Abstract

Functional near infrared (fNIR) imaging was used to identify spatiotemporal relations between spatially distinct cortical regions activated during various hand and arm motion protocols. Imaging was performed over a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary sensorimotor, and the posterior parietal cortices over a single brain hemisphere. This is a more extended FOV than typically used in current fNIR studies. Three subjects performed four motor tasks that induced activation over this extended FOV. The tasks included card flipping (pronation and supination) that, to our knowledge, has not been performed in previous functional magnetic resonance imaging (fMRI) or fNIR studies. An earlier rise and a longer duration of the hemodynamic activation response were found in tasks requiring increased physical or mental effort. Additionally, analysis of activation images by cluster component analysis (CCA) demonstrated that cortical regions can be grouped into clusters, which can be adjacent or distant from each other, that have similar temporal activation patterns depending on whether the performed motor task is guided by visual or tactile feedback. These analyses highlight the future potential of fNIR imaging to tackle clinically relevant questions regarding the spatiotemporal relations between different sensorimotor cortex regions, e.g. ones involved in the rehabilitation response to motor impairments.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
    [CrossRef] [PubMed]
  2. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
    [CrossRef] [PubMed]
  3. Y. Xu, H. L. Graber, and R. L. Barbour, “Image correction algorithm for functional three-dimensional diffuse optical tomography brain imaging,” Appl. Opt. 46(10), 1693–1704 (2007).
    [CrossRef] [PubMed]
  4. D. H. Burns, S. Rosendahl, D. Bandilla, O. C. Maes, H. M. Chertkow, and H. M. Schipper, “Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease,” J. Alzheimers Dis. 17(2), 391–397 (2009).
    [PubMed]
  5. B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
    [CrossRef] [PubMed]
  6. H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety 25(12), 1053–1059 (2008).
    [CrossRef] [PubMed]
  7. G. Strangman, R. Goldstein, S. L. Rauch, and J. Stein, “Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature,” Arch. Phys. Med. Rehabil. 87(12Suppl 2), 12–19 (2006).
    [CrossRef] [PubMed]
  8. K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
    [CrossRef] [PubMed]
  9. C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol. 62(6), 338–343 (2009).
    [CrossRef] [PubMed]
  10. J. B. Zeller, M. J. Herrmann, A. C. Ehlis, T. Polak, and A. J. Fallgatter, “Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy,” Am. J. Geriatr. Psychiatry 18(5), 433–441 (2010).
    [CrossRef] [PubMed]
  11. J. Azpiroz, F. A. Barrios, M. Carrillo, R. Carrillo, A. Cerrato, J. Hernandez, R. S. Leder, A. O. Rodriguez, and P. Salgado, “Game motivated and constraint induced therapy in late stroke with fMRI studies pre and post therapy,” in 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005 (IEEE, 2005), Vols. 1–7, pp. 3695–3698.
  12. F. Hamzei, J. Liepert, C. Dettmers, C. Weiller, and M. Rijntjes, “Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS,” Neuroimage 31(2), 710–720 (2006).
    [CrossRef] [PubMed]
  13. C. H. Juenger, M. Linder-Lucht, M. Wilke, S. Berweck, V. Mall, and M. Staudt, “Neuromodulation by constraint-induced movement therapy (CIMT) in congenital hemiparesis: an fMRI study,” Eur. J. Pediatr. 166, 280–9999 (2007).
  14. H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study,” Neuropediatrics 38(3), 130–136 (2007).
    [CrossRef] [PubMed]
  15. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
    [CrossRef] [PubMed]
  16. G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
    [CrossRef] [PubMed]
  17. S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
    [CrossRef] [PubMed]
  18. K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared neuroimaging,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 5333–5336 (2004).
    [PubMed]
  19. M. Izzetoglu, A. Devaraj, S. Bunce, and B. Onaral, “Motion artifact cancellation in NIR spectroscopy using Wiener filtering,” IEEE Trans. Biomed. Eng. 52(5), 934–938 (2005).
    [CrossRef] [PubMed]
  20. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
    [CrossRef] [PubMed]
  21. I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).
    [CrossRef] [PubMed]
  22. M. Hatakenaka, I. Miyai, M. Mihara, S. Sakoda, and K. Kubota, “Frontal regions involved in learning of motor skill--A functional NIRS study,” Neuroimage 34(1), 109–116 (2007).
    [CrossRef] [PubMed]
  23. T. Ikegami and G. Taga, “Decrease in cortical activation during learning of a multi-joint discrete motor task,” Exp. Brain Res. 191(2), 221–236 (2008).
    [CrossRef] [PubMed]
  24. S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
    [PubMed]
  25. L. Holper, F. Scholkmann, D. E. Shalóm, and M. Wolf, “Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study,” Cortex (2011).
    [CrossRef] [PubMed]
  26. L. Holper, M. Biallas, and M. Wolf, “Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study,” Neuroimage 46(4), 1105–1113 (2009).
    [CrossRef] [PubMed]
  27. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22(12), 1997–2005 (1995).
    [CrossRef] [PubMed]
  28. H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10(4), 044001 (2005).
    [CrossRef] [PubMed]
  29. V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
    [CrossRef] [PubMed]
  30. S. Chen, C. A. Bouman, and M. J. Lowe, “Clustered components analysis for functional MRI,” IEEE Trans. Med. Imaging 23(1), 85–98 (2004).
    [CrossRef] [PubMed]
  31. Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering to reduce global interference in evoked brain activity detection: a human subject case study,” J. Biomed. Opt. 12(6), 064009 (2007).
    [CrossRef] [PubMed]
  32. Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
    [CrossRef] [PubMed]
  33. G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
    [CrossRef] [PubMed]
  34. A. F. Abdelnour and T. Huppert, “Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model,” Neuroimage 46(1), 133–143 (2009).
    [CrossRef] [PubMed]
  35. Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
    [CrossRef] [PubMed]
  36. C. Julien, “The enigma of Mayer waves: Facts and models,” Cardiovasc. Res. 70(1), 12–21 (2006).
    [CrossRef] [PubMed]
  37. S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
    [CrossRef] [PubMed]
  38. F. C. Robertson, T. S. Douglas, and E. M. Meintjes, “Motion artifact removal for functional near infrared spectroscopy: a comparison of methods,” IEEE Trans. Biomed. Eng. 57(6), 1377–1387 (2010).
    [CrossRef] [PubMed]
  39. D. D. Dorfman, K. S. Berbaum, and C. E. Metz, “Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method,” Invest. Radiol. 27(9), 723–731 (1992).
    [CrossRef] [PubMed]
  40. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
    [CrossRef] [PubMed]
  41. B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).
    [CrossRef] [PubMed]
  42. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29(3), 256–258 (2004).
    [CrossRef] [PubMed]
  43. K. Baudendistel, L. R. Schad, M. Friedlinger, F. Wenz, J. Schröder, and W. J. Lorenz, “Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager,” Magn. Reson. Imaging 13(5), 701–707 (1995).
    [CrossRef] [PubMed]
  44. A. K. Singh and I. Dan, “Exploring the false discovery rate in multichannel NIRS,” Neuroimage 33(2), 542–549 (2006).
    [CrossRef] [PubMed]
  45. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
    [CrossRef] [PubMed]
  46. P. A. Gelnar, B. R. Krauss, P. R. Sheehe, N. M. Szeverenyi, and A. V. Apkarian, “A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks,” Neuroimage 10(4), 460–482 (1999).
    [CrossRef] [PubMed]
  47. M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res. 8(1), 17–25 (1999).
    [CrossRef] [PubMed]
  48. M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging 21(3), 236–240 (2011).
    [CrossRef] [PubMed]
  49. E. Azañón, M. R. Longo, S. Soto-Faraco, and P. Haggard, “The posterior parietal cortex remaps touch into external space,” Curr. Biol. 20(14), 1304–1309 (2010).
    [CrossRef] [PubMed]
  50. G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson, and K. W. Horch, “Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs,” J. Hand Surg. Am. 29(4), 605–615, discussion 616–618 (2004).
    [CrossRef] [PubMed]
  51. G. Lundborg, “Commentary: residual function in peripheral nerve stumps for amputees,” Hand Surg. Am. 29(4), 616–618 (2004).
    [CrossRef]
  52. M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
    [CrossRef] [PubMed]
  53. M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallett, “Cerebral structures participating in motor preparation in humans: a positron emission tomography study,” J. Neurophysiol. 75(1), 233–247 (1996).
    [PubMed]
  54. S. Van Oostende, P. Van Hecke, S. Sunaert, B. Nuttin, and G. Marchal, “FMRI studies of the supplementary motor area and the premotor cortex,” Neuroimage 6(3), 181–190 (1997).
    [CrossRef] [PubMed]
  55. M. F. Rushworth, H. Johansen-Berg, S. M. Göbel, and J. T. Devlin, “The left parietal and premotor cortices: motor attention and selection,” Neuroimage 20(Suppl 1), S89–S100 (2003).
    [CrossRef] [PubMed]
  56. F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
    [CrossRef] [PubMed]
  57. J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
    [CrossRef] [PubMed]
  58. H. Burton, N. S. Abend, A. M. MacLeod, R. J. Sinclair, A. Z. Snyder, and M. E. Raichle, “Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study,” Cereb. Cortex 9(7), 662–674 (1999).
    [CrossRef] [PubMed]
  59. V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
    [CrossRef] [PubMed]
  60. E. A. Stringer, L. M. Chen, R. M. Friedman, C. Gatenby, and J. C. Gore, “Differentiation of somatosensory cortices by high-resolution fMRI at 7 T,” Neuroimage 54(2), 1012–1020 (2011).
    [CrossRef] [PubMed]
  61. S. A. Julious, “Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design by L. Frison and S.J. Pocock, Statistics in Medicine 1992; 12: 1685-1704,” Stat. Med. 19(22), 3133–3135 (2000).
    [CrossRef] [PubMed]
  62. V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna, “Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space,” J. Neurophysiol. 38(4), 871–908 (1975).
    [PubMed]
  63. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
    [CrossRef] [PubMed]
  64. K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Comput. Med. Imaging Graph. 33(2), 131–139 (2009).
    [CrossRef] [PubMed]
  65. R. W. Aldhaheri, “Model order reduction via real Schur-form decomposition,” Int. J. Control 53(3), 709–716 (1991).
    [CrossRef]

