Abstract

We present a method to obtain accurate corneal topography from a spectral optical coherence tomography (sOCT) system. The method includes calibration of the device, compensation of the fan (or field) distortion introduced by the scanning architecture, and image processing analysis for volumetric data extraction, segmentation and fitting. We present examples of three-dimensional (3-D) surface topography measurements on spherical and aspheric lenses, as well as on 10 human corneas in vivo. Results of sOCT surface topography (with and without fan-distortion correction) were compared with non-contact profilometry (taken as reference) on a spherical lens, and with non-contact profilometry and state-of-the art commercial corneal topography instruments on aspheric lenses and on subjects. Corneal elevation maps from all instruments were fitted by quadric surfaces (as well as by tenth-order Zernike polynomials) using custom routines. We found that the discrepancy in the estimated radius of curvature from nominal values in artificial corneas decreased from 4.6% (without fan distortion correction) to 1.6% (after fan distortion correction), and the difference in the asphericity decreased from 130% to 5%. In human corneas, the estimated corneal radius of curvature was not statistically significantly different across instruments. However, a Bland-Altman analysis showed consistent differences in the estimated asphericity and corneal shape between sOCT topographies without fan distortion correction and the rest of the measurements.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
    [Crossref] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  3. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
    [Crossref] [PubMed]
  4. G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol. 137(1), 156–169 (2004).
    [Crossref] [PubMed]
  5. R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
    [Crossref] [PubMed]
  6. T. Simpson and D. Fonn, “Optical coherence tomography of the anterior segment,” Ocul. Surf. 6(3), 117–127 (2008).
    [PubMed]
  7. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
    [PubMed]
  8. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
    [Crossref] [PubMed]
  9. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref] [PubMed]
  10. H. Y. Kim, D. L. Budenz, P. S. Lee, W. J. Feuer, and K. Barton, “Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry,” Am. J. Ophthalmol. 145(2), 228–232.e1 (2008).
    [Crossref] [PubMed]
  11. S. Muscat, N. McKay, S. Parks, E. Kemp, and D. Keating, “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 43(6), 1791–1795 (2002).
    [PubMed]
  12. J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefes Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
    [Crossref] [PubMed]
  13. R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
    [Crossref] [PubMed]
  14. S. Radhakrishnan, Y. Li, and D. Huang, “Chapter 10: Quantitative measurement of the anterior chamber angle with optical coherence tomography” pp. 109–116 in Anterior Segment Optical Coherence Tomography, R. F. Steinert, D Huang eds. (Slack Incorporated, Thorofare, USA 2008).
  15. E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology 114(10), 1842–1847.e2 (2007).
    [Crossref] [PubMed]
  16. R. F. Steinert, D Huang eds. Anterior Segment Optical Coherence Tomography, (Slack Incorporated, Thorofare, USA 2008).
  17. M. Ruggeri, O. Kocaoglu, S. Uhlhorn, D. Borja, R. Urs, T. H. Chou, V. Porciatti, J. M. Parel, and F. Manns, “Small animal ocular biometry using optical coherence tomography,” Proc. SPIE 7550, 755016, 755016-6 (2010).
    [Crossref]
  18. M. C. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
    [Crossref] [PubMed]
  19. M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg. 32(11), 1843–1850 (2006).
    [Crossref] [PubMed]
  20. Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology 115(12), 2159–2166 (2008).
    [Crossref] [PubMed]
  21. L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13(5), 054054 (2008).
    [Crossref] [PubMed]
  22. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
    [Crossref] [PubMed]
  23. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express 2(9), 2709–2720 (2011).
    [Crossref] [PubMed]
  24. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
    [Crossref] [PubMed]
  25. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [Crossref] [PubMed]
  26. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
    [Crossref] [PubMed]
