Abstract

Tissue glycation from diabetes and aging can result in complications such as renal failure, blindness, nerve damage and vascular diseases. In this work, we applied multiphoton microscopy for imaging and characterizing the extent of tissue glycation. The characteristic features of multiphoton autofluorescence (MPAF) and second harmonic generation (SHG) images as well as MPAF spectra of glycated bovine skin, cornea and aorta were acquired. The analysis of MPAF intensity change accompanying the glycation process shows that collagen is more responsive to the formation of autofluorescent advanced glycation endproducts (AGE) than elastic fibers. Changes in spectral features were also used to estimate the rate of glycation in tissues with intrinsic AF. Our study shows that multiphton imaging may be used for the in vitro investigation of the effects of tissue glycation and that this approach may be used for monitoring AGE formation in the clinical setting.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ahmed, “Advanced glycation endproducts--role in pathology of diabetic complications,” Diabetes Res. Clin. Pract. 67(1), 3–21 (2005).
    [CrossRef] [PubMed]
  2. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature 414(6865), 813–820 (2001).
    [CrossRef] [PubMed]
  3. N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
    [CrossRef] [PubMed]
  4. T. J. Sims, L. M. Rasmussen, H. Oxlund, and A. J. Bailey, “The role of glycation cross-links in diabetic vascular stiffening,” Diabetologia 39(8), 946–951 (1996).
    [CrossRef] [PubMed]
  5. R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
    [CrossRef] [PubMed]
  6. E. L. Hull, M. N. Ediger, A. H. T. Unione, E. K. Deemer, M. L. Stroman, and J. W. Baynes, “Noninvasive, optical detection of diabetes: model studies with porcine skin,” Opt. Express 12(19), 4496–4510 (2004).
    [CrossRef] [PubMed]
  7. L. Kessel, B. Sander, P. Dalgaard, and M. Larsen, “Lens fluorescence and metabolic control in type 1 diabetic patients: a 14 year follow up study,” Br. J. Ophthalmol. 88(9), 1169–1172 (2004).
    [CrossRef] [PubMed]
  8. H. J. Van Schaik, J. Coppens, T. J. Van den Berg, and J. A. Van Best, “Autofluorescence distribution along the corneal axis in diabetic and healthy humans,” Exp. Eye Res. 69(5), 505–510 (1999).
    [CrossRef] [PubMed]
  9. R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, “Fluorescence excitation spectroscopy provides information about human skin in vivo,” J. Invest. Dermatol. 115(4), 704–707 (2000).
    [CrossRef] [PubMed]
  10. J. Hadley, N. Malik, and K. Meek, “Collagen as a model system to investigate the use of aspirin as an inhibitor of protein glycation and crosslinking,” Micron 32(3), 307–315 (2001).
    [CrossRef] [PubMed]
  11. V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
    [CrossRef] [PubMed]
  12. V. A. Hovhannisyan, P. J. Su, Y. F. Chen, and C. Y. Dong, “Image heterogeneity correction in large-area, three-dimensional multiphoton microscopy,” Opt. Express 16(7), 5107–5117 (2008).
    [CrossRef] [PubMed]
  13. B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, “Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity,” Lasers Surg. Med. 27(4), 329–335 (2000).
    [CrossRef] [PubMed]
  14. V. M. Monnier, R. R. Kohn, and A. Cerami, “Accelerated age-related browning of human collagen in diabetes mellitus,” Proc. Natl. Acad. Sci. U.S.A. 81(2), 583–587 (1984).
    [CrossRef] [PubMed]

2008 (2)

2005 (1)

N. Ahmed, “Advanced glycation endproducts--role in pathology of diabetic complications,” Diabetes Res. Clin. Pract. 67(1), 3–21 (2005).
[CrossRef] [PubMed]

2004 (3)

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

L. Kessel, B. Sander, P. Dalgaard, and M. Larsen, “Lens fluorescence and metabolic control in type 1 diabetic patients: a 14 year follow up study,” Br. J. Ophthalmol. 88(9), 1169–1172 (2004).
[CrossRef] [PubMed]

E. L. Hull, M. N. Ediger, A. H. T. Unione, E. K. Deemer, M. L. Stroman, and J. W. Baynes, “Noninvasive, optical detection of diabetes: model studies with porcine skin,” Opt. Express 12(19), 4496–4510 (2004).
[CrossRef] [PubMed]

2001 (2)

J. Hadley, N. Malik, and K. Meek, “Collagen as a model system to investigate the use of aspirin as an inhibitor of protein glycation and crosslinking,” Micron 32(3), 307–315 (2001).
[CrossRef] [PubMed]

M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature 414(6865), 813–820 (2001).
[CrossRef] [PubMed]