2011 (4)

L. Holper, F. Scholkmann, D. E. Shalóm, and M. Wolf, “Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study,” Cortex (2011).
[CrossRef] [PubMed]

M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging 21(3), 236–240 (2011).
[CrossRef] [PubMed]

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

E. A. Stringer, L. M. Chen, R. M. Friedman, C. Gatenby, and J. C. Gore, “Differentiation of somatosensory cortices by high-resolution fMRI at 7 T,” Neuroimage 54(2), 1012–1020 (2011).
[CrossRef] [PubMed]

2010 (7)

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[CrossRef] [PubMed]

E. Azañón, M. R. Longo, S. Soto-Faraco, and P. Haggard, “The posterior parietal cortex remaps touch into external space,” Curr. Biol. 20(14), 1304–1309 (2010).
[CrossRef] [PubMed]

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

F. C. Robertson, T. S. Douglas, and E. M. Meintjes, “Motion artifact removal for functional near infrared spectroscopy: a comparison of methods,” IEEE Trans. Biomed. Eng. 57(6), 1377–1387 (2010).
[CrossRef] [PubMed]

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

J. B. Zeller, M. J. Herrmann, A. C. Ehlis, T. Polak, and A. J. Fallgatter, “Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy,” Am. J. Geriatr. Psychiatry 18(5), 433–441 (2010).
[CrossRef] [PubMed]

2009 (7)

C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol. 62(6), 338–343 (2009).
[CrossRef] [PubMed]

D. H. Burns, S. Rosendahl, D. Bandilla, O. C. Maes, H. M. Chertkow, and H. M. Schipper, “Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease,” J. Alzheimers Dis. 17(2), 391–397 (2009).
[PubMed]

Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
[CrossRef] [PubMed]

A. F. Abdelnour and T. Huppert, “Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model,” Neuroimage 46(1), 133–143 (2009).
[CrossRef] [PubMed]

L. Holper, M. Biallas, and M. Wolf, “Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study,” Neuroimage 46(4), 1105–1113 (2009).
[CrossRef] [PubMed]

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Comput. Med. Imaging Graph. 33(2), 131–139 (2009).
[CrossRef] [PubMed]

2008 (3)

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[CrossRef] [PubMed]

T. Ikegami and G. Taga, “Decrease in cortical activation during learning of a multi-joint discrete motor task,” Exp. Brain Res. 191(2), 221–236 (2008).
[CrossRef] [PubMed]

H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety 25(12), 1053–1059 (2008).
[CrossRef] [PubMed]

2007 (7)

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[CrossRef] [PubMed]

C. H. Juenger, M. Linder-Lucht, M. Wilke, S. Berweck, V. Mall, and M. Staudt, “Neuromodulation by constraint-induced movement therapy (CIMT) in congenital hemiparesis: an fMRI study,” Eur. J. Pediatr. 166, 280–9999 (2007).

H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study,” Neuropediatrics 38(3), 130–136 (2007).
[CrossRef] [PubMed]

M. Hatakenaka, I. Miyai, M. Mihara, S. Sakoda, and K. Kubota, “Frontal regions involved in learning of motor skill--A functional NIRS study,” Neuroimage 34(1), 109–116 (2007).
[CrossRef] [PubMed]

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering to reduce global interference in evoked brain activity detection: a human subject case study,” J. Biomed. Opt. 12(6), 064009 (2007).
[CrossRef] [PubMed]

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
[CrossRef] [PubMed]

Y. Xu, H. L. Graber, and R. L. Barbour, “Image correction algorithm for functional three-dimensional diffuse optical tomography brain imaging,” Appl. Opt. 46(10), 1693–1704 (2007).
[CrossRef] [PubMed]

2006 (7)

A. K. Singh and I. Dan, “Exploring the false discovery rate in multichannel NIRS,” Neuroimage 33(2), 542–549 (2006).
[CrossRef] [PubMed]

C. Julien, “The enigma of Mayer waves: Facts and models,” Cardiovasc. Res. 70(1), 12–21 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

G. Strangman, R. Goldstein, S. L. Rauch, and J. Stein, “Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature,” Arch. Phys. Med. Rehabil. 87(12Suppl 2), 12–19 (2006).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

F. Hamzei, J. Liepert, C. Dettmers, C. Weiller, and M. Rijntjes, “Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS,” Neuroimage 31(2), 710–720 (2006).
[CrossRef] [PubMed]

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[CrossRef] [PubMed]

2005 (5)

M. Izzetoglu, A. Devaraj, S. Bunce, and B. Onaral, “Motion artifact cancellation in NIR spectroscopy using Wiener filtering,” IEEE Trans. Biomed. Eng. 52(5), 934–938 (2005).
[CrossRef] [PubMed]

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[CrossRef] [PubMed]

H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10(4), 044001 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30(15), 1968–1970 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

2004 (7)

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29(3), 256–258 (2004).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson, and K. W. Horch, “Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs,” J. Hand Surg. Am. 29(4), 605–615, discussion 616–618 (2004).
[CrossRef] [PubMed]

G. Lundborg, “Commentary: residual function in peripheral nerve stumps for amputees,” Hand Surg. Am. 29(4), 616–618 (2004).
[CrossRef]

S. Chen, C. A. Bouman, and M. J. Lowe, “Clustered components analysis for functional MRI,” IEEE Trans. Med. Imaging 23(1), 85–98 (2004).
[CrossRef] [PubMed]

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
[CrossRef] [PubMed]

K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared neuroimaging,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 5333–5336 (2004).
[PubMed]

2003 (2)

M. F. Rushworth, H. Johansen-Berg, S. M. Göbel, and J. T. Devlin, “The left parietal and premotor cortices: motor attention and selection,” Neuroimage 20(Suppl 1), S89–S100 (2003).
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[CrossRef] [PubMed]

2002 (2)

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

2001 (1)

F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
[CrossRef] [PubMed]

2000 (2)

S. A. Julious, “Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design by L. Frison and S.J. Pocock, Statistics in Medicine 1992; 12: 1685-1704,” Stat. Med. 19(22), 3133–3135 (2000).
[CrossRef] [PubMed]

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[CrossRef] [PubMed]

1999 (3)

H. Burton, N. S. Abend, A. M. MacLeod, R. J. Sinclair, A. Z. Snyder, and M. E. Raichle, “Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study,” Cereb. Cortex 9(7), 662–674 (1999).
[CrossRef] [PubMed]

P. A. Gelnar, B. R. Krauss, P. R. Sheehe, N. M. Szeverenyi, and A. V. Apkarian, “A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks,” Neuroimage 10(4), 460–482 (1999).
[CrossRef] [PubMed]

M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res. 8(1), 17–25 (1999).
[CrossRef] [PubMed]

1997 (1)

S. Van Oostende, P. Van Hecke, S. Sunaert, B. Nuttin, and G. Marchal, “FMRI studies of the supplementary motor area and the premotor cortex,” Neuroimage 6(3), 181–190 (1997).
[CrossRef] [PubMed]

1996 (1)

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallett, “Cerebral structures participating in motor preparation in humans: a positron emission tomography study,” J. Neurophysiol. 75(1), 233–247 (1996).
[PubMed]

1995 (2)

K. Baudendistel, L. R. Schad, M. Friedlinger, F. Wenz, J. Schröder, and W. J. Lorenz, “Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager,” Magn. Reson. Imaging 13(5), 701–707 (1995).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22(12), 1997–2005 (1995).
[CrossRef] [PubMed]

1992 (1)

D. D. Dorfman, K. S. Berbaum, and C. E. Metz, “Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method,” Invest. Radiol. 27(9), 723–731 (1992).
[CrossRef] [PubMed]

1991 (1)

R. W. Aldhaheri, “Model order reduction via real Schur-form decomposition,” Int. J. Control 53(3), 709–716 (1991).
[CrossRef]

1975 (1)

V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna, “Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space,” J. Neurophysiol. 38(4), 871–908 (1975).
[PubMed]

Abdelnour, A. F.

