isikman, S. O.

Khademhosseinieh, B.

Khan, S.

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).
[CrossRef]

King, S. V.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Kitcher, D. J.

Kou, S. S.

Kouskousis, B. P.

Kross, J.

G. Franz and J. Kross, “Generation of two-dimensional surface profiles from differential interference contrast (DIC)-images,” Optik (Stuttg.) 112(8), 363–367 (2001).
[CrossRef]

LaFountain, J.

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13(1), 014011 (2008).
[CrossRef] [PubMed]

Larkin, K. G.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[CrossRef] [PubMed]

Legros, J. C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

lew, M.

X. Cui, M. lew, and C. Yang, “Quantitative differential interference contrast microscopy based on structured-aperture interference,” Appl. Phys. Lett. 93(9), 091113 (2008).
[CrossRef]

Libertun, A.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

Magistretti, P. J.

Magro, C.

Marquet, P.

Maucort, G.

Maurer, C.

McIntyre, T. J.

Meucci, R.

Miccio, L.

L. Miccio, D. Alfieri, S. Grilli, A. Finizio, L. De Petrocellis, S. D. Nicola, and P. Ferraro, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Monneret, S.

Monnom, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Nicola, S. D.

L. Miccio, D. Alfieri, S. Grilli, A. Finizio, L. De Petrocellis, S. D. Nicola, and P. Ferraro, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Oh, C.

Oh, S.

Ozcan, A.

Pierattini, G.

Piestun, R.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

Preza, C.

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

Puglisi, R.

G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
[CrossRef]

Rappaz, B.

Ren, J.

Rinehart, M. T.

Ritsch-Marte, M.

Roberts, A.

Saffioti, N.

G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
[CrossRef]

Shaked, N. T.

Sheppard, C. J.

Sheppard, C. J. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[CrossRef] [PubMed]

Shribak, M.

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13(1), 014011 (2008).
[CrossRef] [PubMed]

M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Appl. Opt. 45(3), 460–469 (2006).
[CrossRef] [PubMed]

Smith, N. I.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[CrossRef] [PubMed]

Sun, W.

W. Sun, G. Wang, N. Fang, and E. S. Yeung, “Wavelength-dependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells,” Anal. Chem. 81(22), 9203–9208 (2009).
[CrossRef] [PubMed]

Tearney, G. J.

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Van Munster, E. B.

E. B. Van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188(2), 149–157 (1997).
[CrossRef] [PubMed]

van Vliet, L. J.

E. B. Van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188(2), 149–157 (1997).
[CrossRef] [PubMed]

Waller, L.

Wang, G.

W. Sun, G. Wang, N. Fang, and E. S. Yeung, “Wavelength-dependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells,” Anal. Chem. 81(22), 9203–9208 (2009).
[CrossRef] [PubMed]

Wattellier, B.

Wax, A.

Yamauchi, T.

Yang, C.

X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18(16), 16685–16701 (2010).
[CrossRef] [PubMed]

X. Cui, M. lew, and C. Yang, “Quantitative differential interference contrast microscopy based on structured-aperture interference,” Appl. Phys. Lett. 93(9), 091113 (2008).
[CrossRef]

Yaqoob, Z.

Yeung, E. S.

W. Sun, G. Wang, N. Fang, and E. S. Yeung, “Wavelength-dependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells,” Anal. Chem. 81(22), 9203–9208 (2009).
[CrossRef] [PubMed]

Yourassowsky, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Zernike, F.

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent object,” Physica 9(7), 686–698 (1942).
[CrossRef]

Zhu, Y.