  27. D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J.-M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
    [Crossref] [PubMed]
  28. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
    [PubMed]
  29. J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37(4), 305–311 (2005).
    [Crossref]
  30. Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47(32), 5976–5985 (2008).
    [Crossref] [PubMed]
  31. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
    [Crossref] [PubMed]
  32. M. Zhu, M. J. Collins, and D. Robert Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 24(6), 562–571 (2004).
    [Crossref] [PubMed]
  33. R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol. 119(1), 1–17 (1953).
    [PubMed]
  34. D. A. Benedetto, T. E. Clinch, and P. R. Laibson, “In vivo observation of tear dynamics using fluorophotometry,” Arch. Ophthalmol. 102(3), 410–412 (1984).
    [PubMed]
  35. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [Crossref] [PubMed]
  36. N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Trans. Syst. Man Cybern. 66, 9–62 (1979).
  37. J. Schwiegerling, J. E. Greivenkamp, and J. M. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A 12(10), 2105–2113 (1995).
    [Crossref] [PubMed]
  38. S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18(3), 263–270 (2002).
    [PubMed]
  39. C. Roberts, “Corneal topography: a review of terms and concepts,” J. Cataract Refract. Surg. 22(5), 624–629 (1996).
    [PubMed]
  40. D. Cano, S. Barbero, and S. Marcos, “Comparison of real and computer-simulated outcomes of LASIK refractive surgery,” J. Opt. Soc. Am. A 21(6), 926–936 (2004).
    [Crossref] [PubMed]
  41. A. Pérez-Escudero, C. Dorronsoro, S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J Opt Soc Am A Image Sci Vis 27, 1541–1548 (2010).
  42. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
    [Crossref] [PubMed]
  43. P. Targowski, T. Bajraszewski, I. Gorczynska, M. Gora, A. Szkulmowska, M. Szkulmowski, M. Wojtkowski, J. J. Kaluzny, B. J. Kaluzny, and A. Kowalczyk, “Spectral optical coherence tomography for nondestructive examinations,” Opt. Appl. 36, 609–619 (2006).
  44. C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express 14(13), 6142–6156 (2006).
    [Crossref] [PubMed]
  45. C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
    [Crossref] [PubMed]
  46. L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, “Effect of sampling on real ocular aberration measurements,” J. Opt. Soc. Am. A 24(9), 2783–2796 (2007).
    [Crossref] [PubMed]
  47. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
    [Crossref] [PubMed]
  48. G. O. Waring, “Making sense of keratospeak II: Proposed conventional terminology for corneal topography,” Refract. Corneal Surg. 5(6), 362–367 (1989).
    [PubMed]
  49. S. D. Klyce and S. E. Wilson, “Methods of analysis of corneal topography,” Refract. Corneal Surg. 5(6), 368–371 (1989).
    [PubMed]
  50. J. W. Warnicki, P. G. Rehkopf, D. Y. Curtin, S. A. Burns, R. C. Arffa, and J. C. Stuart, “Corneal topography using computer analyzed rasterstereographic images,” Appl. Opt. 27(6), 1135–1140 (1988).
    [Crossref] [PubMed]
  51. W. Tang, M. J. Collins, L. Carney, and B. Davis, “The accuracy and precision performance of four videokeratoscopes in measuring test surfaces,” Optom. Vis. Sci. 77(9), 483–491 (2000).
    [Crossref] [PubMed]
  52. P. Cho, A. K. C. Lam, J. Mountford, and L. Ng, “The performance of four different corneal topographers on normal human corneas and its impact on ortokeratology lens fitting,” Optom. Vis. Sci. 79(3), 175–183 (2002).
    [Crossref]
  53. A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
    [Crossref] [PubMed]
  54. T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
    [Crossref] [PubMed]
  55. D. Chen and A. K. C. Lam, “Intrasession and intersession repeatability of the Pentacam system on posterior corneal assessment in the normal human eye,” J. Cataract Refract. Surg. 33(3), 448–454 (2007).
    [Crossref] [PubMed]
  56. H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements,” J. Cataract Refract. Surg. 34(1), 103–113 (2008).
    [Crossref] [PubMed]
  57. S. A. Read, M. J. Collins, D. R. Iskander, and B. A. Davis, “Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes,” J. Cataract Refract. Surg. 35(6), 1072–1081 (2009).
    [Crossref] [PubMed]
  58. H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Repeatability of corneal first-surface wavefront aberrations measured with Pentacam corneal topography,” J. Cataract Refract. Surg. 34(5), 727–734 (2008).
    [Crossref] [PubMed]