2000 (3)

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, “Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity,” Lasers Surg. Med. 27(4), 329–335 (2000).
[CrossRef] [PubMed]

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, “Fluorescence excitation spectroscopy provides information about human skin in vivo,” J. Invest. Dermatol. 115(4), 704–707 (2000).
[CrossRef] [PubMed]

1999 (1)

H. J. Van Schaik, J. Coppens, T. J. Van den Berg, and J. A. Van Best, “Autofluorescence distribution along the corneal axis in diabetic and healthy humans,” Exp. Eye Res. 69(5), 505–510 (1999).
[CrossRef] [PubMed]

1996 (1)

T. J. Sims, L. M. Rasmussen, H. Oxlund, and A. J. Bailey, “The role of glycation cross-links in diabetic vascular stiffening,” Diabetologia 39(8), 946–951 (1996).
[CrossRef] [PubMed]

1984 (1)

V. M. Monnier, R. R. Kohn, and A. Cerami, “Accelerated age-related browning of human collagen in diabetes mellitus,” Proc. Natl. Acad. Sci. U.S.A. 81(2), 583–587 (1984).
[CrossRef] [PubMed]

Ahmed, N.

N. Ahmed, “Advanced glycation endproducts--role in pathology of diabetic complications,” Diabetes Res. Clin. Pract. 67(1), 3–21 (2005).
[CrossRef] [PubMed]

Alderson, N. L.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

Anderson, R. R.

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, “Fluorescence excitation spectroscopy provides information about human skin in vivo,” J. Invest. Dermatol. 115(4), 704–707 (2000).
[CrossRef] [PubMed]

Bailey, A. J.

T. J. Sims, L. M. Rasmussen, H. Oxlund, and A. J. Bailey, “The role of glycation cross-links in diabetic vascular stiffening,” Diabetologia 39(8), 946–951 (1996).
[CrossRef] [PubMed]

Bank, R. A.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

Baynes, J. W.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

E. L. Hull, M. N. Ediger, A. H. T. Unione, E. K. Deemer, M. L. Stroman, and J. W. Baynes, “Noninvasive, optical detection of diabetes: model studies with porcine skin,” Opt. Express 12(19), 4496–4510 (2004).
[CrossRef] [PubMed]

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

Bijlsma, J. W.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

Brownlee, M.

M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature 414(6865), 813–820 (2001).
[CrossRef] [PubMed]

Cerami, A.

V. M. Monnier, R. R. Kohn, and A. Cerami, “Accelerated age-related browning of human collagen in diabetes mellitus,” Proc. Natl. Acad. Sci. U.S.A. 81(2), 583–587 (1984).
[CrossRef] [PubMed]

Chen, S. J.

Chen, Y. F.

Coppens, J.

H. J. Van Schaik, J. Coppens, T. J. Van den Berg, and J. A. Van Best, “Autofluorescence distribution along the corneal axis in diabetic and healthy humans,” Exp. Eye Res. 69(5), 505–510 (1999).
[CrossRef] [PubMed]

Da Silva, L. B.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, “Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity,” Lasers Surg. Med. 27(4), 329–335 (2000).
[CrossRef] [PubMed]

Dalgaard, P.

L. Kessel, B. Sander, P. Dalgaard, and M. Larsen, “Lens fluorescence and metabolic control in type 1 diabetic patients: a 14 year follow up study,” Br. J. Ophthalmol. 88(9), 1169–1172 (2004).
[CrossRef] [PubMed]

Deemer, E. K.

DeGroot, J.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

Dong, C. Y.

Ediger, M. N.

Eichler, J.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, “Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity,” Lasers Surg. Med. 27(4), 329–335 (2000).
[CrossRef] [PubMed]

Gans, R. O. B.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

Gillies, R.

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, “Fluorescence excitation spectroscopy provides information about human skin in vivo,” J. Invest. Dermatol. 115(4), 704–707 (2000).
[CrossRef] [PubMed]

Graaff, R.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

Hadley, J.

J. Hadley, N. Malik, and K. Meek, “Collagen as a model system to investigate the use of aspirin as an inhibitor of protein glycation and crosslinking,” Micron 32(3), 307–315 (2001).
[CrossRef] [PubMed]

Hovhannisyan, V.

Hovhannisyan, V. A.

Hu, C.

Hull, E. L.

Jager, J. J.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

Kessel, L.

L. Kessel, B. Sander, P. Dalgaard, and M. Larsen, “Lens fluorescence and metabolic control in type 1 diabetic patients: a 14 year follow up study,” Br. J. Ophthalmol. 88(9), 1169–1172 (2004).
[CrossRef] [PubMed]

Kim, B. M.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, “Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity,” Lasers Surg. Med. 27(4), 329–335 (2000).
[CrossRef] [PubMed]

Kohn, R. R.