A. F. Abdelnour and T. Huppert, “Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model,” Neuroimage 46(1), 133–143 (2009).
[CrossRef] [PubMed]

Abend, N. S.

H. Burton, N. S. Abend, A. M. MacLeod, R. J. Sinclair, A. Z. Snyder, and M. E. Raichle, “Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study,” Cereb. Cortex 9(7), 662–674 (1999).
[CrossRef] [PubMed]

Acuna, C.

V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna, “Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space,” J. Neurophysiol. 38(4), 871–908 (1975).
[PubMed]

Ahearn, T. S.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Aldhaheri, R. W.

R. W. Aldhaheri, “Model order reduction via real Schur-form decomposition,” Int. J. Control 53(3), 709–716 (1991).
[CrossRef]

Alexandrakis, G.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Amita, T.

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
[CrossRef] [PubMed]

Apkarian, A. V.

P. A. Gelnar, B. R. Krauss, P. R. Sheehe, N. M. Szeverenyi, and A. V. Apkarian, “A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks,” Neuroimage 10(4), 460–482 (1999).
[CrossRef] [PubMed]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Azañón, E.

E. Azañón, M. R. Longo, S. Soto-Faraco, and P. Haggard, “The posterior parietal cortex remaps touch into external space,” Curr. Biol. 20(14), 1304–1309 (2010).
[CrossRef] [PubMed]

Bandilla, D.

D. H. Burns, S. Rosendahl, D. Bandilla, O. C. Maes, H. M. Chertkow, and H. M. Schipper, “Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease,” J. Alzheimers Dis. 17(2), 391–397 (2009).
[PubMed]

Barbour, R. L.

Baudendistel, K.

K. Baudendistel, L. R. Schad, M. Friedlinger, F. Wenz, J. Schröder, and W. J. Lorenz, “Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager,” Magn. Reson. Imaging 13(5), 701–707 (1995).
[CrossRef] [PubMed]

Beaudoin, G.

M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res. 8(1), 17–25 (1999).
[CrossRef] [PubMed]

Behbehani, K.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Berbaum, K. S.

D. D. Dorfman, K. S. Berbaum, and C. E. Metz, “Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method,” Invest. Radiol. 27(9), 723–731 (1992).
[CrossRef] [PubMed]

Berweck, S.

C. H. Juenger, M. Linder-Lucht, M. Wilke, S. Berweck, V. Mall, and M. Staudt, “Neuromodulation by constraint-induced movement therapy (CIMT) in congenital hemiparesis: an fMRI study,” Eur. J. Pediatr. 166, 280–9999 (2007).

H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study,” Neuropediatrics 38(3), 130–136 (2007).
[CrossRef] [PubMed]

Biallas, M.

L. Holper, M. Biallas, and M. Wolf, “Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study,” Neuroimage 46(4), 1105–1113 (2009).
[CrossRef] [PubMed]

Boas, D. A.

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[CrossRef] [PubMed]

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29(3), 256–258 (2004).
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

Boulet, C.

M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res. 8(1), 17–25 (1999).
[CrossRef] [PubMed]

Bouman, C. A.

S. Chen, C. A. Bouman, and M. J. Lowe, “Clustered components analysis for functional MRI,” IEEE Trans. Med. Imaging 23(1), 85–98 (2004).
[CrossRef] [PubMed]

Bourgouin, P.

M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res. 8(1), 17–25 (1999).
[CrossRef] [PubMed]

Bremmer, F.

F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
[CrossRef] [PubMed]

Brennan, D.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Brooks, D. H.

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[CrossRef] [PubMed]

Brooksby, B.

Brown, E. N.

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering to reduce global interference in evoked brain activity detection: a human subject case study,” J. Biomed. Opt. 12(6), 064009 (2007).
[CrossRef] [PubMed]

Bunce, S.

M. Izzetoglu, A. Devaraj, S. Bunce, and B. Onaral, “Motion artifact cancellation in NIR spectroscopy using Wiener filtering,” IEEE Trans. Biomed. Eng. 52(5), 934–938 (2005).
[CrossRef] [PubMed]

K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared neuroimaging,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 5333–5336 (2004).
[PubMed]

Bunce, S. C.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[CrossRef] [PubMed]

Burns, D. H.

D. H. Burns, S. Rosendahl, D. Bandilla, O. C. Maes, H. M. Chertkow, and H. M. Schipper, “Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease,” J. Alzheimers Dis. 17(2), 391–397 (2009).
[PubMed]

Burton, H.

H. Burton, N. S. Abend, A. M. MacLeod, R. J. Sinclair, A. Z. Snyder, and M. E. Raichle, “Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study,” Cereb. Cortex 9(7), 662–674 (1999).
[CrossRef] [PubMed]

Cavanagh, J.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Chappell, M.

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

Chen, L. M.

E. A. Stringer, L. M. Chen, R. M. Friedman, C. Gatenby, and J. C. Gore, “Differentiation of somatosensory cortices by high-resolution fMRI at 7 T,” Neuroimage 54(2), 1012–1020 (2011).
[CrossRef] [PubMed]

Chen, S.

S. Chen, C. A. Bouman, and M. J. Lowe, “Clustered components analysis for functional MRI,” IEEE Trans. Med. Imaging 23(1), 85–98 (2004).
[CrossRef] [PubMed]

Chertkow, H. M.

D. H. Burns, S. Rosendahl, D. Bandilla, O. C. Maes, H. M. Chertkow, and H. M. Schipper, “Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease,” J. Alzheimers Dis. 17(2), 391–397 (2009).
[PubMed]

Choi, J. H.

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
[CrossRef] [PubMed]

Clegg, N. J.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Condon, B.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Culver, J. P.

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29(3), 256–258 (2004).
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Dan, I.

A. K. Singh and I. Dan, “Exploring the false discovery rate in multichannel NIRS,” Neuroimage 33(2), 542–549 (2006).
[CrossRef] [PubMed]

De Lathauwer, L.

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
[CrossRef] [PubMed]

Dehghani, H.

Deiber, M. P.

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallett, “Cerebral structures participating in motor preparation in humans: a positron emission tomography study,” J. Neurophysiol. 75(1), 233–247 (1996).
[PubMed]

Delgado, M. R.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Dettmers, C.

F. Hamzei, J. Liepert, C. Dettmers, C. Weiller, and M. Rijntjes, “Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS,” Neuroimage 31(2), 710–720 (2006).
[CrossRef] [PubMed]

Devaraj, A.

M. Izzetoglu, A. Devaraj, S. Bunce, and B. Onaral, “Motion artifact cancellation in NIR spectroscopy using Wiener filtering,” IEEE Trans. Biomed. Eng. 52(5), 934–938 (2005).
[CrossRef] [PubMed]

Devlin, J. T.

M. F. Rushworth, H. Johansen-Berg, S. M. Göbel, and J. T. Devlin, “The left parietal and premotor cortices: motor attention and selection,” Neuroimage 20(Suppl 1), S89–S100 (2003).
[CrossRef] [PubMed]

Dhillon, G. S.

G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson, and K. W. Horch, “Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs,” J. Hand Surg. Am. 29(4), 605–615, discussion 616–618 (2004).
[CrossRef] [PubMed]

Diamond, S. G.

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

Donahue, M. J.

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

Dorfman, D. D.

D. D. Dorfman, K. S. Berbaum, and C. E. Metz, “Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method,” Invest. Radiol. 27(9), 723–731 (1992).
[CrossRef] [PubMed]

Douglas, T. S.

F. C. Robertson, T. S. Douglas, and E. M. Meintjes, “Motion artifact removal for functional near infrared spectroscopy: a comparison of methods,” IEEE Trans. Biomed. Eng. 57(6), 1377–1387 (2010).
[CrossRef] [PubMed]

Eda, H.

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).
[CrossRef] [PubMed]

Ehlis, A. C.

J. B. Zeller, M. J. Herrmann, A. C. Ehlis, T. Polak, and A. J. Fallgatter, “Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy,” Am. J. Geriatr. Psychiatry 18(5), 433–441 (2010).
[CrossRef] [PubMed]

Fallgatter, A. J.