2011 (1)

2010 (6)

M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J.-M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

M. Ruggeri, O. Kocaoglu, S. Uhlhorn, D. Borja, R. Urs, T. H. Chou, V. Porciatti, J. M. Parel, and F. Manns, “Small animal ocular biometry using optical coherence tomography,” Proc. SPIE 7550, 755016, 755016-6 (2010).
[Crossref]

2009 (8)

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
[Crossref] [PubMed]

C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
[Crossref] [PubMed]

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[Crossref] [PubMed]

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, D. R. Iskander, and B. A. Davis, “Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes,” J. Cataract Refract. Surg. 35(6), 1072–1081 (2009).
[Crossref] [PubMed]

2008 (7)

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Repeatability of corneal first-surface wavefront aberrations measured with Pentacam corneal topography,” J. Cataract Refract. Surg. 34(5), 727–734 (2008).
[Crossref] [PubMed]

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements,” J. Cataract Refract. Surg. 34(1), 103–113 (2008).
[Crossref] [PubMed]

Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47(32), 5976–5985 (2008).
[Crossref] [PubMed]

H. Y. Kim, D. L. Budenz, P. S. Lee, W. J. Feuer, and K. Barton, “Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry,” Am. J. Ophthalmol. 145(2), 228–232.e1 (2008).
[Crossref] [PubMed]

Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology 115(12), 2159–2166 (2008).
[Crossref] [PubMed]

L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13(5), 054054 (2008).
[Crossref] [PubMed]

T. Simpson and D. Fonn, “Optical coherence tomography of the anterior segment,” Ocul. Surf. 6(3), 117–127 (2008).
[PubMed]

2007 (7)

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefes Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref] [PubMed]

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology 114(10), 1842–1847.e2 (2007).
[Crossref] [PubMed]

M. C. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
[Crossref] [PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

D. Chen and A. K. C. Lam, “Intrasession and intersession repeatability of the Pentacam system on posterior corneal assessment in the normal human eye,” J. Cataract Refract. Surg. 33(3), 448–454 (2007).
[Crossref] [PubMed]

L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, “Effect of sampling on real ocular aberration measurements,” J. Opt. Soc. Am. A 24(9), 2783–2796 (2007).
[Crossref] [PubMed]

2006 (4)

P. Targowski, T. Bajraszewski, I. Gorczynska, M. Gora, A. Szkulmowska, M. Szkulmowski, M. Wojtkowski, J. J. Kaluzny, B. J. Kaluzny, and A. Kowalczyk, “Spectral optical coherence tomography for nondestructive examinations,” Opt. Appl. 36, 609–619 (2006).

C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express 14(13), 6142–6156 (2006).
[Crossref] [PubMed]

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg. 32(11), 1843–1850 (2006).
[Crossref] [PubMed]

R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
[Crossref] [PubMed]

2005 (2)

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37(4), 305–311 (2005).
[Crossref]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
[Crossref] [PubMed]

2004 (4)

G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol. 137(1), 156–169 (2004).
[Crossref] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[Crossref] [PubMed]

M. Zhu, M. J. Collins, and D. Robert Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 24(6), 562–571 (2004).
[Crossref] [PubMed]

D. Cano, S. Barbero, and S. Marcos, “Comparison of real and computer-simulated outcomes of LASIK refractive surgery,” J. Opt. Soc. Am. A 21(6), 926–936 (2004).
[Crossref] [PubMed]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

2002 (4)

S. Muscat, N. McKay, S. Parks, E. Kemp, and D. Keating, “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 43(6), 1791–1795 (2002).
[PubMed]

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18(3), 263–270 (2002).
[PubMed]

P. Cho, A. K. C. Lam, J. Mountford, and L. Ng, “The performance of four different corneal topographers on normal human corneas and its impact on ortokeratology lens fitting,” Optom. Vis. Sci. 79(3), 175–183 (2002).
[Crossref]

2001 (1)

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

2000 (1)

W. Tang, M. J. Collins, L. Carney, and B. Davis, “The accuracy and precision performance of four videokeratoscopes in measuring test surfaces,” Optom. Vis. Sci. 77(9), 483–491 (2000).
[Crossref] [PubMed]

1996 (1)

C. Roberts, “Corneal topography: a review of terms and concepts,” J. Cataract Refract. Surg. 22(5), 624–629 (1996).
[PubMed]

1995 (1)

1989 (2)

G. O. Waring, “Making sense of keratospeak II: Proposed conventional terminology for corneal topography,” Refract. Corneal Surg. 5(6), 362–367 (1989).
[PubMed]

S. D. Klyce and S. E. Wilson, “Methods of analysis of corneal topography,” Refract. Corneal Surg. 5(6), 368–371 (1989).
[PubMed]

1988 (1)

1986 (1)

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

1984 (1)

D. A. Benedetto, T. E. Clinch, and P. R. Laibson, “In vivo observation of tear dynamics using fluorophotometry,” Arch. Ophthalmol. 102(3), 410–412 (1984).
[PubMed]

1979 (1)

N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Trans. Syst. Man Cybern. 66, 9–62 (1979).

1953 (1)

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol. 119(1), 1–17 (1953).
[PubMed]

Alfred, T.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Altman, D. G.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

Arffa, R. C.

Arrieta, E.

