Abstract

We here investigate polarimetric behavior of thick samples of porcine liver, Intralipid, and microsphere-based tissue phantoms whose absorption and scattering properties are matched. Using polarized light we measured reflection mode Mueller matrices and derived linear/circular/total depolarization rates, based on polar decomposition. According to our results, phantoms exhibit greater depolarization rates in the backscattering geometry than the liver sample. The enhanced tissue polarization preservation differs from previous reports of polarimetric transmission studies, with the likely cause of this difference being the angular dependence of the single-scattering phase function. Also, Intralipid approximated polarimetric liver behavior well, whereas the polystyrene phantoms did not.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7(3), 378–387 (2002).
    [CrossRef] [PubMed]
  2. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
    [CrossRef] [PubMed]
  3. M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
    [CrossRef] [PubMed]
  4. S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE6842, 68420I (2008).
    [CrossRef]
  5. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002).
    [CrossRef] [PubMed]
  6. M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
    [CrossRef] [PubMed]
  7. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
    [CrossRef] [PubMed]
  8. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
    [CrossRef]
  9. P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE6864, 686417 (2008).
    [CrossRef]
  10. J. C. Ramella-Roman and D. D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE6080, 60800M (2006).
    [CrossRef]
  11. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express18(10), 10200–10208 (2010).
    [CrossRef] [PubMed]
  12. B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther.8(2), 156–164 (2006).
    [CrossRef] [PubMed]
  13. G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng.39(7), 752–756 (1992).
    [CrossRef] [PubMed]
  14. M. F. G. Wood, N. Ghosh, X. Guo, and I. A. Vitkin, “Toward noninvasive glucose sensing using polarization analysis of multiply scattered light,” in Handbook of Optical Sensing of Gloucose in Biological Fluids and Tissues, V. V. Tuchin, ed. (CRC Press, 2008), pp. 527–558
  15. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt.31(30), 6535–6546 (1992).
    [CrossRef] [PubMed]
  16. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
    [CrossRef] [PubMed]
  17. A. D. Kim and M. Moscoso, “Influence of the relative refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(2), 026612 (2001).
    [CrossRef] [PubMed]
  18. N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066607 (2004).
    [CrossRef] [PubMed]
  19. N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A354(3), 236–242 (2006).
    [CrossRef]
  20. X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt.49(2), 153–162 (2010).
    [CrossRef] [PubMed]
  21. V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett.24(15), 1044–1046 (1999).
    [CrossRef] [PubMed]
  22. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Polarized light propagation through tissue phantoms containing densely packed scatterers,” Opt. Lett.25(4), 239–241 (2000).
    [CrossRef] [PubMed]
  23. V. Sankaran, K. Schönenberger, J. T. Walsh, and D. J. Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt.38(19), 4252–4261 (1999).
    [CrossRef] [PubMed]
  24. N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms –effect of collection geometry,” Opt. Commun.222(1-6), 93–100 (2003).
    [CrossRef]
  25. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
    [CrossRef] [PubMed]
  26. A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18(6), 5580–5594 (2010).
    [CrossRef] [PubMed]
  27. T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  28. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, NewYork,1998).
  29. M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.3(2), 109–121 (2010).
    [CrossRef]
  30. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006).
    [CrossRef] [PubMed]
  31. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
    [CrossRef] [PubMed]
  32. X. Li and G. Yao, “Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle,” Appl. Opt.48(14), 2625–2631 (2009).
    [CrossRef] [PubMed]
  33. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
    [CrossRef]
  34. S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A13(5), 1106–1113 (1996).
    [CrossRef]
  35. S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Depolarization of light in tissues of varying optical properties: a comparative study,” PLoS ONE ((submitted to).
  36. J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med.29(3), 205–212 (2001).
    [CrossRef] [PubMed]
  37. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  38. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt.37(13), 2788–2797 (1998).
    [CrossRef] [PubMed]
  39. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37(16), 3586–3593 (1998).
    [CrossRef] [PubMed]
  40. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
    [CrossRef] [PubMed]
  41. H. C. V. de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)
  42. R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, “Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation,” Appl. Opt.28(12), 2273–2279 (1989).
    [CrossRef] [PubMed]
  43. L. O. Reynolds and N. J. McCormick, “Approximation two parameter phase function for light scattering,” J. Opt. Soc. Am.70(10), 1206–1212 (1980).
    [CrossRef]

2010 (6)

