Abstract

We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007).
    [CrossRef]
  2. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
    [CrossRef] [PubMed]
  3. E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
    [CrossRef] [PubMed]
  4. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
    [CrossRef] [PubMed]
  5. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
    [CrossRef] [PubMed]
  6. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
    [CrossRef] [PubMed]
  7. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31(24), 3623–3625 (2006).
    [CrossRef] [PubMed]
  8. X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4), 360–368 (2009).
    [CrossRef] [PubMed]
  9. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  10. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
    [CrossRef] [PubMed]
  11. V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
    [CrossRef]
  12. K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophys. J. 91(1), 317–329 (2006).
    [CrossRef] [PubMed]
  13. S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Klimov, A. Kanavin, and A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt. 48(7), C38–C45 (2009).
    [CrossRef] [PubMed]
  14. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
    [CrossRef] [PubMed]
  15. J. Rička, “Dynamic light scattering with single-mode and multimode receivers,” Appl. Opt. 32(15), 2860–2875 (1993).
    [CrossRef] [PubMed]
  16. M. Ruosch, D. Marti, P. Stoller, J. Rička, and M. Frenz, “Dependence of the multiphoton luminescence spectrum of single gold nanoparticles on the refractive index of the surrounding medium,” Proc. SPIE 7032(2008).
  17. L. Rayleigh, “On the Pressure developed in a Liquid during the Collapse of a Spherical Cavity,” Philos. Mag. 34, 94–98 (1917).
  18. H. Okumura and N. Ito, “Nonequilibrium molecular dynamics simulations of a bubble,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 045301 (2003).
    [CrossRef] [PubMed]
  19. D. Lapotko, A. Shnip, and E. Lukianova, “Photothermal responses of individual cells,” J. Biomed. Opt. 10(1), 014006–014012 (2005).
    [CrossRef] [PubMed]
  20. I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
    [CrossRef]
  21. M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
    [CrossRef] [PubMed]
  22. T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, and M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
    [CrossRef]
  23. M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 mm and 2.79 mm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
    [CrossRef]
  24. A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
    [CrossRef]
  25. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, New York, 1995), Chap. 1.10.
  26. S. C. Hendy, “A thermodynamic model for the melting of supported metal nanoparticles,” Nanotechnology 18(17), 175703 (2007).
    [CrossRef]
  27. V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
    [CrossRef] [PubMed]
  28. B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, and N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
    [CrossRef]

2009 (2)

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4), 360–368 (2009).
[CrossRef] [PubMed]

S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Klimov, A. Kanavin, and A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt. 48(7), C38–C45 (2009).
[CrossRef] [PubMed]

2008 (1)

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[CrossRef] [PubMed]

2007 (4)

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007).
[CrossRef]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

S. C. Hendy, “A thermodynamic model for the melting of supported metal nanoparticles,” Nanotechnology 18(17), 175703 (2007).
[CrossRef]

2006 (6)

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, and N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31(24), 3623–3625 (2006).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophys. J. 91(1), 317–329 (2006).
[CrossRef] [PubMed]

2005 (3)

V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

D. Lapotko, A. Shnip, and E. Lukianova, “Photothermal responses of individual cells,” J. Biomed. Opt. 10(1), 014006–014012 (2005).
[CrossRef] [PubMed]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

2004 (2)

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

2003 (2)

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

H. Okumura and N. Ito, “Nonequilibrium molecular dynamics simulations of a bubble,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 045301 (2003).
[CrossRef] [PubMed]

2001 (1)

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

1997 (1)

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, and M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

1996 (1)

M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 mm and 2.79 mm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[CrossRef]

1993 (1)

1989 (1)

A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
[CrossRef]

1917 (1)

L. Rayleigh, “On the Pressure developed in a Liquid during the Collapse of a Spherical Cavity,” Philos. Mag. 34, 94–98 (1917).

Agarwal, A.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007).
[CrossRef]

Akhatov, I.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Aleinikova, O.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

Anderson, R. R.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Ashkenazi, S.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4), 360–368 (2009).
[CrossRef] [PubMed]

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007).
[CrossRef]

Asshauer, T.

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, and M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

Cheng, J. X.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Chu, H.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[CrossRef] [PubMed]

Copland, J. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Day, K. C.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007).
[CrossRef]

Day, M.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007).
[CrossRef]

Delacrétaz, G.

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, and M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

Dickerson, E. B.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[CrossRef] [PubMed]

Dreaden, E. C.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[CrossRef] [PubMed]

Egerev, S.