J. B. Zeller, M. J. Herrmann, A. C. Ehlis, T. Polak, and A. J. Fallgatter, “Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy,” Am. J. Geriatr. Psychiatry 18(5), 433–441 (2010).
[CrossRef] [PubMed]

Fantini, S.

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[CrossRef] [PubMed]

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[CrossRef] [PubMed]

Faro, S. H.

M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging 21(3), 236–240 (2011).
[CrossRef] [PubMed]

Filiaci, M.

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[CrossRef] [PubMed]

Fink, G. R.

F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
[CrossRef] [PubMed]

Franceschini, M. A.

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express 1(1), 324–336 (2010).
[CrossRef] [PubMed]

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[CrossRef] [PubMed]

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[CrossRef] [PubMed]

Friedlinger, M.

K. Baudendistel, L. R. Schad, M. Friedlinger, F. Wenz, J. Schröder, and W. J. Lorenz, “Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager,” Magn. Reson. Imaging 13(5), 701–707 (1995).
[CrossRef] [PubMed]

Friedman, R. M.

E. A. Stringer, L. M. Chen, R. M. Friedman, C. Gatenby, and J. C. Gore, “Differentiation of somatosensory cortices by high-resolution fMRI at 7 T,” Neuroimage 54(2), 1012–1020 (2011).
[CrossRef] [PubMed]

Fuchino, Y.

H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10(4), 044001 (2005).
[CrossRef] [PubMed]

Ganis, G.

Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
[CrossRef] [PubMed]

Gatenby, C.

E. A. Stringer, L. M. Chen, R. M. Friedman, C. Gatenby, and J. C. Gore, “Differentiation of somatosensory cortices by high-resolution fMRI at 7 T,” Neuroimage 54(2), 1012–1020 (2011).
[CrossRef] [PubMed]

Gelnar, P. A.

P. A. Gelnar, B. R. Krauss, P. R. Sheehe, N. M. Szeverenyi, and A. V. Apkarian, “A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks,” Neuroimage 10(4), 460–482 (1999).
[CrossRef] [PubMed]

Georgopoulos, A.

V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna, “Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space,” J. Neurophysiol. 38(4), 871–908 (1975).
[PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Gilster, R.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[CrossRef] [PubMed]

Göbel, S. M.

M. F. Rushworth, H. Johansen-Berg, S. M. Göbel, and J. T. Devlin, “The left parietal and premotor cortices: motor attention and selection,” Neuroimage 20(Suppl 1), S89–S100 (2003).
[CrossRef] [PubMed]

Goldstein, R.

G. Strangman, R. Goldstein, S. L. Rauch, and J. Stein, “Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature,” Arch. Phys. Med. Rehabil. 87(12Suppl 2), 12–19 (2006).
[CrossRef] [PubMed]

Gomi, Y.

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[CrossRef] [PubMed]

Gore, J. C.

E. A. Stringer, L. M. Chen, R. M. Friedman, C. Gatenby, and J. C. Gore, “Differentiation of somatosensory cortices by high-resolution fMRI at 7 T,” Neuroimage 54(2), 1012–1020 (2011).
[CrossRef] [PubMed]

Gountouna, V. E.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Graber, H. L.

Gratton, E.

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
[CrossRef] [PubMed]

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[CrossRef] [PubMed]

Gröschel, K.

C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol. 62(6), 338–343 (2009).
[CrossRef] [PubMed]

Guo, L.

K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Comput. Med. Imaging Graph. 33(2), 131–139 (2009).
[CrossRef] [PubMed]

Habermehl, C.

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Hadley, D. M.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Haggard, P.

E. Azañón, M. R. Longo, S. Soto-Faraco, and P. Haggard, “The posterior parietal cortex remaps touch into external space,” Curr. Biol. 20(14), 1304–1309 (2010).
[CrossRef] [PubMed]

Hall, J.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Hallett, M.

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallett, “Cerebral structures participating in motor preparation in humans: a positron emission tomography study,” J. Neurophysiol. 75(1), 233–247 (1996).
[PubMed]

Hamzei, F.

F. Hamzei, J. Liepert, C. Dettmers, C. Weiller, and M. Rijntjes, “Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS,” Neuroimage 31(2), 710–720 (2006).
[CrossRef] [PubMed]

Hatakenaka, M.

M. Hatakenaka, I. Miyai, M. Mihara, S. Sakoda, and K. Kubota, “Frontal regions involved in learning of motor skill--A functional NIRS study,” Neuroimage 34(1), 109–116 (2007).
[CrossRef] [PubMed]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Hendrikse, J.

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

Herrmann, M. J.

J. B. Zeller, M. J. Herrmann, A. C. Ehlis, T. Polak, and A. J. Fallgatter, “Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy,” Am. J. Geriatr. Psychiatry 18(5), 433–441 (2010).
[CrossRef] [PubMed]

Hershey, B. L.

M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging 21(3), 236–240 (2011).
[CrossRef] [PubMed]

Hiwatari, M.

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[CrossRef] [PubMed]

Hoffmann, K.

F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
[CrossRef] [PubMed]

Hoge, R. D.

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

Holper, L.

L. Holper, F. Scholkmann, D. E. Shalóm, and M. Wolf, “Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study,” Cortex (2011).
[CrossRef] [PubMed]

L. Holper, M. Biallas, and M. Wolf, “Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study,” Neuroimage 46(4), 1105–1113 (2009).
[CrossRef] [PubMed]

Holtze, S.

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Hoogduin, H.

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

Horch, K. W.

G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson, and K. W. Horch, “Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs,” J. Hand Surg. Am. 29(4), 605–615, discussion 616–618 (2004).
[CrossRef] [PubMed]

Huppert, T.

A. F. Abdelnour and T. Huppert, “Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model,” Neuroimage 46(1), 133–143 (2009).
[CrossRef] [PubMed]

Huppert, T. J.

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

Hutchinson, D. T.

G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson, and K. W. Horch, “Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs,” J. Hand Surg. Am. 29(4), 605–615, discussion 616–618 (2004).
[CrossRef] [PubMed]

Ibañez, V.

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallett, “Cerebral structures participating in motor preparation in humans: a positron emission tomography study,” J. Neurophysiol. 75(1), 233–247 (1996).
[PubMed]

Ikegami, T.

T. Ikegami and G. Taga, “Decrease in cortical activation during learning of a multi-joint discrete motor task,” Exp. Brain Res. 191(2), 221–236 (2008).
[CrossRef] [PubMed]

Imai, I.

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[CrossRef] [PubMed]

Ishikawa, A.

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
[CrossRef] [PubMed]

Ito, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22(12), 1997–2005 (1995).
[CrossRef] [PubMed]

Izzetoglu, K.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[CrossRef] [PubMed]

K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared neuroimaging,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 5333–5336 (2004).
[PubMed]

Izzetoglu, M.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[CrossRef] [PubMed]

M. Izzetoglu, A. Devaraj, S. Bunce, and B. Onaral, “Motion artifact cancellation in NIR spectroscopy using Wiener filtering,” IEEE Trans. Biomed. Eng. 52(5), 934–938 (2005).
[CrossRef] [PubMed]

K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared neuroimaging,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 5333–5336 (2004).
[PubMed]

Jansen, O.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[CrossRef] [PubMed]

Jezzard, P.

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

Jiang, S.

Job, D. E.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Johansen-Berg, H.

M. F. Rushworth, H. Johansen-Berg, S. M. Göbel, and J. T. Devlin, “The left parietal and premotor cortices: motor attention and selection,” Neuroimage 20(Suppl 1), S89–S100 (2003).
[CrossRef] [PubMed]

Joseph, D. K.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

Juenger, C. H.

C. H. Juenger, M. Linder-Lucht, M. Wilke, S. Berweck, V. Mall, and M. Staudt, “Neuromodulation by constraint-induced movement therapy (CIMT) in congenital hemiparesis: an fMRI study,” Eur. J. Pediatr. 166, 280–9999 (2007).

Juenger, H.

H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study,” Neuropediatrics 38(3), 130–136 (2007).
[CrossRef] [PubMed]

Julien, C.

C. Julien, “The enigma of Mayer waves: Facts and models,” Cardiovasc. Res. 70(1), 12–21 (2006).
[CrossRef] [PubMed]

Julious, S. A.

S. A. Julious, “Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design by L. Frison and S.J. Pocock, Statistics in Medicine 1992; 12: 1685-1704,” Stat. Med. 19(22), 3133–3135 (2000).
[CrossRef] [PubMed]

Kastrup, A.

C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol. 62(6), 338–343 (2009).
[CrossRef] [PubMed]

Kato, H.

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[CrossRef] [PubMed]

Katura, T.

H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10(4), 044001 (2005).
[CrossRef] [PubMed]

Khan, B.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Khorrami, M. S.

