Abstract

High-speed high-contrast imaging modalities that enable image acquisition of transparent media without the need for chemical staining are essential tools for a broad range of applications; from semiconductor process monitoring to blood screening. Here we introduce a method for contrast-enhanced imaging of unstained transparent objects that is capable of high-throughput imaging. This method combines the Nomarski phase contrast capability with the ultrahigh frame rate and shutter speed of serial time-encoded amplified microscopy. As a proof of concept, we show imaging of a transparent test structure and white blood cells in flow at a shutter speed of 33 ps and a frame rate of 36.1 MHz using a single-pixel photo-detector. This method is expected to be a valuable tool for high-throughput screening of unstained cells.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Murphy, “Differential interference contrast (DIC) microscopy and modulation contrast microscopy,” in Fundamentals of Light Microscopy and Digital Imaging (Wiley-Liss, New York, 2001).
  2. E. Salmon and P. Tran, “High-resolution video-enhanced differential interference contrast (VEDIC) light microscope,” in Video Microscopy, G. Sluder and D. Wolf, eds. (Academic, New York, 1998).
  3. H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun.260(1), 117–126 (2006).
    [CrossRef]
  4. E. B. Van Munster, E. K. Winter, and J. A. Aten, “Measurement-based evaluation of optical pathlength distributions reconstructed from simulated differential interference contrast images,” J. Microsc.191(2), 170–176 (1998).
    [CrossRef] [PubMed]
  5. J. Götze, “Application of Nomarski DIC and cathodoluminescence (CL) microscopy to building materials,” Mater. Charact.60(7), 594–602 (2009).
    [CrossRef]
  6. M. Sokabe and F. Sachs, “The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy,” J. Cell Biol.111(2), 599–606 (1990).
    [CrossRef] [PubMed]
  7. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science300(5616), 82–86 (2003).
    [CrossRef] [PubMed]
  8. G. Verheyen, E. Crabbé, H. Joris, and A. Van Steirteghem, “Simple and reliable identification of the human round spermatid by inverted phase-contrast microscopy,” Hum. Reprod.13(6), 1570–1577 (1998).
    [CrossRef] [PubMed]
  9. C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch.448(4), 462–468 (2004).
    [CrossRef] [PubMed]
  10. M. G. Coulthard, A. Nelson, T. Smith, and J. D. Perry, “Point-of-care diagnostic tests for childhood urinary-tract infection: phase-contrast microscopy for bacteria, stick testing, and counting white blood cells,” J. Clin. Pathol.63(9), 823–829 (2010).
    [CrossRef] [PubMed]
  11. H. Petty, “High speed microscopy in biomedical research,” Opt. Photonics News15, 40–45 (2004).
  12. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
    [CrossRef] [PubMed]
  13. B. Jalali, P. Soon-Shiong, and K. Goda, “Breaking speed and sensitivity limits,” Optik Photonik5(2), 32–36 (2010).
    [CrossRef]
  14. S. Chatterjee, “Design considerations and fabrication techniques of Nomarski reflection microscope,” Opt. Eng.42(8), 2202–2213 (2003).
    [CrossRef]
  15. C. C. Montarou and T. K. Gaylord, “Analysis and design of modified Wollaston prisms,” Appl. Opt.38(31), 6604–6616 (1999).
    [CrossRef] [PubMed]
  16. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
    [CrossRef]
  17. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
    [CrossRef]
  18. J. Chou, O. Boyraz, D. R. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett.91(16), 161105 (2007).
    [CrossRef]
  19. K. Goda, A. Motafakker-Fard, and B. Jalali, “Phase-contrast serial time-encoded amplified microscopy,” in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CH3_4.
  20. D. Di Carlo, “Inertial microfluidics,” Lab Chip9(21), 3038–3046 (2009).
    [CrossRef] [PubMed]
  21. D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A.104(48), 18892–18897 (2007).
    [CrossRef] [PubMed]
  22. D. L. Lessor, J. S. Hartman, and R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy,” J. Opt. Soc. Am.69(2), 357–366 (1979).
    [CrossRef]
  23. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express18(10), 10016–10028 (2010).
    [CrossRef] [PubMed]

2010 (3)

M. G. Coulthard, A. Nelson, T. Smith, and J. D. Perry, “Point-of-care diagnostic tests for childhood urinary-tract infection: phase-contrast microscopy for bacteria, stick testing, and counting white blood cells,” J. Clin. Pathol.63(9), 823–829 (2010).
[CrossRef] [PubMed]

B. Jalali, P. Soon-Shiong, and K. Goda, “Breaking speed and sensitivity limits,” Optik Photonik5(2), 32–36 (2010).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

