Abstract

We measure optical absorption in color-producing enzymatic reactions for biochemical analysis with a microscale optofluidic device. Cavity-enhanced laser spectrophotometry is performed on analytes within a microfluidic channel at visible wavelengths with silicon nitride microring resonators of 100 µm radius and quality factor of ~180,000. The resonator transmission spectrum is analyzed to determine optical absorption with a detection limit of 0.12 cm−1. The device can be used to detect the activity of individual enzymes in a few minutes within a 100 fL sensing volume. The high sensitivity, small footprint, and low analyte consumption make absorption-based microring resonators attractive for lab-on-a-chip applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  2. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
    [Crossref] [PubMed]
  3. W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
    [Crossref]
  4. Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, Inc., 2010).
  5. M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys. 104(1), 25–31 (2003).
    [Crossref]
  6. W. E. Groves, F. C. Davis, and B. H. Sells, “Spectrophotometric determination of microgram quantities of protein without nucleic acid interference,” Anal. Biochem. 22(2), 195–210 (1968).
    [Crossref] [PubMed]
  7. A. Fleck and H. N. Munro, “The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation,” Biochim. Biophys. Acta 55(5), 571–583 (1962).
    [Crossref] [PubMed]
  8. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
    [Crossref] [PubMed]
  9. M. Manafi, W. Kneifel, and S. Bascomb, “Fluorogenic and chromogenic substrates used in bacterial diagnostics,” Microbiol. Rev. 55(3), 335–348 (1991).
    [PubMed]
  10. V. M. Cooke, R. J. Miles, R. G. Price, and A. C. Richardson, “A novel chromogenic ester agar medium for detection of Salmonellae,” Appl. Environ. Microbiol. 65(2), 807–812 (1999).
    [PubMed]
  11. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
    [Crossref] [PubMed]
  12. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008).
    [Crossref] [PubMed]
  13. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis,” J. Lightwave Technol. 27(23), 5240–5245 (2009).
    [Crossref]
  14. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
    [Crossref] [PubMed]
  15. A. Waggoner, “Fluorescent labels for proteomics and genomics,” Curr. Opin. Chem. Biol. 10(1), 62–66 (2006).
    [Crossref] [PubMed]
  16. J. R. Crowther, “ELISA. Theory and practice,” Methods Mol. Biol. 42, 1–218 (1995).
    [PubMed]
  17. M. M. Mesulam, “Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents,” J. Histochem. Cytochem. 26(2), 106–117 (1978).
    [PubMed]
  18. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40(31), 5742–5747 (2001).
    [Crossref] [PubMed]
  19. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
    [Crossref] [PubMed]
  20. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
    [Crossref] [PubMed]
  21. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27(7), 512–514 (2002).
    [Crossref] [PubMed]
  22. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]
  23. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [Crossref] [PubMed]
  24. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
    [Crossref] [PubMed]
  25. P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
    [Crossref]
  26. D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
    [Crossref] [PubMed]

2010 (1)

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (2)

A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008).
[Crossref] [PubMed]

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

2007 (3)

W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
[Crossref] [PubMed]

2006 (2)

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[Crossref] [PubMed]

A. Waggoner, “Fluorescent labels for proteomics and genomics,” Curr. Opin. Chem. Biol. 10(1), 62–66 (2006).
[Crossref] [PubMed]

2003 (2)

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys. 104(1), 25–31 (2003).
[Crossref]

2002 (1)

2001 (1)

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

1999 (1)

V. M. Cooke, R. J. Miles, R. G. Price, and A. C. Richardson, “A novel chromogenic ester agar medium for detection of Salmonellae,” Appl. Environ. Microbiol. 65(2), 807–812 (1999).
[PubMed]

1996 (1)

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

1995 (1)

J. R. Crowther, “ELISA. Theory and practice,” Methods Mol. Biol. 42, 1–218 (1995).
[PubMed]

1991 (1)

M. Manafi, W. Kneifel, and S. Bascomb, “Fluorogenic and chromogenic substrates used in bacterial diagnostics,” Microbiol. Rev. 55(3), 335–348 (1991).
[PubMed]

1983 (1)

T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
[Crossref] [PubMed]

1978 (1)

M. M. Mesulam, “Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents,” J. Histochem. Cytochem. 26(2), 106–117 (1978).
[PubMed]

1968 (1)

W. E. Groves, F. C. Davis, and B. H. Sells, “Spectrophotometric determination of microgram quantities of protein without nucleic acid interference,” Anal. Biochem. 22(2), 195–210 (1968).
[Crossref] [PubMed]

1962 (1)

A. Fleck and H. N. Munro, “The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation,” Biochim. Biophys. Acta 55(5), 571–583 (1962).
[Crossref] [PubMed]

Aarnio, J.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

Adams, M. L.