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt.49(2), 153–162 (2010).
[CrossRef] [PubMed]

A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18(6), 5580–5594 (2010).
[CrossRef] [PubMed]

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.3(2), 109–121 (2010).
[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

2009 (3)

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

X. Li and G. Yao, “Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle,” Appl. Opt.48(14), 2625–2631 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

2008 (3)

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE6864, 686417 (2008).
[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE6842, 68420I (2008).
[CrossRef]

2007 (1)

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

2006 (4)

J. C. Ramella-Roman and D. D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE6080, 60800M (2006).
[CrossRef]

B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther.8(2), 156–164 (2006).
[CrossRef] [PubMed]

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A354(3), 236–242 (2006).
[CrossRef]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006).
[CrossRef] [PubMed]

2004 (1)

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066607 (2004).
[CrossRef] [PubMed]

2003 (1)

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms –effect of collection geometry,” Opt. Commun.222(1-6), 93–100 (2003).
[CrossRef]

2002 (3)

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7(3), 378–387 (2002).
[CrossRef] [PubMed]

2001 (2)

A. D. Kim and M. Moscoso, “Influence of the relative refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(2), 026612 (2001).
[CrossRef] [PubMed]

J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med.29(3), 205–212 (2001).
[CrossRef] [PubMed]

2000 (2)

1999 (2)

1998 (2)

1996 (2)

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A13(5), 1106–1113 (1996).
[CrossRef]

1994 (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

1992 (3)

G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng.39(7), 752–756 (1992).
[CrossRef] [PubMed]

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt.31(30), 6535–6546 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

1991 (1)

1989 (1)

1980 (1)

Aarnoudse, J. G.

Ahmad, M.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Depolarization of light in tissues of varying optical properties: a comparative study,” PLoS ONE ((submitted to).

Aida, T.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7(3), 378–387 (2002).
[CrossRef] [PubMed]

Alali, S.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Depolarization of light in tissues of varying optical properties: a comparative study,” PLoS ONE ((submitted to).

Antonelli, M. R.

Anumula, H.

B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther.8(2), 156–164 (2006).
[CrossRef] [PubMed]

Awasthi, A.

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE6864, 686417 (2008).
[CrossRef]

Benali, A.

Beuthan, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Bonner, R. F.

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Buddhiwant, P.

Buhr, H. J.

J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med.29(3), 205–212 (2001).
[CrossRef] [PubMed]

Cameron, B. D.

B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther.8(2), 156–164 (2006).
[CrossRef] [PubMed]

Carpenter, S.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7(3), 378–387 (2002).
[CrossRef] [PubMed]

Chipman, R. A.

Coté, G. L.

G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng.39(7), 752–756 (1992).
[CrossRef] [PubMed]

Dadani, F.

De Martino, A.

de Mul, F. F. M.

Duncan, D. D.

J. C. Ramella-Roman and D. D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE6080, 60800M (2006).
[CrossRef]

Eick, A. A.

Everett, M. J.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Fox, M. D.

G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng.39(7), 752–756 (1992).
[CrossRef] [PubMed]

Freyer, J. P.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7(3), 378–387 (2002).
[CrossRef] [PubMed]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37(16), 3586–3593 (1998).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

Gayet, B.

Germer, C. T.

J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med.29(3), 205–212 (2001).
[CrossRef] [PubMed]

Ghosh, N.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.3(2), 109–121 (2010).
[CrossRef]

X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt.49(2), 153–162 (2010).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A354(3), 236–242 (2006).
[CrossRef]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006).
[CrossRef] [PubMed]

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066607 (2004).
[CrossRef] [PubMed]

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms –effect of collection geometry,” Opt. Commun.222(1-6), 93–100 (2003).
[CrossRef]

Graaff, R.

Guerra, A.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7(3), 378–387 (2002).
[CrossRef] [PubMed]

Guo, X.

X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt.49(2), 153–162 (2010).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

Gupta, P. K.

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A354(3), 236–242 (2006).
[CrossRef]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006).
[CrossRef] [PubMed]

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066607 (2004).
[CrossRef] [PubMed]

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms –effect of collection geometry,” Opt. Commun.222(1-6), 93–100 (2003).
[CrossRef]

Gupta, S.

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066607 (2004).
[CrossRef] [PubMed]

Helfmann, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Herrig, M.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Hielscher, A. H.

Isbert, C.