M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging 21(3), 236–240 (2011).
[CrossRef] [PubMed]

Kiguchi, M.

H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10(4), 044001 (2005).
[CrossRef] [PubMed]

Koch, S. P.

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Kogel, C.

Kohno, S.

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
[CrossRef] [PubMed]

Koizumi, H.

H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10(4), 044001 (2005).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22(12), 1997–2005 (1995).
[CrossRef] [PubMed]

Konishi, I.

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).
[CrossRef] [PubMed]

Krauss, B. R.

P. A. Gelnar, B. R. Krauss, P. R. Sheehe, N. M. Szeverenyi, and A. V. Apkarian, “A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks,” Neuroimage 10(4), 460–482 (1999).
[CrossRef] [PubMed]

Kubischik, M.

F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
[CrossRef] [PubMed]

Kubota, K.

M. Hatakenaka, I. Miyai, M. Mihara, S. Sakoda, and K. Kubota, “Frontal regions involved in learning of motor skill--A functional NIRS study,” Neuroimage 34(1), 109–116 (2007).
[CrossRef] [PubMed]

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).
[CrossRef] [PubMed]

Kuhtz-Buschbeck, J. P.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[CrossRef] [PubMed]

Lawrence, S. M.

G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson, and K. W. Horch, “Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs,” J. Hand Surg. Am. 29(4), 605–615, discussion 616–618 (2004).
[CrossRef] [PubMed]

Lawrie, S. M.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Lemmerling, P.

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
[CrossRef] [PubMed]

Lepage, M.

M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res. 8(1), 17–25 (1999).
[CrossRef] [PubMed]

Li, A.

Li, G.

K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Comput. Med. Imaging Graph. 33(2), 131–139 (2009).
[CrossRef] [PubMed]

Li, K.

K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Comput. Med. Imaging Graph. 33(2), 131–139 (2009).
[CrossRef] [PubMed]

Lidicker, J.

M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging 21(3), 236–240 (2011).
[CrossRef] [PubMed]

Liepert, J.

F. Hamzei, J. Liepert, C. Dettmers, C. Weiller, and M. Rijntjes, “Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS,” Neuroimage 31(2), 710–720 (2006).
[CrossRef] [PubMed]

Linder-Lucht, M.

C. H. Juenger, M. Linder-Lucht, M. Wilke, S. Berweck, V. Mall, and M. Staudt, “Neuromodulation by constraint-induced movement therapy (CIMT) in congenital hemiparesis: an fMRI study,” Eur. J. Pediatr. 166, 280–9999 (2007).

H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study,” Neuropediatrics 38(3), 130–136 (2007).
[CrossRef] [PubMed]

Liu, H.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Liu, T.

K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Comput. Med. Imaging Graph. 33(2), 131–139 (2009).
[CrossRef] [PubMed]

Longo, M. R.

E. Azañón, M. R. Longo, S. Soto-Faraco, and P. Haggard, “The posterior parietal cortex remaps touch into external space,” Curr. Biol. 20(14), 1304–1309 (2010).
[CrossRef] [PubMed]

Lorenz, W. J.

K. Baudendistel, L. R. Schad, M. Friedlinger, F. Wenz, J. Schröder, and W. J. Lorenz, “Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager,” Magn. Reson. Imaging 13(5), 701–707 (1995).
[CrossRef] [PubMed]

Lowe, M. J.

S. Chen, C. A. Bouman, and M. J. Lowe, “Clustered components analysis for functional MRI,” IEEE Trans. Med. Imaging 23(1), 85–98 (2004).
[CrossRef] [PubMed]

Luijten, P. R.

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

Lundborg, G.

G. Lundborg, “Commentary: residual function in peripheral nerve stumps for amputees,” Hand Surg. Am. 29(4), 616–618 (2004).
[CrossRef]

Lymer, G. K.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Lynch, J. C.

V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna, “Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space,” J. Neurophysiol. 38(4), 871–908 (1975).
[PubMed]

MacLeod, A. M.

H. Burton, N. S. Abend, A. M. MacLeod, R. J. Sinclair, A. Z. Snyder, and M. E. Raichle, “Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study,” Cereb. Cortex 9(7), 662–674 (1999).
[CrossRef] [PubMed]

Maes, O. C.

D. H. Burns, S. Rosendahl, D. Bandilla, O. C. Maes, H. M. Chertkow, and H. M. Schipper, “Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease,” J. Alzheimers Dis. 17(2), 391–397 (2009).
[PubMed]

Maki, A.

H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10(4), 044001 (2005).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22(12), 1997–2005 (1995).
[CrossRef] [PubMed]

Mall, V.

H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study,” Neuropediatrics 38(3), 130–136 (2007).
[CrossRef] [PubMed]

C. H. Juenger, M. Linder-Lucht, M. Wilke, S. Berweck, V. Mall, and M. Staudt, “Neuromodulation by constraint-induced movement therapy (CIMT) in congenital hemiparesis: an fMRI study,” Eur. J. Pediatr. 166, 280–9999 (2007).

Marcantoni, W.

M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res. 8(1), 17–25 (1999).
[CrossRef] [PubMed]

Marchal, G.

S. Van Oostende, P. Van Hecke, S. Sunaert, B. Nuttin, and G. Marchal, “FMRI studies of the supplementary motor area and the premotor cortex,” Neuroimage 6(3), 181–190 (1997).
[CrossRef] [PubMed]

Marshall, I.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Mayanagi, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22(12), 1997–2005 (1995).
[CrossRef] [PubMed]

McGonigle, D. J.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

McIntosh, A. M.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Mehnert, J.

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Meintjes, E. M.

F. C. Robertson, T. S. Douglas, and E. M. Meintjes, “Motion artifact removal for functional near infrared spectroscopy: a comparison of methods,” IEEE Trans. Biomed. Eng. 57(6), 1377–1387 (2010).
[CrossRef] [PubMed]

Mesquita, R. C.

Metz, C. E.

D. D. Dorfman, K. S. Berbaum, and C. E. Metz, “Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method,” Invest. Radiol. 27(9), 723–731 (1992).
[CrossRef] [PubMed]

Michalos, A.

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[CrossRef] [PubMed]

Mihara, M.

M. Hatakenaka, I. Miyai, M. Mihara, S. Sakoda, and K. Kubota, “Frontal regions involved in learning of motor skill--A functional NIRS study,” Neuroimage 34(1), 109–116 (2007).
[CrossRef] [PubMed]

Miller, E. L.

Mimura, M.

H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety 25(12), 1053–1059 (2008).
[CrossRef] [PubMed]

Miyai, I.

M. Hatakenaka, I. Miyai, M. Mihara, S. Sakoda, and K. Kubota, “Frontal regions involved in learning of motor skill--A functional NIRS study,” Neuroimage 34(1), 109–116 (2007).
[CrossRef] [PubMed]

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
[CrossRef] [PubMed]

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).
[CrossRef] [PubMed]

Mohamed, F. B.

M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging 21(3), 236–240 (2011).
[CrossRef] [PubMed]

Moonat, S.

M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging 21(3), 236–240 (2011).
[CrossRef] [PubMed]

Moorhead, T. W.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Morren, G.

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
[CrossRef] [PubMed]

Mountcastle, V. B.

V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna, “Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space,” J. Neurophysiol. 38(4), 871–908 (1975).
[PubMed]

Murray, A. D.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Nakagome, K.

H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety 25(12), 1053–1059 (2008).
[CrossRef] [PubMed]

Nie, J.

K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Comput. Med. Imaging Graph. 33(2), 131–139 (2009).
[CrossRef] [PubMed]

Nuttin, B.

S. Van Oostende, P. Van Hecke, S. Sunaert, B. Nuttin, and G. Marchal, “FMRI studies of the supplementary motor area and the premotor cortex,” Neuroimage 6(3), 181–190 (1997).
[CrossRef] [PubMed]

O’Brien, I.

M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res. 8(1), 17–25 (1999).
[CrossRef] [PubMed]

Obrig, H.

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Oda, I.

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
[CrossRef] [PubMed]

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).
[CrossRef] [PubMed]

Ohta, H.

H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety 25(12), 1053–1059 (2008).
[CrossRef] [PubMed]

Onaral, B.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[CrossRef] [PubMed]

M. Izzetoglu, A. Devaraj, S. Bunce, and B. Onaral, “Motion artifact cancellation in NIR spectroscopy using Wiener filtering,” IEEE Trans. Biomed. Eng. 52(5), 934–938 (2005).
[CrossRef] [PubMed]

K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared neuroimaging,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 5333–5336 (2004).
[PubMed]

Paulsen, K. D.

Petridou, N.

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

Petrovitch, A.

C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol. 62(6), 338–343 (2009).
[CrossRef] [PubMed]

Pogue, B. W.