Eghtedari, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

El-Sayed, I. H.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Ermilov, S.

Fokin, A.

Frenz, M.

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, and M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 mm and 2.79 mm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[CrossRef]

Galanzha, E. I.

Galitovskaya, E. N.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Guzatov, D.

Halas, N. J.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Hansen, M. N.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Hellman, A. N.

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophys. J. 91(1), 317–329 (2006).
[CrossRef] [PubMed]

Hendy, S. C.

S. C. Hendy, “A thermodynamic model for the melting of supported metal nanoparticles,” Nanotechnology 18(17), 175703 (2007).
[CrossRef]

Hirsch, L. R.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Huang, S. W.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007).
[CrossRef]

Huang, X.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Huff, T. B.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Hutson, M. S.

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

Ito, N.

H. Okumura and N. Ito, “Nonequilibrium molecular dynamics simulations of a bubble,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 045301 (2003).
[CrossRef] [PubMed]

Jansen, E. D.

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, and M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 mm and 2.79 mm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[CrossRef]

Joe, E. K.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Johnson, C.

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

Kanavin, A.

Kelly, T.

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

Khlebtsov, B.

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, and N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

Khlebtsov, N. G.

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, and N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31(24), 3623–3625 (2006).
[CrossRef] [PubMed]

Klimov, V.

Könz, F.

M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 mm and 2.79 mm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[CrossRef]

Kotov, N.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007).
[CrossRef]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Lapotko, D.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

D. Lapotko, A. Shnip, and E. Lukianova, “Photothermal responses of individual cells,” J. Biomed. Opt. 10(1), 014006–014012 (2005).
[CrossRef] [PubMed]

Lauterborn, W.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
[CrossRef]

Letfullin, R. R.

V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Lin, C. P.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Lindau, O.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Lukianova, E.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

D. Lapotko, A. Shnip, and E. Lukianova, “Photothermal responses of individual cells,” J. Biomed. Opt. 10(1), 014006–014012 (2005).
[CrossRef] [PubMed]

Ma, X.

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

Mamedova, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

McDonald, J. F.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[CrossRef] [PubMed]

Melnikov, A.

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, and N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

Mercer, K. E.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

Mettin, R.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Motamedi, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

O’Neal, D. P.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

O'Donnell, M.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007).
[CrossRef]

Okumura, H.

H. Okumura and N. Ito, “Nonequilibrium molecular dynamics simulations of a bubble,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 045301 (2003).
[CrossRef] [PubMed]

Oraevsky, A.

S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Klimov, A. Kanavin, and A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt. 48(7), C38–C45 (2009).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

Oraevsky, A. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Ovchinnikov, O.

Payne, J. D.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Pitsillides, C. M.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Popov, V. L.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Potapnev, M.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

Pratisto, H.

M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 mm and 2.79 mm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[CrossRef]

Pushpanketh, S.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[CrossRef] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Quinto-Su, P. A.

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophys. J. 91(1), 317–329 (2006).
[CrossRef] [PubMed]

Rau, K. R.

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophys. J. 91(1), 317–329 (2006).
[CrossRef] [PubMed]

Rayleigh, L.

L. Rayleigh, “On the Pressure developed in a Liquid during the Collapse of a Spherical Cavity,” Philos. Mag. 34, 94–98 (1917).

Ricka, J.

Shashkov, E. V.

Shnip, A.

D. Lapotko, A. Shnip, and E. Lukianova, “Photothermal responses of individual cells,” J. Biomed. Opt. 10(1), 014006–014012 (2005).
[CrossRef] [PubMed]

Smeltzer, M. S.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

Stein, E. W.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4), 360–368 (2009).
[CrossRef] [PubMed]

Timm, R.

A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
[CrossRef]

Tong, L.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Topolnikov, A.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Tuchin, V.

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, and N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

Tuchin, V. V.

Vakhitova, N.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Venugopalan, V.

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophys. J. 91(1), 317–329 (2006).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
[CrossRef]

Wang, L. V.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4), 360–368 (2009).
[CrossRef] [PubMed]

Weber, H. P.

M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 mm and 2.79 mm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[CrossRef]

Wei, A.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Wei, X.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Welch, A. J.