2009 (4)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

D. Di Carlo, “Inertial microfluidics,” Lab Chip9(21), 3038–3046 (2009).
[CrossRef] [PubMed]

J. Götze, “Application of Nomarski DIC and cathodoluminescence (CL) microscopy to building materials,” Mater. Charact.60(7), 594–602 (2009).
[CrossRef]

2008 (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
[CrossRef]

2007 (2)

J. Chou, O. Boyraz, D. R. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett.91(16), 161105 (2007).
[CrossRef]

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A.104(48), 18892–18897 (2007).
[CrossRef] [PubMed]

2006 (1)

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun.260(1), 117–126 (2006).
[CrossRef]

2004 (2)

H. Petty, “High speed microscopy in biomedical research,” Opt. Photonics News15, 40–45 (2004).

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch.448(4), 462–468 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Chatterjee, “Design considerations and fabrication techniques of Nomarski reflection microscope,” Opt. Eng.42(8), 2202–2213 (2003).
[CrossRef]

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science300(5616), 82–86 (2003).
[CrossRef] [PubMed]

1999 (1)

1998 (2)

G. Verheyen, E. Crabbé, H. Joris, and A. Van Steirteghem, “Simple and reliable identification of the human round spermatid by inverted phase-contrast microscopy,” Hum. Reprod.13(6), 1570–1577 (1998).
[CrossRef] [PubMed]

E. B. Van Munster, E. K. Winter, and J. A. Aten, “Measurement-based evaluation of optical pathlength distributions reconstructed from simulated differential interference contrast images,” J. Microsc.191(2), 170–176 (1998).
[CrossRef] [PubMed]

1990 (1)

M. Sokabe and F. Sachs, “The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy,” J. Cell Biol.111(2), 599–606 (1990).
[CrossRef] [PubMed]

1979 (1)

Allan, V. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science300(5616), 82–86 (2003).
[CrossRef] [PubMed]

Allman, B. E.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch.448(4), 462–468 (2004).
[CrossRef] [PubMed]

Aten, J. A.

E. B. Van Munster, E. K. Winter, and J. A. Aten, “Measurement-based evaluation of optical pathlength distributions reconstructed from simulated differential interference contrast images,” J. Microsc.191(2), 170–176 (1998).
[CrossRef] [PubMed]

Bellair, C. J.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch.448(4), 462–468 (2004).
[CrossRef] [PubMed]

Boyraz, O.

J. Chou, O. Boyraz, D. R. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett.91(16), 161105 (2007).
[CrossRef]

Capewell, D.

Chatterjee, S.

S. Chatterjee, “Design considerations and fabrication techniques of Nomarski reflection microscope,” Opt. Eng.42(8), 2202–2213 (2003).
[CrossRef]

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
[CrossRef]

J. Chou, O. Boyraz, D. R. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett.91(16), 161105 (2007).
[CrossRef]

Coulthard, M. G.

M. G. Coulthard, A. Nelson, T. Smith, and J. D. Perry, “Point-of-care diagnostic tests for childhood urinary-tract infection: phase-contrast microscopy for bacteria, stick testing, and counting white blood cells,” J. Clin. Pathol.63(9), 823–829 (2010).
[CrossRef] [PubMed]

Crabbé, E.

G. Verheyen, E. Crabbé, H. Joris, and A. Van Steirteghem, “Simple and reliable identification of the human round spermatid by inverted phase-contrast microscopy,” Hum. Reprod.13(6), 1570–1577 (1998).
[CrossRef] [PubMed]

Curl, C. L.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch.448(4), 462–468 (2004).
[CrossRef] [PubMed]

Delbridge, L. M. D.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch.448(4), 462–468 (2004).
[CrossRef] [PubMed]

Di Carlo, D.

D. Di Carlo, “Inertial microfluidics,” Lab Chip9(21), 3038–3046 (2009).
[CrossRef] [PubMed]

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A.104(48), 18892–18897 (2007).
[CrossRef] [PubMed]

Gaylord, T. K.

Goda, K.

B. Jalali, P. Soon-Shiong, and K. Goda, “Breaking speed and sensitivity limits,” Optik Photonik5(2), 32–36 (2010).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Gordon, R. L.

Götze, J.

J. Götze, “Application of Nomarski DIC and cathodoluminescence (CL) microscopy to building materials,” Mater. Charact.60(7), 594–602 (2009).
[CrossRef]

Harris, P. J.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch.448(4), 462–468 (2004).
[CrossRef] [PubMed]

Harris, T.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch.448(4), 462–468 (2004).
[CrossRef] [PubMed]

Hartman, J. S.