J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med.29(3), 205–212 (2001).
[CrossRef] [PubMed]

Isenhath, S.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE6842, 68420I (2008).
[CrossRef]

Jacques, S. L.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE6842, 68420I (2008).
[CrossRef]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Jain, B.

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms –effect of collection geometry,” Opt. Commun.222(1-6), 93–100 (2003).
[CrossRef]

Jaiswal, V.

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066607 (2004).
[CrossRef] [PubMed]

Jentink, H. W.

Johnson, T. M.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7(3), 378–387 (2002).
[CrossRef] [PubMed]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37(16), 3586–3593 (1998).
[CrossRef] [PubMed]

Kim, A.

A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18(6), 5580–5594 (2010).
[CrossRef] [PubMed]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Depolarization of light in tissues of varying optical properties: a comparative study,” PLoS ONE ((submitted to).

Kim, A. D.

A. D. Kim and M. Moscoso, “Influence of the relative refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(2), 026612 (2001).
[CrossRef] [PubMed]

Kumar, G.

Lee, K.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE6842, 68420I (2008).
[CrossRef]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Li, R. K.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Li, S. H.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Li, X.

Lu, S.

Maitland, D. J.

Majumder, S. K.

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A354(3), 236–242 (2006).
[CrossRef]

Manhas, S.

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

McCormick, N. J.

Minet, O.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Moes, C. J. M.

Moscoso, M.

A. D. Kim and M. Moscoso, “Influence of the relative refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(2), 026612 (2001).
[CrossRef] [PubMed]

Mourant, J. R.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7(3), 378–387 (2002).
[CrossRef] [PubMed]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37(16), 3586–3593 (1998).
[CrossRef] [PubMed]

Müller, G.

J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med.29(3), 205–212 (2001).
[CrossRef] [PubMed]

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Northrop, R. B.

G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng.39(7), 752–756 (1992).
[CrossRef] [PubMed]

Novikova, T.

Pandey, P. K.

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE6864, 686417 (2008).
[CrossRef]

Patel, H. S.

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms –effect of collection geometry,” Opt. Commun.222(1-6), 93–100 (2003).
[CrossRef]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Pierangelo, A.

Pop, M.

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.3(2), 109–121 (2010).
[CrossRef]

Pradhan, A.

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE6864, 686417 (2008).
[CrossRef]

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A354(3), 236–242 (2006).
[CrossRef]

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066607 (2004).
[CrossRef] [PubMed]

Prahl, S. A.

Ramella-Roman, J. C.

J. C. Ramella-Roman and D. D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE6080, 60800M (2006).
[CrossRef]

Reynolds, L. O.

Ritz, J.-P.

J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med.29(3), 205–212 (2001).
[CrossRef] [PubMed]

Roggan, A.

J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med.29(3), 205–212 (2001).
[CrossRef] [PubMed]

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Roy, M.

Samatham, R.

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE6842, 68420I (2008).
[CrossRef]

Sankaran, V.

Schmitt, J. M.

Schönenberger, K.

Shen, D.

Shukla, P.

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE6864, 686417 (2008).
[CrossRef]

Singh, B. N.

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms –effect of collection geometry,” Opt. Commun.222(1-6), 93–100 (2003).
[CrossRef]

Singh, J.

Singh, R. P.

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066607 (2004).
[CrossRef] [PubMed]

Swami, M. K.

Validire, P.

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Vitkin, I. A.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.3(2), 109–121 (2010).
[CrossRef]

X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt.49(2), 153–162 (2010).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Depolarization of light in tissues of varying optical properties: a comparative study,” PLoS ONE ((submitted to).

Vurgun, N.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Depolarization of light in tissues of varying optical properties: a comparative study,” PLoS ONE ((submitted to).

Wallenburg, M. A.

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.3(2), 109–121 (2010).
[CrossRef]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

Walsh, J. T.

Wang, L. V.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002).
[CrossRef] [PubMed]

Wang, X.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002).
[CrossRef] [PubMed]

Weisel, R. D.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Wilson, B. C.

A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18(6), 5580–5594 (2010).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Wood, M. F. G.

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.3(2), 109–121 (2010).
[CrossRef]

X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt.49(2), 153–162 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Depolarization of light in tissues of varying optical properties: a comparative study,” PLoS ONE ((submitted to).

Wright, G. A.

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.3(2), 109–121 (2010).
[CrossRef]

Yao, G.