Polak, T.

J. B. Zeller, M. J. Herrmann, A. C. Ehlis, T. Polak, and A. J. Fallgatter, “Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy,” Am. J. Geriatr. Psychiatry 18(5), 433–441 (2010).
[CrossRef] [PubMed]

Poplack, S. P.

Pourrezaei, K.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[CrossRef] [PubMed]

K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared neuroimaging,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 5333–5336 (2004).
[PubMed]

Raichle, M. E.

H. Burton, N. S. Abend, A. M. MacLeod, R. J. Sinclair, A. Z. Snyder, and M. E. Raichle, “Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study,” Cereb. Cortex 9(7), 662–674 (1999).
[CrossRef] [PubMed]

Rauch, S. L.

G. Strangman, R. Goldstein, S. L. Rauch, and J. Stein, “Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature,” Arch. Phys. Med. Rehabil. 87(12Suppl 2), 12–19 (2006).
[CrossRef] [PubMed]

Reid, D.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Richer, F.

M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res. 8(1), 17–25 (1999).
[CrossRef] [PubMed]

Rijntjes, M.

F. Hamzei, J. Liepert, C. Dettmers, C. Weiller, and M. Rijntjes, “Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS,” Neuroimage 31(2), 710–720 (2006).
[CrossRef] [PubMed]

Ringer, T.

C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol. 62(6), 338–343 (2009).
[CrossRef] [PubMed]

Robertson, F. C.

F. C. Robertson, T. S. Douglas, and E. M. Meintjes, “Motion artifact removal for functional near infrared spectroscopy: a comparison of methods,” IEEE Trans. Biomed. Eng. 57(6), 1377–1387 (2010).
[CrossRef] [PubMed]

Romero, M. I.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Rosendahl, S.

D. H. Burns, S. Rosendahl, D. Bandilla, O. C. Maes, H. M. Chertkow, and H. M. Schipper, “Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease,” J. Alzheimers Dis. 17(2), 391–397 (2009).
[PubMed]

Rushworth, M. F.

M. F. Rushworth, H. Johansen-Berg, S. M. Göbel, and J. T. Devlin, “The left parietal and premotor cortices: motor attention and selection,” Neuroimage 20(Suppl 1), S89–S100 (2003).
[CrossRef] [PubMed]

Sadato, N.

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallett, “Cerebral structures participating in motor preparation in humans: a positron emission tomography study,” J. Neurophysiol. 75(1), 233–247 (1996).
[PubMed]

Sakata, H.

V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna, “Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space,” J. Neurophysiol. 38(4), 871–908 (1975).
[PubMed]

Sakoda, S.

M. Hatakenaka, I. Miyai, M. Mihara, S. Sakoda, and K. Kubota, “Frontal regions involved in learning of motor skill--A functional NIRS study,” Neuroimage 34(1), 109–116 (2007).
[CrossRef] [PubMed]

Sato, H.

H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10(4), 044001 (2005).
[CrossRef] [PubMed]

Schad, L. R.

K. Baudendistel, L. R. Schad, M. Friedlinger, F. Wenz, J. Schröder, and W. J. Lorenz, “Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager,” Magn. Reson. Imaging 13(5), 701–707 (1995).
[CrossRef] [PubMed]

Schipper, H. M.

D. H. Burns, S. Rosendahl, D. Bandilla, O. C. Maes, H. M. Chertkow, and H. M. Schipper, “Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease,” J. Alzheimers Dis. 17(2), 391–397 (2009).
[PubMed]

Schlack, A.

F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
[CrossRef] [PubMed]

Schmitz, C. H.

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Schnaudigel, S.

C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol. 62(6), 338–343 (2009).
[CrossRef] [PubMed]

Scholkmann, F.

L. Holper, F. Scholkmann, D. E. Shalóm, and M. Wolf, “Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study,” Cortex (2011).
[CrossRef] [PubMed]

Schröder, J.

K. Baudendistel, L. R. Schad, M. Friedlinger, F. Wenz, J. Schröder, and W. J. Lorenz, “Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager,” Magn. Reson. Imaging 13(5), 701–707 (1995).
[CrossRef] [PubMed]

Seiyama, A.

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
[CrossRef] [PubMed]

Seshadri, A.

M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging 21(3), 236–240 (2011).
[CrossRef] [PubMed]

Shah, N. J.

F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
[CrossRef] [PubMed]

Shalóm, D. E.

L. Holper, F. Scholkmann, D. E. Shalóm, and M. Wolf, “Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study,” Cortex (2011).
[CrossRef] [PubMed]

Sheehe, P. R.

P. A. Gelnar, B. R. Krauss, P. R. Sheehe, N. M. Szeverenyi, and A. V. Apkarian, “A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks,” Neuroimage 10(4), 460–482 (1999).
[CrossRef] [PubMed]

Shimizu, K.

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
[CrossRef] [PubMed]

Shimoda, N.

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[CrossRef] [PubMed]

Siebner, H.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[CrossRef] [PubMed]

Siero, J. C.

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

Sinclair, R. J.

H. Burton, N. S. Abend, A. M. MacLeod, R. J. Sinclair, A. Z. Snyder, and M. E. Raichle, “Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study,” Cereb. Cortex 9(7), 662–674 (1999).
[CrossRef] [PubMed]

Singh, A. K.

A. K. Singh and I. Dan, “Exploring the false discovery rate in multichannel NIRS,” Neuroimage 33(2), 542–549 (2006).
[CrossRef] [PubMed]

Smith, L.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Smith, S. M.

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

Snyder, A. Z.

H. Burton, N. S. Abend, A. M. MacLeod, R. J. Sinclair, A. Z. Snyder, and M. E. Raichle, “Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study,” Cereb. Cortex 9(7), 662–674 (1999).
[CrossRef] [PubMed]

Soto-Faraco, S.

E. Azañón, M. R. Longo, S. Soto-Faraco, and P. Haggard, “The posterior parietal cortex remaps touch into external space,” Curr. Biol. 20(14), 1304–1309 (2010).
[CrossRef] [PubMed]

Srinivasan, S.

Staudt, M.

H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study,” Neuropediatrics 38(3), 130–136 (2007).
[CrossRef] [PubMed]

C. H. Juenger, M. Linder-Lucht, M. Wilke, S. Berweck, V. Mall, and M. Staudt, “Neuromodulation by constraint-induced movement therapy (CIMT) in congenital hemiparesis: an fMRI study,” Eur. J. Pediatr. 166, 280–9999 (2007).

Steele, J. D.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Stein, J.

G. Strangman, R. Goldstein, S. L. Rauch, and J. Stein, “Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature,” Arch. Phys. Med. Rehabil. 87(12Suppl 2), 12–19 (2006).
[CrossRef] [PubMed]

Steinbrink, J.

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Strangman, G.

G. Strangman, R. Goldstein, S. L. Rauch, and J. Stein, “Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature,” Arch. Phys. Med. Rehabil. 87(12Suppl 2), 12–19 (2006).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

Strangman, G. E.

Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
[CrossRef] [PubMed]

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering to reduce global interference in evoked brain activity detection: a human subject case study,” J. Biomed. Opt. 12(6), 064009 (2007).
[CrossRef] [PubMed]

Stringer, E. A.

E. A. Stringer, L. M. Chen, R. M. Friedman, C. Gatenby, and J. C. Gore, “Differentiation of somatosensory cortices by high-resolution fMRI at 7 T,” Neuroimage 54(2), 1012–1020 (2011).
[CrossRef] [PubMed]

Sunaert, S.

S. Van Oostende, P. Van Hecke, S. Sunaert, B. Nuttin, and G. Marchal, “FMRI studies of the supplementary motor area and the premotor cortex,” Neuroimage 6(3), 181–190 (1997).
[CrossRef] [PubMed]

Suzuki, T.

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).
[CrossRef] [PubMed]

Szeverenyi, N. M.

P. A. Gelnar, B. R. Krauss, P. R. Sheehe, N. M. Szeverenyi, and A. V. Apkarian, “A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks,” Neuroimage 10(4), 460–482 (1999).
[CrossRef] [PubMed]

Taga, G.

T. Ikegami and G. Taga, “Decrease in cortical activation during learning of a multi-joint discrete motor task,” Exp. Brain Res. 191(2), 221–236 (2008).
[CrossRef] [PubMed]

Takahashi, T.

H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety 25(12), 1053–1059 (2008).
[CrossRef] [PubMed]

Takeda, K.

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[CrossRef] [PubMed]

Terborg, C.

C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol. 62(6), 338–343 (2009).
[CrossRef] [PubMed]

Thompson, J. H.

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

Tian, F.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Tomioka, H.

H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety 25(12), 1053–1059 (2008).
[CrossRef] [PubMed]

Toronov, V.