Irimia, D.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A.104(48), 18892–18897 (2007).
[CrossRef] [PubMed]

Ishiwata, H.

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun.260(1), 117–126 (2006).
[CrossRef]

Itoh, M.

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun.260(1), 117–126 (2006).
[CrossRef]

Jalali, B.

B. Jalali, P. Soon-Shiong, and K. Goda, “Breaking speed and sensitivity limits,” Optik Photonik5(2), 32–36 (2010).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
[CrossRef]

J. Chou, O. Boyraz, D. R. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett.91(16), 161105 (2007).
[CrossRef]

Joris, H.

G. Verheyen, E. Crabbé, H. Joris, and A. Van Steirteghem, “Simple and reliable identification of the human round spermatid by inverted phase-contrast microscopy,” Hum. Reprod.13(6), 1570–1577 (1998).
[CrossRef] [PubMed]

Lessor, D. L.

Montarou, C. C.

Nelson, A.

M. G. Coulthard, A. Nelson, T. Smith, and J. D. Perry, “Point-of-care diagnostic tests for childhood urinary-tract infection: phase-contrast microscopy for bacteria, stick testing, and counting white blood cells,” J. Clin. Pathol.63(9), 823–829 (2010).
[CrossRef] [PubMed]

Perry, J. D.

M. G. Coulthard, A. Nelson, T. Smith, and J. D. Perry, “Point-of-care diagnostic tests for childhood urinary-tract infection: phase-contrast microscopy for bacteria, stick testing, and counting white blood cells,” J. Clin. Pathol.63(9), 823–829 (2010).
[CrossRef] [PubMed]

Petty, H.

H. Petty, “High speed microscopy in biomedical research,” Opt. Photonics News15, 40–45 (2004).

Sachs, F.

M. Sokabe and F. Sachs, “The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy,” J. Cell Biol.111(2), 599–606 (1990).
[CrossRef] [PubMed]

Smith, T.

M. G. Coulthard, A. Nelson, T. Smith, and J. D. Perry, “Point-of-care diagnostic tests for childhood urinary-tract infection: phase-contrast microscopy for bacteria, stick testing, and counting white blood cells,” J. Clin. Pathol.63(9), 823–829 (2010).
[CrossRef] [PubMed]

Sokabe, M.

M. Sokabe and F. Sachs, “The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy,” J. Cell Biol.111(2), 599–606 (1990).
[CrossRef] [PubMed]

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
[CrossRef]

J. Chou, O. Boyraz, D. R. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett.91(16), 161105 (2007).
[CrossRef]

Soon-Shiong, P.

B. Jalali, P. Soon-Shiong, and K. Goda, “Breaking speed and sensitivity limits,” Optik Photonik5(2), 32–36 (2010).
[CrossRef]

Stephens, D. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science300(5616), 82–86 (2003).
[CrossRef] [PubMed]

Stewart, A. G.

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch.448(4), 462–468 (2004).
[CrossRef] [PubMed]

Tompkins, R. G.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A.104(48), 18892–18897 (2007).
[CrossRef] [PubMed]

Toner, M.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A.104(48), 18892–18897 (2007).
[CrossRef] [PubMed]

Tsia, K. K.

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Van Munster, E. B.

E. B. Van Munster, E. K. Winter, and J. A. Aten, “Measurement-based evaluation of optical pathlength distributions reconstructed from simulated differential interference contrast images,” J. Microsc.191(2), 170–176 (1998).
[CrossRef] [PubMed]

Van Steirteghem, A.

G. Verheyen, E. Crabbé, H. Joris, and A. Van Steirteghem, “Simple and reliable identification of the human round spermatid by inverted phase-contrast microscopy,” Hum. Reprod.13(6), 1570–1577 (1998).
[CrossRef] [PubMed]

Verheyen, G.

G. Verheyen, E. Crabbé, H. Joris, and A. Van Steirteghem, “Simple and reliable identification of the human round spermatid by inverted phase-contrast microscopy,” Hum. Reprod.13(6), 1570–1577 (1998).
[CrossRef] [PubMed]

Winter, E. K.

E. B. Van Munster, E. K. Winter, and J. A. Aten, “Measurement-based evaluation of optical pathlength distributions reconstructed from simulated differential interference contrast images,” J. Microsc.191(2), 170–176 (1998).
[CrossRef] [PubMed]

Yatagai, T.