V. M. Monnier, R. R. Kohn, and A. Cerami, “Accelerated age-related browning of human collagen in diabetes mellitus,” Proc. Natl. Acad. Sci. U.S.A. 81(2), 583–587 (1984).
[CrossRef] [PubMed]

Kollias, N.

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, “Fluorescence excitation spectroscopy provides information about human skin in vivo,” J. Invest. Dermatol. 115(4), 704–707 (2000).
[CrossRef] [PubMed]

Lafeber, F. P.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

Larsen, M.

L. Kessel, B. Sander, P. Dalgaard, and M. Larsen, “Lens fluorescence and metabolic control in type 1 diabetic patients: a 14 year follow up study,” Br. J. Ophthalmol. 88(9), 1169–1172 (2004).
[CrossRef] [PubMed]

Links, T. P.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

Lo, W.

Lyons, T. J.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

Malik, N.

J. Hadley, N. Malik, and K. Meek, “Collagen as a model system to investigate the use of aspirin as an inhibitor of protein glycation and crosslinking,” Micron 32(3), 307–315 (2001).
[CrossRef] [PubMed]

Meek, K.

J. Hadley, N. Malik, and K. Meek, “Collagen as a model system to investigate the use of aspirin as an inhibitor of protein glycation and crosslinking,” Micron 32(3), 307–315 (2001).
[CrossRef] [PubMed]

Meerwaldt, R.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

Monnier, V. M.

V. M. Monnier, R. R. Kohn, and A. Cerami, “Accelerated age-related browning of human collagen in diabetes mellitus,” Proc. Natl. Acad. Sci. U.S.A. 81(2), 583–587 (1984).
[CrossRef] [PubMed]

Oomen, P. H. N.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

Oxlund, H.

T. J. Sims, L. M. Rasmussen, H. Oxlund, and A. J. Bailey, “The role of glycation cross-links in diabetic vascular stiffening,” Diabetologia 39(8), 946–951 (1996).
[CrossRef] [PubMed]

Rasmussen, L. M.

T. J. Sims, L. M. Rasmussen, H. Oxlund, and A. J. Bailey, “The role of glycation cross-links in diabetic vascular stiffening,” Diabetologia 39(8), 946–951 (1996).
[CrossRef] [PubMed]

Reiser, K. M.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, “Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity,” Lasers Surg. Med. 27(4), 329–335 (2000).
[CrossRef] [PubMed]

Rubenchik, A. M.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, “Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity,” Lasers Surg. Med. 27(4), 329–335 (2000).
[CrossRef] [PubMed]

Sander, B.

L. Kessel, B. Sander, P. Dalgaard, and M. Larsen, “Lens fluorescence and metabolic control in type 1 diabetic patients: a 14 year follow up study,” Br. J. Ophthalmol. 88(9), 1169–1172 (2004).
[CrossRef] [PubMed]

Shaw, J. N.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

Sims, T. J.

T. J. Sims, L. M. Rasmussen, H. Oxlund, and A. J. Bailey, “The role of glycation cross-links in diabetic vascular stiffening,” Diabetologia 39(8), 946–951 (1996).
[CrossRef] [PubMed]

Smit, A. J.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

Stroman, M. L.

Su, P. J.

TeKoppele, J. M.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

Thorpe, S. R.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

Unione, A. H. T.

Van Best, J. A.

H. J. Van Schaik, J. Coppens, T. J. Van den Berg, and J. A. Van Best, “Autofluorescence distribution along the corneal axis in diabetic and healthy humans,” Exp. Eye Res. 69(5), 505–510 (1999).
[CrossRef] [PubMed]

Van den Berg, T. J.

H. J. Van Schaik, J. Coppens, T. J. Van den Berg, and J. A. Van Best, “Autofluorescence distribution along the corneal axis in diabetic and healthy humans,” Exp. Eye Res. 69(5), 505–510 (1999).
[CrossRef] [PubMed]

Van Schaik, H. J.

H. J. Van Schaik, J. Coppens, T. J. Van den Berg, and J. A. Van Best, “Autofluorescence distribution along the corneal axis in diabetic and healthy humans,” Exp. Eye Res. 69(5), 505–510 (1999).
[CrossRef] [PubMed]

Verzijl, N.

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

Zonios, G.