Appl. Opt. (8)

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt.31(30), 6535–6546 (1992).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt.49(2), 153–162 (2010).
[CrossRef] [PubMed]

V. Sankaran, K. Schönenberger, J. T. Walsh, and D. J. Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt.38(19), 4252–4261 (1999).
[CrossRef] [PubMed]

X. Li and G. Yao, “Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle,” Appl. Opt.48(14), 2625–2631 (2009).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt.37(13), 2788–2797 (1998).
[CrossRef] [PubMed]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37(16), 3586–3593 (1998).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, “Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation,” Appl. Opt.28(12), 2273–2279 (1989).
[CrossRef] [PubMed]

Diabetes Technol. Ther. (1)

B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther.8(2), 156–164 (2006).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng.39(7), 752–756 (1992).
[CrossRef] [PubMed]

J Biophotonics (1)

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

J. Biomed. Opt. (6)

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt.7(3), 378–387 (2002).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

J. Innovative Opt. Health Sci. (1)

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.3(2), 109–121 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (2)

J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med.29(3), 205–212 (2001).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Opt. Commun. (2)

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms –effect of collection geometry,” Opt. Commun.222(1-6), 93–100 (2003).
[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Lett. A (1)

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A354(3), 236–242 (2006).
[CrossRef]

Phys. Med. Biol. (1)

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

A. D. Kim and M. Moscoso, “Influence of the relative refractive index on the depolarization of multiply scattered waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(2), 026612 (2001).
[CrossRef] [PubMed]

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6), 066607 (2004).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

PLoS ONE (1)

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Depolarization of light in tissues of varying optical properties: a comparative study,” PLoS ONE ((submitted to).

Proc. SPIE (3)

S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE6842, 68420I (2008).
[CrossRef]

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE6864, 686417 (2008).
[CrossRef]

J. C. Ramella-Roman and D. D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE6080, 60800M (2006).
[CrossRef]

Other (3)

M. F. G. Wood, N. Ghosh, X. Guo, and I. A. Vitkin, “Toward noninvasive glucose sensing using polarization analysis of multiply scattered light,” in Handbook of Optical Sensing of Gloucose in Biological Fluids and Tissues, V. V. Tuchin, ed. (CRC Press, 2008), pp. 527–558

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, NewYork,1998).

H. C. V. de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of polarimetric imaging system. P1 and P2 are polarizers; QWP1 and QWP2 are removable quarter-wave plates; L1 and L2 are lenses, the angle θ is 25 degrees.

Fig. 2
Fig. 2

Total, linear and circular depolarization images of porcine liver and the phantoms derived from Mueller matrix measurements in the backscattering geometry. A 1cm x 1cm field of view for each image is shown. The scale bar indicates depolarization percentage values, with deep red signifying 100% depolarization (complete loss of polarized light information).

Fig. 3
Fig. 3

Representative plots of average total, linear and circular depolarizations. a) total depolarization, b) linear depolarization and c) circular depolarization along x axis in Fig. 2, averaged over the 5-mm ± y central strip . The error bar for all the graphs is 1.5%; this is the standard deviation of the pixel intensities in each image of Fig. 2. The error bar size is equal to the line thickness.

Fig. 4
Fig. 4

Percentage values of minimum total ( Δ T ), linear ( Δ L ), and circular ( Δ C ) depolarizations for all samples. The error bars indicate uncertainty (standard deviations) of each measurement.

Tables (2)

Tables Icon

Table 1 Summary of the optical properties of porcine liver and turbid phantoms suspensionsa

Tables Icon

Table 2 Relevant properties of the liver and its phantomsa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

M=[ m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ] = 1 4 [ HH+HV+VH+VV HH+HVVHVV 2(PH+PV)4 m 11 2(RH+RV)4 m 11 HHHV+VHVV HHHVVH+VV 2(PHPV)4 m 21 2(RHRV)4 m 21 HPHBVPVB HPHBVP+VB 2(PPPB)4 m 31 2(RPRB)4 m 31 HRHL+VRVL HRHLHR+VL 2(PRPL)4 m 41 2(RRRL)4 m 41 ]
M= M Δ M R M D
M Δ =[ 1 0 T P Δ m Δ ]
Δ T =1 | m Δ (1,1) |+| m Δ (2,2) |+| m Δ (3,3) | 3
Δ L =1 | m Δ (1,1) |+| m Δ (2,2) | 2
Δ C =1| m Δ (3,3) |

Metrics