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys. 104(1), 25–31 (2003).
[Crossref]

Adibi, A.

Agarwal, A.

Armani, A. M.

Atabaki, A. H.

Barrios, C. A.

Bascomb, S.

M. Manafi, W. Kneifel, and S. Bascomb, “Fluorogenic and chromogenic substrates used in bacterial diagnostics,” Microbiol. Rev. 55(3), 335–348 (1991).
[PubMed]

Boyd, R. W.

Campbell, T. G.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Carlie, N.

Casquel, R.

Chang, L.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Chen, L.

Conkey, D. B.

W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Cooke, V. M.

V. M. Cooke, R. J. Miles, R. G. Price, and A. C. Richardson, “A novel chromogenic ester agar medium for detection of Salmonellae,” Appl. Environ. Microbiol. 65(2), 807–812 (1999).
[PubMed]

Cordovez, B.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

Crowther, J. R.

J. R. Crowther, “ELISA. Theory and practice,” Methods Mol. Biol. 42, 1–218 (1995).
[PubMed]

Davis, F. C.

W. E. Groves, F. C. Davis, and B. H. Sells, “Spectrophotometric determination of microgram quantities of protein without nucleic acid interference,” Anal. Biochem. 22(2), 195–210 (1968).
[Crossref] [PubMed]

Dhar, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Driessen, A.

Duffy, D. C.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Enzelberger, M.

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys. 104(1), 25–31 (2003).
[Crossref]

Erickson, D.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

Ferrell, E. P.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Fleck, A.

A. Fleck and H. N. Munro, “The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation,” Biochim. Biophys. Acta 55(5), 571–583 (1962).
[Crossref] [PubMed]

Fournier, D. R.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Gondarenko, A.

Greve, J.

Griol, A.

Groves, W. E.

W. E. Groves, F. C. Davis, and B. H. Sells, “Spectrophotometric determination of microgram quantities of protein without nucleic acid interference,” Anal. Biochem. 22(2), 195–210 (1968).
[Crossref] [PubMed]

Gylfason, K. B.

Hawkins, A. R.

W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Heebner, J. E.

Heimala, P.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

Heinamaki, A.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

Holgado, M.

Howes, S. C.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Hu, J.

Jokerst, N.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Kan, C. W.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Katila, P.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

Kimerling, L. C.

Klunder, D. J. W.

Kneifel, W.

M. Manafi, W. Kneifel, and S. Bascomb, “Fluorogenic and chromogenic substrates used in bacterial diagnostics,” Microbiol. Rev. 55(3), 335–348 (1991).
[PubMed]

Krioukov, E.

Lee, J. N.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Levy, J. S.

Lipson, M.

Luan, L.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Manafi, M.

M. Manafi, W. Kneifel, and S. Bascomb, “Fluorogenic and chromogenic substrates used in bacterial diagnostics,” Microbiol. Rev. 55(3), 335–348 (1991).
[PubMed]

Mandal, S.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

Mesulam, M. M.

M. M. Mesulam, “Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents,” J. Histochem. Cytochem. 26(2), 106–117 (1978).
[PubMed]

Miles, R. J.

V. M. Cooke, R. J. Miles, R. G. Price, and A. C. Richardson, “A novel chromogenic ester agar medium for detection of Salmonellae,” Appl. Environ. Microbiol. 65(2), 807–812 (1999).
[PubMed]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Mosmann, T.

T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
[Crossref] [PubMed]

Munro, H. N.

A. Fleck and H. N. Munro, “The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation,” Biochim. Biophys. Acta 55(5), 571–583 (1962).
[Crossref] [PubMed]

Nitkowski, A.

Otto, C.

Palit, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Park, C.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Patel, P. P.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Petit, L.

Piech, T.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Price, R. G.

V. M. Cooke, R. J. Miles, R. G. Price, and A. C. Richardson, “A novel chromogenic ester agar medium for detection of Salmonellae,” Appl. Environ. Microbiol. 65(2), 807–812 (1999).
[PubMed]

Provuncher, G. K.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Quake, S.

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys. 104(1), 25–31 (2003).
[Crossref]

Randall, J. D.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Richardson, A. C.

