M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).

[CrossRef]
[PubMed]

M. S. Starosta and A. K. Dunn, “Three-dimensional computation of focused beam propagation through multiple biological cells,” Opt. Express 17(15), 12455–12469 (2009).

[CrossRef]
[PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103(4), 043903 (2009).

[CrossRef]
[PubMed]

I. R. Çapoglu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16(23), 19208–19220 (2008).

[CrossRef]
[PubMed]

D. G. Fischer, S. A. Prahl, and D. D. Duncan, “Monte Carlo modeling of spatial coherence: free space diffraction,” J. Opt. Soc. Am. A 25(10), 2571–2581 (2008).

[CrossRef]

J. Sawicki, N. Kastor, and M. Xu, “Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers,” Opt. Express 16(8), 5728–5738 (2008).

[CrossRef]
[PubMed]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).

[CrossRef]

X. Deng, X. Wang, H. Liu, Z. Zhuang, and Z. Guo, “Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media,” J. Biomed. Opt. 11(2), 024013 (2006).

[CrossRef]
[PubMed]

K. Phillips, M. Xu, S. K. Gayen, and R. R. Alfano, “Time-resolved ring structure of circularly polarized beams backscattered from forward scattering media,” Opt. Express 13(20), 7954–7969 (2005).

[CrossRef]
[PubMed]

G. Xiong, P. Xue, J. Wu, Q. Miao, R. Wang, and L. Ji, “Particle-fixed Monte Carlo model for optical coherence tomography,” Opt. Express 13(6), 2182–2195 (2005).

[CrossRef]
[PubMed]

J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the δ- P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021903 (2005).

[CrossRef]
[PubMed]

C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).

[CrossRef]
[PubMed]

M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12(26), 6530–6539 (2004).

[CrossRef]
[PubMed]

C. K. Tung, Y. Sun, W. Lo, S. J. Lin, S. H. Jee, and C. Y. Dong, “Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy,” Microsc. Res. Tech. 65(6), 308–314 (2004).

[CrossRef]
[PubMed]

C. Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).

[CrossRef]
[PubMed]

N. Ghosh, H. S. Patel, and P. K. Gupta, “Depolarization of light in tissue phantoms - effect of a distribution in the size of scatterers,” Opt. Express 11(18), 2198–2205 (2003).

[CrossRef]
[PubMed]

X. Deng, X. Gan, and M. Gu, “Monte Carlo simulation of multiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media,” J. Biomed. Opt. 8(3), 440–449 (2003).

[CrossRef]
[PubMed]

X. Deng and M. Gu, “Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation,” Appl. Opt. 42(16), 3321–3329 (2003).

[CrossRef]
[PubMed]

P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).

[CrossRef]
[PubMed]

A. D. Kim and J. B. Keller, “Light propagation in biological tissue,” J. Opt. Soc. Am. A 20(1), 92–98 (2003).

[CrossRef]
[PubMed]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).

[CrossRef]
[PubMed]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).

[CrossRef]
[PubMed]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).

[CrossRef]
[PubMed]

A. Tycho, T. M. Jørgensen, H. T. Yura, and P. E. Andersen, “Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems,” Appl. Opt. 41(31), 6676–6691 (2002).

[CrossRef]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[CrossRef]
[PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).

[CrossRef]
[PubMed]

V. R. Daria, C. Saloma, and S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39(28), 5244–5255 (2000).

[CrossRef]
[PubMed]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39(7), 1194–1201 (2000).

[CrossRef]
[PubMed]

Z. Song, K. Dong, X. H. Hu, and J. Q. Lu, “Monte carlo simulation of converging laser beams propagating in biological materials,” Appl. Opt. 38(13), 2944–2949 (1999).

[CrossRef]
[PubMed]

L. V. Wang and G. Liang, “Absorption distribution of an optical beam focused into a turbid medium,” Appl. Opt. 38(22), 4951–4958 (1999).

[CrossRef]
[PubMed]

X. S. Gan and M. Gu, “Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media,” Opt. Lett. 24(11), 741–743 (1999).

[CrossRef]
[PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).

[CrossRef]
[PubMed]

C. M. Blanca and C. Saloma, “Monte carlo analysis of two-photon fluorescence imaging through a scattering medium,” Appl. Opt. 37(34), 8092–8102 (1998).

[CrossRef]
[PubMed]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).

[CrossRef]
[PubMed]

T. Wilson and A. R. Carlini, “Aberrations in confocal imaging systems,” J. Microsc. 154, 243–256 (1998).

T. M. Nieuwenhuizen, A. Lagendijk, and B. A. van Tiggelen, “Resonant point scatterers in multiple scattering of classical waves,” Phys. Lett. A 169(3), 191–194 (1992).