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[CrossRef] [PubMed]

Tsuneishi, S.

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
[CrossRef] [PubMed]

Ulmer, S.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[CrossRef] [PubMed]

Van Hecke, P.

S. Van Oostende, P. Van Hecke, S. Sunaert, B. Nuttin, and G. Marchal, “FMRI studies of the supplementary motor area and the premotor cortex,” Neuroimage 6(3), 181–190 (1997).
[CrossRef] [PubMed]

Van Huffel, S.

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
[CrossRef] [PubMed]

Van Oostende, S.

S. Van Oostende, P. Van Hecke, S. Sunaert, B. Nuttin, and G. Marchal, “FMRI studies of the supplementary motor area and the premotor cortex,” Neuroimage 6(3), 181–190 (1997).
[CrossRef] [PubMed]

Villringer, A.

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Waiter, G. D.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Walther, M.

H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study,” Neuropediatrics 38(3), 130–136 (2007).
[CrossRef] [PubMed]

Wardlaw, J. M.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Watanabe, E.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22(12), 1997–2005 (1995).
[CrossRef] [PubMed]

Weaver, J.

Weiller, C.

F. Hamzei, J. Liepert, C. Dettmers, C. Weiller, and M. Rijntjes, “Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS,” Neuroimage 31(2), 710–720 (2006).
[CrossRef] [PubMed]

Wenz, F.

K. Baudendistel, L. R. Schad, M. Friedlinger, F. Wenz, J. Schröder, and W. J. Lorenz, “Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager,” Magn. Reson. Imaging 13(5), 701–707 (1995).
[CrossRef] [PubMed]

Whalley, H. C.

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

Wilke, M.

C. H. Juenger, M. Linder-Lucht, M. Wilke, S. Berweck, V. Mall, and M. Staudt, “Neuromodulation by constraint-induced movement therapy (CIMT) in congenital hemiparesis: an fMRI study,” Eur. J. Pediatr. 166, 280–9999 (2007).

Witte, O. W.

C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol. 62(6), 338–343 (2009).
[CrossRef] [PubMed]

Wolf, M.

L. Holper, F. Scholkmann, D. E. Shalóm, and M. Wolf, “Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study,” Cortex (2011).
[CrossRef] [PubMed]

L. Holper, M. Biallas, and M. Wolf, “Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study,” Neuroimage 46(4), 1105–1113 (2009).
[CrossRef] [PubMed]

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
[CrossRef] [PubMed]

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[CrossRef] [PubMed]

Wolf, U.

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
[CrossRef] [PubMed]

Wolff, S.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[CrossRef] [PubMed]

Xu, Y.

Yagura, H.

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).
[CrossRef] [PubMed]

Yamagata, B.

H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety 25(12), 1053–1059 (2008).
[CrossRef] [PubMed]

Yamashita, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22(12), 1997–2005 (1995).
[CrossRef] [PubMed]

Yano, M.

H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety 25(12), 1053–1059 (2008).
[CrossRef] [PubMed]

Yoro, T.

H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10(4), 044001 (2005).
[CrossRef] [PubMed]

Zafiris, O.

F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
[CrossRef] [PubMed]

Zeller, J. B.

J. B. Zeller, M. J. Herrmann, A. C. Ehlis, T. Polak, and A. J. Fallgatter, “Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy,” Am. J. Geriatr. Psychiatry 18(5), 433–441 (2010).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
[CrossRef] [PubMed]

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering to reduce global interference in evoked brain activity detection: a human subject case study,” J. Biomed. Opt. 12(6), 064009 (2007).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29(3), 256–258 (2004).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[CrossRef] [PubMed]

Zilles, K.

F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
[CrossRef] [PubMed]

Am. J. Geriatr. Psychiatry (1)

J. B. Zeller, M. J. Herrmann, A. C. Ehlis, T. Polak, and A. J. Fallgatter, “Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy,” Am. J. Geriatr. Psychiatry 18(5), 433–441 (2010).
[CrossRef] [PubMed]

Ann. Neurol. (1)

I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52(2), 188–194 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

Arch. Phys. Med. Rehabil. (1)

G. Strangman, R. Goldstein, S. L. Rauch, and J. Stein, “Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature,” Arch. Phys. Med. Rehabil. 87(12Suppl 2), 12–19 (2006).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Brain Res. Cogn. Brain Res. (1)

M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res. 8(1), 17–25 (1999).
[CrossRef] [PubMed]

Cardiovasc. Res. (1)

C. Julien, “The enigma of Mayer waves: Facts and models,” Cardiovasc. Res. 70(1), 12–21 (2006).
[CrossRef] [PubMed]

Cereb. Cortex (1)

H. Burton, N. S. Abend, A. M. MacLeod, R. J. Sinclair, A. Z. Snyder, and M. E. Raichle, “Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study,” Cereb. Cortex 9(7), 662–674 (1999).
[CrossRef] [PubMed]

Comput. Med. Imaging Graph. (1)

K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Comput. Med. Imaging Graph. 33(2), 131–139 (2009).
[CrossRef] [PubMed]

Conf. Proc. IEEE Eng. Med. Biol. Soc. (1)

K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared neuroimaging,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 5333–5336 (2004).
[PubMed]

Cortex (1)

L. Holper, F. Scholkmann, D. E. Shalóm, and M. Wolf, “Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study,” Cortex (2011).
[CrossRef] [PubMed]

Curr. Biol. (1)

E. Azañón, M. R. Longo, S. Soto-Faraco, and P. Haggard, “The posterior parietal cortex remaps touch into external space,” Curr. Biol. 20(14), 1304–1309 (2010).
[CrossRef] [PubMed]

Depress. Anxiety (1)

H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety 25(12), 1053–1059 (2008).
[CrossRef] [PubMed]

Eur. J. Pediatr. (1)

C. H. Juenger, M. Linder-Lucht, M. Wilke, S. Berweck, V. Mall, and M. Staudt, “Neuromodulation by constraint-induced movement therapy (CIMT) in congenital hemiparesis: an fMRI study,” Eur. J. Pediatr. 166, 280–9999 (2007).

Eur. Neurol. (1)

C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol. 62(6), 338–343 (2009).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

T. Ikegami and G. Taga, “Decrease in cortical activation during learning of a multi-joint discrete motor task,” Exp. Brain Res. 191(2), 221–236 (2008).
[CrossRef] [PubMed]

Front Neuroenergetics (1)

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Hand Surg. Am. (1)

G. Lundborg, “Commentary: residual function in peripheral nerve stumps for amputees,” Hand Surg. Am. 29(4), 616–618 (2004).
[CrossRef]

Hum. Brain Mapp. (1)

M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011).
[CrossRef] [PubMed]

IEEE Eng. Med. Biol. Mag. (1)

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

M. Izzetoglu, A. Devaraj, S. Bunce, and B. Onaral, “Motion artifact cancellation in NIR spectroscopy using Wiener filtering,” IEEE Trans. Biomed. Eng. 52(5), 934–938 (2005).
[CrossRef] [PubMed]

F. C. Robertson, T. S. Douglas, and E. M. Meintjes, “Motion artifact removal for functional near infrared spectroscopy: a comparison of methods,” IEEE Trans. Biomed. Eng. 57(6), 1377–1387 (2010).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

S. Chen, C. A. Bouman, and M. J. Lowe, “Clustered components analysis for functional MRI,” IEEE Trans. Med. Imaging 23(1), 85–98 (2004).
[CrossRef] [PubMed]

Int. J. Control (1)

R. W. Aldhaheri, “Model order reduction via real Schur-form decomposition,” Int. J. Control 53(3), 709–716 (1991).
[CrossRef]

Invest. Radiol. (1)

D. D. Dorfman, K. S. Berbaum, and C. E. Metz, “Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method,” Invest. Radiol. 27(9), 723–731 (1992).
[CrossRef] [PubMed]

J. Alzheimers Dis. (1)

D. H. Burns, S. Rosendahl, D. Bandilla, O. C. Maes, H. M. Chertkow, and H. M. Schipper, “Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease,” J. Alzheimers Dis. 17(2), 391–397 (2009).
[PubMed]

J. Biomed. Opt. (6)

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering to reduce global interference in evoked brain activity detection: a human subject case study,” J. Biomed. Opt. 12(6), 064009 (2007).
[CrossRef] [PubMed]

H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt. 10(4), 044001 (2005).
[CrossRef] [PubMed]

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt. 12(6), 062111 (2007).
[CrossRef] [PubMed]

J. Hand Surg. Am. (1)

G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson, and K. W. Horch, “Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs,” J. Hand Surg. Am. 29(4), 605–615, discussion 616–618 (2004).
[CrossRef] [PubMed]

J. Neuroimaging (1)

M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging 21(3), 236–240 (2011).
[CrossRef] [PubMed]