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, “Fluorescence excitation spectroscopy provides information about human skin in vivo,” J. Invest. Dermatol. 115(4), 704–707 (2000).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (1)

L. Kessel, B. Sander, P. Dalgaard, and M. Larsen, “Lens fluorescence and metabolic control in type 1 diabetic patients: a 14 year follow up study,” Br. J. Ophthalmol. 88(9), 1169–1172 (2004).
[CrossRef] [PubMed]

Diabetes Res. Clin. Pract. (1)

N. Ahmed, “Advanced glycation endproducts--role in pathology of diabetic complications,” Diabetes Res. Clin. Pract. 67(1), 3–21 (2005).
[CrossRef] [PubMed]

Diabetologia (2)

T. J. Sims, L. M. Rasmussen, H. Oxlund, and A. J. Bailey, “The role of glycation cross-links in diabetic vascular stiffening,” Diabetologia 39(8), 946–951 (1996).
[CrossRef] [PubMed]

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47(7), 1324–1330 (2004).
[CrossRef] [PubMed]

Exp. Eye Res. (1)

H. J. Van Schaik, J. Coppens, T. J. Van den Berg, and J. A. Van Best, “Autofluorescence distribution along the corneal axis in diabetic and healthy humans,” Exp. Eye Res. 69(5), 505–510 (1999).
[CrossRef] [PubMed]

J. Biol. Chem. (1)

N. Verzijl, J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele, “Effect of collagen turnover on the accumulation of advanced glycation end products,” J. Biol. Chem. 275(50), 39027–39031 (2000).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

R. Gillies, G. Zonios, R. R. Anderson, and N. Kollias, “Fluorescence excitation spectroscopy provides information about human skin in vivo,” J. Invest. Dermatol. 115(4), 704–707 (2000).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, “Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity,” Lasers Surg. Med. 27(4), 329–335 (2000).
[CrossRef] [PubMed]

Micron (1)

J. Hadley, N. Malik, and K. Meek, “Collagen as a model system to investigate the use of aspirin as an inhibitor of protein glycation and crosslinking,” Micron 32(3), 307–315 (2001).
[CrossRef] [PubMed]

Nature (1)

M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature 414(6865), 813–820 (2001).
[CrossRef] [PubMed]

Opt. Express (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

V. M. Monnier, R. R. Kohn, and A. Cerami, “Accelerated age-related browning of human collagen in diabetes mellitus,” Proc. Natl. Acad. Sci. U.S.A. 81(2), 583–587 (1984).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Time course MPAF (green) and SHG (red) images of glycated and non-glycated samples of bovine cornea. The images of non-glycated control tissues are also shown for comparison. The laser excitation wavelength was 780 nm and the power was 180 mW. Frame size is 620 × 620 μm2.

Fig. 2
Fig. 2

Time course MPAF (green) and SHG (red) images of glycated and non-glycated samples of bovine skin. The images of non-glycated control tissues are also shown for comparison. The laser excitation wavelength was 780 nm and the power was 150 mW. Frame size is 620 × 620 μm2.

Fig. 3
Fig. 3

Time course MPAF (green) and SHG (red) images of glycated and non-glycated specimens of outer aorta. The images of non-glycated control tissues are also shown for comparison. The laser excitation wavelength was 780 nm and the power was 180 mW. Frame size is 690 × 690 μm2.

Fig. 4
Fig. 4

Time course MPAF (green), SHG (red) images of glycated and non-glycated specimens of inner aorta. The images of non-glycated control tissues are also shown for comparison. The laser excitation wavelength was 780 nm and the power was 180 mW. Frame size is 690 × 690 μm2.

Fig. 5
Fig. 5

The dependence of MPAF (left panels) and SHG (right panels) signal intensity of cornea (A), skin (B), outer aorta (C),and inner aorta (D) on the incubation time in 0.5 M ribose (glycated) or PBS (control). Each data point is an average of 15-16 ROIs.

Fig. 6
Fig. 6

Relative change of elastin and collagen MPAF intensity from aorta. 30 ROIs of elastic fibers where selected from both outer and inner part of aorta. For collagen, 15 ROIs from outer aorta were analyzed. The excitation wavelength used for image acquisition was 780 nm and the laser power was 150 mW.

Fig. 7
Fig. 7

MPAF spectra of glycated (solid lines) and non-glycated (dashed lines) cornea (A), skin (B), outer (C) and inner (D) aorta obtained using the excitations wavelengths of 720, 740, 760, 780, and 800 nm.

Fig. 8
Fig. 8

Changes of normalized MPAF spectra of inner (upper panels) and outer (lower panels) aorta during the treatment with PBS (control: left panels) and 0.5 M ribose (glycated: right panels). The spectra were obtained using λexc = 720 nm. The difference of spectra at Day 10 and Day 0 is also shown (dashed lines). The arrows in (D) indicate the time course of glycation.

Fig. 9
Fig. 9

Normalized MPAF spectra of both glycated and non-glycated inner and outer aorta and glycated cornea. Spectra were obtained using excitation wavelengths of 720 nm.

Metrics