[CrossRef]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).

[CrossRef]
[PubMed]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems 2: structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).

[CrossRef]

B. R. A. Nijboer, “The diffraction theory of optical aberrations. Part I: General discussion of the geometrical aberrations,” Physica 10(8), 679–692 (1943).

[CrossRef]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).

[CrossRef]
[PubMed]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).

[CrossRef]
[PubMed]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).

[CrossRef]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).

[CrossRef]
[PubMed]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).

[CrossRef]
[PubMed]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).

[CrossRef]
[PubMed]

C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).

[CrossRef]
[PubMed]

T. Wilson and A. R. Carlini, “Aberrations in confocal imaging systems,” J. Microsc. 154, 243–256 (1998).

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).

[CrossRef]
[PubMed]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).

[CrossRef]
[PubMed]

X. Deng, X. Wang, H. Liu, Z. Zhuang, and Z. Guo, “Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media,” J. Biomed. Opt. 11(2), 024013 (2006).

[CrossRef]
[PubMed]

X. Deng and M. Gu, “Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation,” Appl. Opt. 42(16), 3321–3329 (2003).

[CrossRef]
[PubMed]

X. Deng, X. Gan, and M. Gu, “Monte Carlo simulation of multiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media,” J. Biomed. Opt. 8(3), 440–449 (2003).

[CrossRef]
[PubMed]

C. K. Tung, Y. Sun, W. Lo, S. J. Lin, S. H. Jee, and C. Y. Dong, “Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy,” Microsc. Res. Tech. 65(6), 308–314 (2004).

[CrossRef]
[PubMed]

C. Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).

[CrossRef]
[PubMed]

M. S. Starosta and A. K. Dunn, “Three-dimensional computation of focused beam propagation through multiple biological cells,” Opt. Express 17(15), 12455–12469 (2009).

[CrossRef]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[CrossRef]
[PubMed]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39(7), 1194–1201 (2000).

[CrossRef]
[PubMed]

A. K. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996).

[CrossRef]

X. Deng, X. Gan, and M. Gu, “Monte Carlo simulation of multiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media,” J. Biomed. Opt. 8(3), 440–449 (2003).

[CrossRef]
[PubMed]

X. Deng, X. Gan, and M. Gu, “Monte Carlo simulation of multiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media,” J. Biomed. Opt. 8(3), 440–449 (2003).

[CrossRef]
[PubMed]

X. Deng and M. Gu, “Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation,” Appl. Opt. 42(16), 3321–3329 (2003).

[CrossRef]
[PubMed]

X. S. Gan and M. Gu, “Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media,” Opt. Lett. 24(11), 741–743 (1999).

[CrossRef]
[PubMed]

X. Deng, X. Wang, H. Liu, Z. Zhuang, and Z. Guo, “Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media,” J. Biomed. Opt. 11(2), 024013 (2006).

[CrossRef]
[PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103(4), 043903 (2009).

[CrossRef]
[PubMed]

J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the δ- P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021903 (2005).

[CrossRef]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[CrossRef]
[PubMed]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).

[CrossRef]

C. K. Tung, Y. Sun, W. Lo, S. J. Lin, S. H. Jee, and C. Y. Dong, “Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy,” Microsc. Res. Tech. 65(6), 308–314 (2004).

[CrossRef]
[PubMed]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).

[CrossRef]
[PubMed]

C. Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).

[CrossRef]
[PubMed]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).

[CrossRef]
[PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103(4), 043903 (2009).

[CrossRef]
[PubMed]

T. M. Nieuwenhuizen, A. Lagendijk, and B. A. van Tiggelen, “Resonant point scatterers in multiple scattering of classical waves,” Phys. Lett. A 169(3), 191–194 (1992).

[CrossRef]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).

[CrossRef]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).

[CrossRef]

C. K. Tung, Y. Sun, W. Lo, S. J. Lin, S. H. Jee, and C. Y. Dong, “Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy,” Microsc. Res. Tech. 65(6), 308–314 (2004).

[CrossRef]
[PubMed]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).

[CrossRef]
[PubMed]

C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).

[CrossRef]
[PubMed]

X. Deng, X. Wang, H. Liu, Z. Zhuang, and Z. Guo, “Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media,” J. Biomed. Opt. 11(2), 024013 (2006).

[CrossRef]
[PubMed]

C. K. Tung, Y. Sun, W. Lo, S. J. Lin, S. H. Jee, and C. Y. Dong, “Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy,” Microsc. Res. Tech. 65(6), 308–314 (2004).

[CrossRef]
[PubMed]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).