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, and M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 mm and 2.79 mm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[CrossRef]

West, J. L.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Yang, X.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4), 360–368 (2009).
[CrossRef] [PubMed]

Zhao, Y.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Zharov, V. P.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31(24), 3623–3625 (2006).
[CrossRef] [PubMed]

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, and N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, and M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

Biophys. J. (3)

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophys. J. 91(1), 317–329 (2006).
[CrossRef] [PubMed]

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Cancer Lett. (3)

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 mm and 2.79 mm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[CrossRef]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007).
[CrossRef]

J. Biomed. Opt. (1)

D. Lapotko, A. Shnip, and E. Lukianova, “Photothermal responses of individual cells,” J. Biomed. Opt. 10(1), 014006–014012 (2005).
[CrossRef] [PubMed]

J. Fluid Mech. (1)

A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989).
[CrossRef]

J. Phys. D Appl. Phys. (1)

V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Lasers Surg. Med. (1)

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

Mol. Imaging Biol. (1)

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004).
[CrossRef] [PubMed]

Nanotechnology (2)

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, and N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

S. C. Hendy, “A thermodynamic model for the melting of supported metal nanoparticles,” Nanotechnology 18(17), 175703 (2007).
[CrossRef]

Opt. Lett. (1)

Philos. Mag. (1)

L. Rayleigh, “On the Pressure developed in a Liquid during the Collapse of a Spherical Cavity,” Philos. Mag. 34, 94–98 (1917).

Phys. Fluids (1)

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

H. Okumura and N. Ito, “Nonequilibrium molecular dynamics simulations of a bubble,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 045301 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

Wiley Interdiscip Rev Nanomed Nanobiotechnol (1)

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4), 360–368 (2009).
[CrossRef] [PubMed]

Other (2)

M. Ruosch, D. Marti, P. Stoller, J. Rička, and M. Frenz, “Dependence of the multiphoton luminescence spectrum of single gold nanoparticles on the refractive index of the surrounding medium,” Proc. SPIE 7032(2008).

C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, New York, 1995), Chap. 1.10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Microscopic setup, cw HeNe laser for targeting and bubble detection; OPO: 5 ns pulsed excitation beam; Lamp: standard cw illumination; dye-laser for optional 700 ps illumination; λ/2 + Glan-Taylor prism (GTP) for energy adjustment; with alternative detectors: APD for transmitted laser detection or acoustic transducer with amplifier for pressure transient detection.

Fig. 2
Fig. 2

Irradiation of nanoparticle suspension, 10x10 mm2 cuvette, 80x long working distance, 0.9 NA objective; optional 700 ps illumination; acoustic transducer below the cuvette bottom (not shown).

Fig. 3
Fig. 3

APD signal of probe laser intensity when irradiating a targeted nanoparticle with radiant exposures above the bubble formation threshold.

Fig. 4
Fig. 4

Triangles: Comparison of bubble radius determined from measurement rm and calculated from the measured lifetime rt using Rayleigh’s equation (see text); solid line: linear fit to experimental data, rm/rt = 1.25 ± 0.02; inset: dark-field image of a vapor bubble (radius; dotted circle indicates the complete bubble boundary.

Fig. 5
Fig. 5

Bubble lifetime versus radiant exposure in a semi-log plot for irradiation at 532 nm, sample size N = 400.

Fig. 6
Fig. 6

Observed bubble formation versus radiant exposure at 532 nm (triangles) and fit of a logistic distribution (solid line), 50% occurrence probability at 60 ± 4 mJ/cm2.

Fig. 7
Fig. 7

Pressure transient from bubble formation and collapse at a single nanoparticle; the bubble lifetime Δt is taken from the delay between the transients.

Fig. 8
Fig. 8

Peak-to-peak amplitude of the pressure pulse from bubble formation around single particles versus bubble lifetime.

Fig. 9
Fig. 9

Pressure amplitude from nanoparticle suspension; circles: data from measurements, solid line: extrapolated from measurements with single particles, dashed line: extrapolated using p~H-Hth, see text for details; the onset of bubble formation manifests itself as a sudden increase of the detected pressure amplitude.

Fig. 10
Fig. 10

(a) cells before irradiation, (b) the same cells after irradiating only the upper cell with about 100 mJ/cm2 and staining with trypanblue; cells had been incubated with 0.6∙109 particles/ml for 3.5 hours.

Tables (1)

Tables Icon

Table 1 Threshold radiant exposures for vapor bubble formation around single 90 nm gold nanoparticles at different irradiation wavelengths

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r c = 1 0.915 1 2 Δ t p 0 / ρ ,
A ^ i = 1 N p ^ i i = 1 N t ( H i ) A ^ t ( H ( n ) ) d n ,
A ^ t ( H ( r ) ) d n d V d V
A ^ t ( I ( r ) E ) d V .
A ^ ( H ) = c o n s t t ( I ( r ) E ) d V .

Metrics