J. Neurophysiol. (2)

M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallett, “Cerebral structures participating in motor preparation in humans: a positron emission tomography study,” J. Neurophysiol. 75(1), 233–247 (1996).
[PubMed]

V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna, “Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space,” J. Neurophysiol. 38(4), 871–908 (1975).
[PubMed]

Magn. Reson. Imaging (1)

K. Baudendistel, L. R. Schad, M. Friedlinger, F. Wenz, J. Schröder, and W. J. Lorenz, “Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager,” Magn. Reson. Imaging 13(5), 701–707 (1995).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004).
[CrossRef] [PubMed]

Med. Phys. (2)

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22(12), 1997–2005 (1995).
[CrossRef] [PubMed]

V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys. 27(4), 801–815 (2000).
[CrossRef] [PubMed]

Neuroimage (15)

Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
[CrossRef] [PubMed]

A. F. Abdelnour and T. Huppert, “Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model,” Neuroimage 46(1), 133–143 (2009).
[CrossRef] [PubMed]

M. Hatakenaka, I. Miyai, M. Mihara, S. Sakoda, and K. Kubota, “Frontal regions involved in learning of motor skill--A functional NIRS study,” Neuroimage 34(1), 109–116 (2007).
[CrossRef] [PubMed]

L. Holper, M. Biallas, and M. Wolf, “Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study,” Neuroimage 46(4), 1105–1113 (2009).
[CrossRef] [PubMed]

F. Hamzei, J. Liepert, C. Dettmers, C. Weiller, and M. Rijntjes, “Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS,” Neuroimage 31(2), 710–720 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002).
[CrossRef] [PubMed]

A. K. Singh and I. Dan, “Exploring the false discovery rate in multichannel NIRS,” Neuroimage 33(2), 542–549 (2006).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

P. A. Gelnar, B. R. Krauss, P. R. Sheehe, N. M. Szeverenyi, and A. V. Apkarian, “A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks,” Neuroimage 10(4), 460–482 (1999).
[CrossRef] [PubMed]

S. Van Oostende, P. Van Hecke, S. Sunaert, B. Nuttin, and G. Marchal, “FMRI studies of the supplementary motor area and the premotor cortex,” Neuroimage 6(3), 181–190 (1997).
[CrossRef] [PubMed]

M. F. Rushworth, H. Johansen-Berg, S. M. Göbel, and J. T. Devlin, “The left parietal and premotor cortices: motor attention and selection,” Neuroimage 20(Suppl 1), S89–S100 (2003).
[CrossRef] [PubMed]

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[CrossRef] [PubMed]

V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage 49(1), 552–560 (2010).
[CrossRef] [PubMed]

E. A. Stringer, L. M. Chen, R. M. Friedman, C. Gatenby, and J. C. Gore, “Differentiation of somatosensory cortices by high-resolution fMRI at 7 T,” Neuroimage 54(2), 1012–1020 (2011).
[CrossRef] [PubMed]

Neuron (1)

F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron 29(1), 287–296 (2001).
[CrossRef] [PubMed]

Neuropediatrics (1)

H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study,” Neuropediatrics 38(3), 130–136 (2007).
[CrossRef] [PubMed]

Neurosci. Res. (1)

K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy,” Neurosci. Res. 59(2), 136–144 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (1)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Psychophysiology (1)

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[CrossRef] [PubMed]

Stat. Med. (1)

S. A. Julious, “Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design by L. Frison and S.J. Pocock, Statistics in Medicine 1992; 12: 1685-1704,” Stat. Med. 19(22), 3133–3135 (2000).
[CrossRef] [PubMed]

Other (1)

J. Azpiroz, F. A. Barrios, M. Carrillo, R. Carrillo, A. Cerrato, J. Hernandez, R. S. Leder, A. O. Rodriguez, and P. Salgado, “Game motivated and constraint induced therapy in late stroke with fMRI studies pre and post therapy,” in 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005 (IEEE, 2005), Vols. 1–7, pp. 3695–3698.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The stand constructed to relieve the subjects from supporting the entire weight of the fibers. In addition, a soft yet sturdy holder was made to hold the fibers in place on top of the subject’s head with good optical contact. (b) Bifurcated fiber bundle source-detector geometry where the ‘X’ symbols are detectors, and the ‘O’ symbols are sources, covering a 12 x 8.4 cm FOV. The encircled areas (black ovals) indicate the short distance source-detector pairs used to detect scalp hemodynamics.

Fig. 2
Fig. 2

(a) Flowchart of the algorithm used to remove source-detector pairs with low SNR due to poor optical contact. (b) In time-averaged activation images produced with data from the remaining source-detector pairs [panel (1)], pixel-wise T-tests were performed with corresponding baseline values to identify regions of activation [panel (2)]. Subsequently, source-detector pairs (connected solid circles) were clustered according to their similarity in temporal activation patterns [panel (3); S1/PPC – blue, M1/S1 – red]. Panel (4) shows cluster-averaged time-series data for activation in the M1/S1 region (red curve) and the S1/PPC region (blue curve).

Fig. 3
Fig. 3

HbO activation images, having color scales in µMolar, were time-averaged between 5 – 20 s for each task on both visits for all three subjects. The white dashed lines were used to approximately separate the PMC/SMA, M1, S1, and PPC cortical regions, as identified on the far right edge of the figure.

Fig. 4
Fig. 4

A time series of HbO activation images for Subject 1, having color scales in µMolar, were time-averaged for every 5 s block over a 30 s period of 15 s stimulation – 15 s rest for a single subject performing all five protocols The white, dashed lines were used to differentiate between the PMC/SMA, M1, S1, and PPC cortical regions, as identified on the far right edge of the figure.

Fig. 5
Fig. 5

T-maps and clustered source-detector maps for HbO (left columns) and Hb (right columns) for Subject 1 performing the finger tapping, sensory stimulation, and palm squeezing protocols (rows). The white dashed lines indicate approximate boundaries for the PMC/SMA, M1, S1, and PPC regions. The connected circles in the cluster maps indicate the source-detector pairs that CCA grouped in the same cluster as they had similar time-series activation profiles [Tapping: M1/S1 – red, S1/PPC – blue; Sensory Stimulation: S1/PPC – blue; Palm Squeezing: M1/S1 – red; S1/PPC – blue].

Fig. 6
Fig. 6

HbO T-maps and clustered source-detector maps for sequential finger tapping (left columns) and card flipping (right columns) for each Subject (rows). The white dashed lines indicate approximate boundaries for the PMC/SMA, M1, S1, and PPC regions. The connected circles in the cluster maps indicate the source-detector pairs that CCA grouped in the same cluster as they had similar time-series activation profiles [Sequential Tapping: M1 – red, S1/PPC and SMA/PMC – blue; Card Flipping: M1 and SMA/PMC – red, S1/PPC – blue].

Fig. 7
Fig. 7

Group analysis T-maps and the clustered fNIR signals for sequential tapping and card flipping. The white dashed lines were used to approximately separate the PMC/SMA, M1, S1, and PPC regions. The connected circles in the cluster maps indicate the source-detector pairs that CCA grouped in the same cluster as they had similar time-series activation profiles [Sequential Tapping: M1/S1 – red, S1/PPC and M1/PMC/SMA – blue; Card Flipping: M1/SMA/PMC – red, S1/PPC - blue.

Tables (2)

Tables Icon

Table 1 Summary of the HbO activated cortical regions and their TtPs for each protocol

Tables Icon

Table 2 Summary of the HbO activated cortical regions and their durations for each protocol

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

SN R s,d =10×log( P s,d / P d )
CoM= X Y w x,y d x,y
y λ = A λ x λ
x λ = A λ T ( A λ T A λ +α s max I) 1 y λ = A inv,λ y λ
X λ = Y λ T A inv,λ T
X λ =(H θ λ  + v) A inv,λ T
θ λ  =  ( H T H ) 1 H T X λ A λ T
θ ~ λ = θ λ θ λ = ( H T H ) 1 H T v A inv,λ T A λ T
R sn,λ = 1 SD E[ θ λ θ λ T ]
R n,λ = 1 SD E[ θ ~ λ θ ~ λ T ]
R s,λ = R sn,λ R n,λ = U λ Λ λ U λ T
θ * λ = U λ T * θ λ
Δ[Hb] = (ε HbO λ2 ·Δ OD λ1 -ε HbO λ1 ·Δ OD λ2 ) / (L·(ε Hb λ1 ·ε HbO λ2 -ε Hb λ2 ·ε HbO λ1 ) )  
Δ[HbO] = (ε Hb λ2 ·Δ OD λ1 -ε Hb λ1 ·Δ OD λ2 ) / (L·(ε Hb λ2 ·ε HbO λ1 -ε Hb λ1 ·ε HbO λ2 ) )  

Metrics