[CrossRef]
[PubMed]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).

[CrossRef]
[PubMed]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).

[CrossRef]
[PubMed]

T. M. Nieuwenhuizen, A. Lagendijk, and B. A. van Tiggelen, “Resonant point scatterers in multiple scattering of classical waves,” Phys. Lett. A 169(3), 191–194 (1992).

[CrossRef]

B. R. A. Nijboer, “The diffraction theory of optical aberrations. Part I: General discussion of the geometrical aberrations,” Physica 10(8), 679–692 (1943).

[CrossRef]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).

[CrossRef]
[PubMed]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).

[CrossRef]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103(4), 043903 (2009).

[CrossRef]
[PubMed]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems 2: structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).

[CrossRef]

C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).

[CrossRef]
[PubMed]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).

[CrossRef]
[PubMed]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).

[CrossRef]
[PubMed]

C. Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).

[CrossRef]
[PubMed]

C. K. Tung, Y. Sun, W. Lo, S. J. Lin, S. H. Jee, and C. Y. Dong, “Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy,” Microsc. Res. Tech. 65(6), 308–314 (2004).

[CrossRef]
[PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).

[CrossRef]
[PubMed]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).

[CrossRef]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[CrossRef]
[PubMed]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39(7), 1194–1201 (2000).

[CrossRef]
[PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).

[CrossRef]
[PubMed]

C. K. Tung, Y. Sun, W. Lo, S. J. Lin, S. H. Jee, and C. Y. Dong, “Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy,” Microsc. Res. Tech. 65(6), 308–314 (2004).

[CrossRef]
[PubMed]

T. M. Nieuwenhuizen, A. Lagendijk, and B. A. van Tiggelen, “Resonant point scatterers in multiple scattering of classical waves,” Phys. Lett. A 169(3), 191–194 (1992).

[CrossRef]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103(4), 043903 (2009).

[CrossRef]
[PubMed]

J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the δ- P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021903 (2005).

[CrossRef]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[CrossRef]
[PubMed]

X. Deng, X. Wang, H. Liu, Z. Zhuang, and Z. Guo, “Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media,” J. Biomed. Opt. 11(2), 024013 (2006).

[CrossRef]
[PubMed]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).

[CrossRef]
[PubMed]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).

[CrossRef]
[PubMed]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).

[CrossRef]
[PubMed]

T. Wilson and A. R. Carlini, “Aberrations in confocal imaging systems,” J. Microsc. 154, 243–256 (1998).

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems 2: structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).

[CrossRef]

J. Sawicki, N. Kastor, and M. Xu, “Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers,” Opt. Express 16(8), 5728–5738 (2008).

[CrossRef]
[PubMed]

K. Phillips, M. Xu, S. K. Gayen, and R. R. Alfano, “Time-resolved ring structure of circularly polarized beams backscattered from forward scattering media,” Opt. Express 13(20), 7954–7969 (2005).

[CrossRef]
[PubMed]

M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12(26), 6530–6539 (2004).

[CrossRef]
[PubMed]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).

[CrossRef]
[PubMed]

J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the δ- P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021903 (2005).

[CrossRef]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[CrossRef]
[PubMed]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).

[CrossRef]
[PubMed]

X. Deng, X. Wang, H. Liu, Z. Zhuang, and Z. Guo, “Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media,” J. Biomed. Opt. 11(2), 024013 (2006).

[CrossRef]
[PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).

[CrossRef]
[PubMed]

G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7(8), 1519–1527 (1968).

[CrossRef]
[PubMed]

C. M. Blanca and C. Saloma, “Monte carlo analysis of two-photon fluorescence imaging through a scattering medium,” Appl. Opt. 37(34), 8092–8102 (1998).

[CrossRef]
[PubMed]

Z. Song, K. Dong, X. H. Hu, and J. Q. Lu, “Monte carlo simulation of converging laser beams propagating in biological materials,” Appl. Opt. 38(13), 2944–2949 (1999).

[CrossRef]
[PubMed]

L. V. Wang and G. Liang, “Absorption distribution of an optical beam focused into a turbid medium,” Appl. Opt. 38(22), 4951–4958 (1999).

[CrossRef]
[PubMed]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39(7), 1194–1201 (2000).

[CrossRef]
[PubMed]

X. Deng and M. Gu, “Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation,” Appl. Opt. 42(16), 3321–3329 (2003).

[CrossRef]
[PubMed]

A. Tycho, T. M. Jørgensen, H. T. Yura, and P. E. Andersen, “Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems,” Appl. Opt. 41(31), 6676–6691 (2002).