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun.260(1), 117–126 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Chou, O. Boyraz, D. R. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett.91(16), 161105 (2007).
[CrossRef]

Hum. Reprod. (1)

G. Verheyen, E. Crabbé, H. Joris, and A. Van Steirteghem, “Simple and reliable identification of the human round spermatid by inverted phase-contrast microscopy,” Hum. Reprod.13(6), 1570–1577 (1998).
[CrossRef] [PubMed]

J. Cell Biol. (1)

M. Sokabe and F. Sachs, “The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy,” J. Cell Biol.111(2), 599–606 (1990).
[CrossRef] [PubMed]

J. Clin. Pathol. (1)

M. G. Coulthard, A. Nelson, T. Smith, and J. D. Perry, “Point-of-care diagnostic tests for childhood urinary-tract infection: phase-contrast microscopy for bacteria, stick testing, and counting white blood cells,” J. Clin. Pathol.63(9), 823–829 (2010).
[CrossRef] [PubMed]

J. Microsc. (1)

E. B. Van Munster, E. K. Winter, and J. A. Aten, “Measurement-based evaluation of optical pathlength distributions reconstructed from simulated differential interference contrast images,” J. Microsc.191(2), 170–176 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Lab Chip (1)

D. Di Carlo, “Inertial microfluidics,” Lab Chip9(21), 3038–3046 (2009).
[CrossRef] [PubMed]

Mater. Charact. (1)

J. Götze, “Application of Nomarski DIC and cathodoluminescence (CL) microscopy to building materials,” Mater. Charact.60(7), 594–602 (2009).
[CrossRef]

Nat. Photonics (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
[CrossRef]

Nature (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun.260(1), 117–126 (2006).
[CrossRef]

Opt. Eng. (1)

S. Chatterjee, “Design considerations and fabrication techniques of Nomarski reflection microscope,” Opt. Eng.42(8), 2202–2213 (2003).
[CrossRef]

Opt. Express (1)

Opt. Photonics News (1)

H. Petty, “High speed microscopy in biomedical research,” Opt. Photonics News15, 40–45 (2004).

Optik Photonik (1)

B. Jalali, P. Soon-Shiong, and K. Goda, “Breaking speed and sensitivity limits,” Optik Photonik5(2), 32–36 (2010).
[CrossRef]

Pflugers Arch. (1)

C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch.448(4), 462–468 (2004).
[CrossRef] [PubMed]

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A.104(48), 18892–18897 (2007).
[CrossRef] [PubMed]

Science (1)

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science300(5616), 82–86 (2003).
[CrossRef] [PubMed]

Other (3)

D. Murphy, “Differential interference contrast (DIC) microscopy and modulation contrast microscopy,” in Fundamentals of Light Microscopy and Digital Imaging (Wiley-Liss, New York, 2001).

E. Salmon and P. Tran, “High-resolution video-enhanced differential interference contrast (VEDIC) light microscope,” in Video Microscopy, G. Sluder and D. Wolf, eds. (Academic, New York, 1998).

K. Goda, A. Motafakker-Fard, and B. Jalali, “Phase-contrast serial time-encoded amplified microscopy,” in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CH3_4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Nomarski serial time-encoded amplified microscopy (N-STEAM). N-STEAM builds on a unique combination of STEAM’s high-speed imaging capability and DIC/Nomarski microscopy’s ability to image transparent objects without staining. (a) Schematic of the N-STEAM imager. The N-STEAM uses a Nomarski prism to encode the optical path length (the product of the refractive index and thickness) of the object into the optical spectrum of the illumination beam. (b) Evolution of the intensity, phase, and polarization of the illumination beam(s) at different points in the system. (c) Temporal waveform that shows N-STEAM’s frames (line scans) at 36.1 MHz, corresponding to a repetition period of 27.7 ns.

Fig. 2
Fig. 2

(a) Schematic of the transparent refractive-index modulated structure aligned with the illumination beams. Images of a transparent refractive-index modulated structure captured using N-STEAM with (b) and without (c) the Nomarski prism. The imager without the prism is equivalent to STEAM, while the enhancement in the image contrast was obtained with the Nomarski prism (i.e., N-STEAM). The second dimension of the images was obtained by translating the sample in the direction normal to the line scans. The comparison of the images indicates significant contrast enhancement obtained by the N-STEAM.

Fig. 3
Fig. 3

(a) Schematic of the microfluidic channel aligned with respect to 1-D rainbow illumination pulses. Images of unstained white blood cells captured by N-STEAM, (b) with and, (c) without the Nomarski prism. The flow rate was 1 meter/s. The image contrasts obtained by N-STEAM is >15 times larger than those of obtained by STEAM. The rest of scale bars, 10μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 [ a 1 + a 2 ( 1cosχ ) ],

Metrics