Anal. Chem. (1)

W. Sun, G. Wang, N. Fang, and E. S. Yeung, “Wavelength-dependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells,” Anal. Chem. 81(22), 9203–9208 (2009).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

X. Cui, M. lew, and C. Yang, “Quantitative differential interference contrast microscopy based on structured-aperture interference,” Appl. Phys. Lett. 93(9), 091113 (2008).
[CrossRef]

L. Miccio, D. Alfieri, S. Grilli, A. Finizio, L. De Petrocellis, S. D. Nicola, and P. Ferraro, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

J. Biomed. Opt. (3)

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt. 13(1), 014011 (2008).
[CrossRef] [PubMed]

S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13(2), 024020 (2008).
[CrossRef] [PubMed]

J. Microsc. (2)

E. B. Van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope,” J. Microsc. 188(2), 149–157 (1997).
[CrossRef] [PubMed]

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004).
[CrossRef] [PubMed]

J. Sel. Top. Quantum (1)

G. Di Caprio, M. A. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” J. Sel. Top. Quantum 16(4), 833–840 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Optik (Stuttg.) (1)

G. Franz and J. Kross, “Generation of two-dimensional surface profiles from differential interference contrast (DIC)-images,” Optik (Stuttg.) 112(8), 363–367 (2001).
[CrossRef]

Physica (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent object,” Physica 9(7), 686–698 (1942).
[CrossRef]

SPIE Reviews (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1(1), 018005 (2010).
[CrossRef]

Other (1)

C. Preza and J. A. O’Sullivan, “Quantitative phase and amplitude imaging using differential-interference contrast (DIC) microscopy,” Proc. SPIE 7246, 724604 (2009).

Supplementary Material (5)

» Media 1: AVI (4137 KB)     
» Media 2: AVI (14473 KB)     
» Media 3: AVI (8272 KB)     
» Media 4: MOV (313 KB)     
» Media 5: AVI (7582 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic drawing of the optical setup employed to record holograms. During the acquisition time the optical elements are fixed. The best imaging conditions are evaluated in the further step: the numerical reconstruction of the sample images.

Fig. 2
Fig. 2

OPD computed starting from double exposure recording for (a) a bovine spermatozoa and (b), (c) and (d) preadipocyte 3T3-F442A mouse cells; (b) and (d) are, respectively, a pseudo 3D and 2D view of the same cell.

Fig. 3
Fig. 3

Schematic representation of the digital shearing along a chosen direction

Fig. 4
Fig. 4

Flow chart for the linear DDHIC routine

Fig. 5
Fig. 5

(a)-(f) DDHIC images of a mouse cell for different quantity of the shear pixels number changed from 1RP to 6RP (Media 1).

Fig. 6
Fig. 6

DDHIC images of a mouse cell for different bias retardation values. (a)-(i) the same mouse cell is displayed for bias values ranging from Φ 0 = 0 r a d to Φ 0 = 8 r a d with step of 1rad. (Media 2).

Fig. 7
Fig. 7

DDHIC images of a mouse cell for different direction of shear; in particular for ϑ = 210 ° (a), ϑ = 330 ° (b), ϑ = 270 ° (c) and ϑ = 150 ° (d). (Media 3).

Fig. 8
Fig. 8

DDHIC images in different shear direction of a sperm cell; (a)-(n) the same spermatozoa is displayed for shear angle values ranging from ϑ = 0 ° to ϑ = 330 ° with step of 30°. (Media 4).

Fig. 9
Fig. 9

Sample modification tracking realized by QPM and DDHIC methods; (a) is made of four sub-figures correspondent to the istant of time t = 80 min : two images display DDHIC for different shear angles ϑ while the other two are the quantitative phase distributions in 2D and pseudo-3D visualizations; (b) shows the same sub-figures of (a) corresponding to the istant of time t = 160 min (Media 5).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q ( x ' , y ' ) = 1 i λ h ( ξ , η ) r ( ξ , η ) e i k ρ ρ cos Ω d ξ d η
I ( x ' , y ' ) = Q ( x ' , y ' ) Q * ( x ' , y ' ) ; Ψ = arctan I { Q ( x ' , y ' ) } R { Q ( x ' , y ' ) }
Δ Ψ = Ψ 0 ( x , y ) Ψ 0 ( x + s x , y + s y ) i k 2 R ( 2 x s x + s x 2 + 2 y s y + s y 2 )
s x = ρ cos ϑ s y = ρ sin ϑ
D I C ( x , y ) = 1 cos ( Δ Ψ + Ψ 0 )

Metrics