V. M. Cooke, R. J. Miles, R. G. Price, and A. C. Richardson, “A novel chromogenic ester agar medium for detection of Salmonellae,” Appl. Environ. Microbiol. 65(2), 807–812 (1999).
[PubMed]

Richardson, K.

Rissin, D. M.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Rivnak, A. J.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Royal, M.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Sánchez, B.

Scherer, A.

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys. 104(1), 25–31 (2003).
[Crossref]

Schmidt, H.

W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Sells, B. H.

W. E. Groves, F. C. Davis, and B. H. Sells, “Spectrophotometric determination of microgram quantities of protein without nucleic acid interference,” Anal. Biochem. 22(2), 195–210 (1968).
[Crossref] [PubMed]

Shah Hosseini, E.

Sohlström, H.

Soltani, M.

Song, L.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Tyler, T.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Vahala, K. J.

Waggoner, A.

A. Waggoner, “Fluorescent labels for proteomics and genomics,” Curr. Opin. Chem. Biol. 10(1), 62–66 (2006).
[Crossref] [PubMed]

Walt, D. R.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Whitesides, G. M.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Wu, B.

W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Yang, A. H. J.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

Yang, W. G.

W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Yegnanarayanan, S.

Yin, D. L.

W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Anal. Biochem. (1)

W. E. Groves, F. C. Davis, and B. H. Sells, “Spectrophotometric determination of microgram quantities of protein without nucleic acid interference,” Anal. Biochem. 22(2), 195–210 (1968).
[Crossref] [PubMed]

Anal. Chem. (1)

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Appl. Environ. Microbiol. (1)

V. M. Cooke, R. J. Miles, R. G. Price, and A. C. Richardson, “A novel chromogenic ester agar medium for detection of Salmonellae,” Appl. Environ. Microbiol. 65(2), 807–812 (1999).
[PubMed]

Appl. Opt. (1)

Biochim. Biophys. Acta (1)

A. Fleck and H. N. Munro, “The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation,” Biochim. Biophys. Acta 55(5), 571–583 (1962).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (1)

A. Waggoner, “Fluorescent labels for proteomics and genomics,” Curr. Opin. Chem. Biol. 10(1), 62–66 (2006).
[Crossref] [PubMed]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

J Biophotonics (1)

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

J. Histochem. Cytochem. (1)

M. M. Mesulam, “Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents,” J. Histochem. Cytochem. 26(2), 106–117 (1978).
[PubMed]

J. Immunol. Methods (1)

T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis,” J. Lightwave Technol. 27(23), 5240–5245 (2009).
[Crossref]

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996).
[Crossref]

Methods Mol. Biol. (1)

J. R. Crowther, “ELISA. Theory and practice,” Methods Mol. Biol. 42, 1–218 (1995).
[PubMed]

Microbiol. Rev. (1)

M. Manafi, W. Kneifel, and S. Bascomb, “Fluorogenic and chromogenic substrates used in bacterial diagnostics,” Microbiol. Rev. 55(3), 335–348 (1991).
[PubMed]

Microfluid Nanofluidics (1)

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Sens. Actuators A Phys. (1)

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys. 104(1), 25–31 (2003).
[Crossref]

Other (1)

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, Inc., 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Device design for a microring resonator covered by a microfluidic channel. The microring enhances the interaction length between the cladding fluid and the evanescent field of the guided mode. (b). Numerical simulation of the | E | 2 profile of the TM mode in a silicon nitride waveguide at a wavelength of 650 nm and covered with an aqueous solution. The dashed line is the contour at which the field decays to 1% its maximum value.

Fig. 2
Fig. 2

Experimentally measured transmission spectrum of a microring resonator (black line) with fluid analytes of increasing absorbance (left to right) showing the change in extinction ratio and linewidth as the resonator loss increases. The data was fit (red line) using Eq. (1) to extract the absorption coefficient of the cladding fluids.

Fig. 3
Fig. 3

(a) Fluid absorbance measured with a commercial spectrophotometer with enzyme concentrations 6, 4, 2, 1, 0.5, and 0 ng/mL. (b) The resulting ring propagation losses as a function of the absorbance when the same fluids are measured with a microring resonator at a wavelength of 650 nm.

Fig. 4
Fig. 4

Ring propagation loss as a function of both enzyme concentration and the number of enzymes within the sensing volume of the microring resonator (~100 fL).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( θ ) = a 2 + | t | 2 2 a | t | cos θ 1 + a 2 | t | 2 2 a | t | cos θ

Metrics