[CrossRef]
[PubMed]

V. R. Daria, C. Saloma, and S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39(28), 5244–5255 (2000).

[CrossRef]
[PubMed]

A. K. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996).

[CrossRef]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).

[CrossRef]
[PubMed]

C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).

[CrossRef]
[PubMed]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).

[CrossRef]
[PubMed]

X. Deng, X. Wang, H. Liu, Z. Zhuang, and Z. Guo, “Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media,” J. Biomed. Opt. 11(2), 024013 (2006).

[CrossRef]
[PubMed]

X. Deng, X. Gan, and M. Gu, “Monte Carlo simulation of multiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media,” J. Biomed. Opt. 8(3), 440–449 (2003).

[CrossRef]
[PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).

[CrossRef]
[PubMed]

C. Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).

[CrossRef]
[PubMed]

T. Wilson and A. R. Carlini, “Aberrations in confocal imaging systems,” J. Microsc. 154, 243–256 (1998).

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).

[CrossRef]
[PubMed]

A. D. Kim and J. B. Keller, “Light propagation in biological tissue,” J. Opt. Soc. Am. A 20(1), 92–98 (2003).

[CrossRef]
[PubMed]

J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14(6), 1231–1242 (1997).

[CrossRef]

J. M. Schmitt and K. Ben-Letaief, “Efficient Monte Carlo simulation of confocal microscopy in biological tissue,” J. Opt. Soc. Am. A 13(5), 952–961 (1996).

[CrossRef]

D. G. Fischer, S. A. Prahl, and D. D. Duncan, “Monte Carlo modeling of spatial coherence: free space diffraction,” J. Opt. Soc. Am. A 25(10), 2571–2581 (2008).

[CrossRef]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).

[CrossRef]
[PubMed]

C. K. Tung, Y. Sun, W. Lo, S. J. Lin, S. H. Jee, and C. Y. Dong, “Effects of objective numerical apertures on achievable imaging depths in multiphoton microscopy,” Microsc. Res. Tech. 65(6), 308–314 (2004).

[CrossRef]
[PubMed]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).

[CrossRef]

G. Xiong, P. Xue, J. Wu, Q. Miao, R. Wang, and L. Ji, “Particle-fixed Monte Carlo model for optical coherence tomography,” Opt. Express 13(6), 2182–2195 (2005).

[CrossRef]
[PubMed]

M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12(26), 6530–6539 (2004).

[CrossRef]
[PubMed]

K. Phillips, M. Xu, S. K. Gayen, and R. R. Alfano, “Time-resolved ring structure of circularly polarized beams backscattered from forward scattering media,” Opt. Express 13(20), 7954–7969 (2005).

[CrossRef]
[PubMed]

J. Sawicki, N. Kastor, and M. Xu, “Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers,” Opt. Express 16(8), 5728–5738 (2008).

[CrossRef]
[PubMed]

I. R. Çapoglu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16(23), 19208–19220 (2008).

[CrossRef]
[PubMed]

M. S. Starosta and A. K. Dunn, “Three-dimensional computation of focused beam propagation through multiple biological cells,” Opt. Express 17(15), 12455–12469 (2009).

[CrossRef]
[PubMed]

N. Ghosh, H. S. Patel, and P. K. Gupta, “Depolarization of light in tissue phantoms - effect of a distribution in the size of scatterers,” Opt. Express 11(18), 2198–2205 (2003).

[CrossRef]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[CrossRef]
[PubMed]

P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).

[CrossRef]
[PubMed]

X. S. Gan and M. Gu, “Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media,” Opt. Lett. 24(11), 741–743 (1999).

[CrossRef]
[PubMed]

T. M. Nieuwenhuizen, A. Lagendijk, and B. A. van Tiggelen, “Resonant point scatterers in multiple scattering of classical waves,” Phys. Lett. A 169(3), 191–194 (1992).

[CrossRef]

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3025–3044 (1998).

[CrossRef]
[PubMed]

J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the δ- P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021903 (2005).

[CrossRef]
[PubMed]

C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103(4), 043903 (2009).

[CrossRef]
[PubMed]

B. R. A. Nijboer, “The diffraction theory of optical aberrations. Part I: General discussion of the geometrical aberrations,” Physica 10(8), 679–692 (1943).

[CrossRef]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).

[CrossRef]
[PubMed]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems 2: structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).

[CrossRef]

L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

V. Tuchin, Tissue Optics (SPIE Press, 2007).

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vols. I and II (Academic Press, 1978).

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).

I. Lux, and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, 1991).

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).

S. L. Jacques, “Skin Optics,” http://omlc.ogi.edu/news/jan98/skinoptics.html .