Augsten, R.

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefes Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref] [PubMed]

Aung, H. T.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Aung, T.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Avila, M.

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg. 32(11), 1843–1850 (2006).
[Crossref] [PubMed]

Bajraszewski, T.

P. Targowski, T. Bajraszewski, I. Gorczynska, M. Gora, A. Szkulmowska, M. Szkulmowski, M. Wojtkowski, J. J. Kaluzny, B. J. Kaluzny, and A. Kowalczyk, “Spectral optical coherence tomography for nondestructive examinations,” Opt. Appl. 36, 609–619 (2006).

Barbero, S.

D. Cano, S. Barbero, and S. Marcos, “Comparison of real and computer-simulated outcomes of LASIK refractive surgery,” J. Opt. Soc. Am. A 21(6), 926–936 (2004).
[Crossref] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18(3), 263–270 (2002).
[PubMed]

Bardenstein, D. S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Barry, S.

Barton, K.

H. Y. Kim, D. L. Budenz, P. S. Lee, W. J. Feuer, and K. Barton, “Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry,” Am. J. Ophthalmol. 145(2), 228–232.e1 (2008).
[Crossref] [PubMed]

Baskaran, M.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Baumann, B.

Benedetto, D. A.

D. A. Benedetto, T. E. Clinch, and P. R. Laibson, “In vivo observation of tear dynamics using fluorophotometry,” Arch. Ophthalmol. 102(3), 410–412 (1984).
[PubMed]

Bland, J. M.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

Boppart, S. A.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Borja, D.

Bouma, B.

Budenz, D. L.

H. Y. Kim, D. L. Budenz, P. S. Lee, W. J. Feuer, and K. Barton, “Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry,” Am. J. Ophthalmol. 145(2), 228–232.e1 (2008).
[Crossref] [PubMed]

Burns, S. A.

Cable, A. E.

Calucci, D.

R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
[Crossref] [PubMed]

Cano, D.

Caprioli, J.

G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol. 137(1), 156–169 (2004).
[Crossref] [PubMed]

Cardillo, J. A.

R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
[Crossref] [PubMed]

Carney, L.

W. Tang, M. J. Collins, L. Carney, and B. Davis, “The accuracy and precision performance of four videokeratoscopes in measuring test surfaces,” Optom. Vis. Sci. 77(9), 483–491 (2000).
[Crossref] [PubMed]

Castro, J. C.

R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
[Crossref] [PubMed]

Chavez-Pirson, A.

Chen, D.

D. Chen and A. K. C. Lam, “Intrasession and intersession repeatability of the Pentacam system on posterior corneal assessment in the normal human eye,” J. Cataract Refract. Surg. 33(3), 448–454 (2007).
[Crossref] [PubMed]

Cheng, A. C.

E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology 114(10), 1842–1847.e2 (2007).
[Crossref] [PubMed]

Cheung, C. Y.

E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology 114(10), 1842–1847.e2 (2007).
[Crossref] [PubMed]

Cho, P.

P. Cho, A. K. C. Lam, J. Mountford, and L. Ng, “The performance of four different corneal topographers on normal human corneas and its impact on ortokeratology lens fitting,” Optom. Vis. Sci. 79(3), 175–183 (2002).
[Crossref]

Chou, T. H.

M. Ruggeri, O. Kocaoglu, S. Uhlhorn, D. Borja, R. Urs, T. H. Chou, V. Porciatti, J. M. Parel, and F. Manns, “Small animal ocular biometry using optical coherence tomography,” Proc. SPIE 7550, 755016, 755016-6 (2010).
[Crossref]

Clinch, T. E.

D. A. Benedetto, T. E. Clinch, and P. R. Laibson, “In vivo observation of tear dynamics using fluorophotometry,” Arch. Ophthalmol. 102(3), 410–412 (1984).
[PubMed]

Collins, M. J.

S. A. Read, M. J. Collins, D. R. Iskander, and B. A. Davis, “Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes,” J. Cataract Refract. Surg. 35(6), 1072–1081 (2009).
[Crossref] [PubMed]

M. Zhu, M. J. Collins, and D. Robert Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 24(6), 562–571 (2004).
[Crossref] [PubMed]

W. Tang, M. J. Collins, L. Carney, and B. Davis, “The accuracy and precision performance of four videokeratoscopes in measuring test surfaces,” Optom. Vis. Sci. 77(9), 483–491 (2000).
[Crossref] [PubMed]

Costa, R. A.

R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
[Crossref] [PubMed]

Curtin, D. Y.

Davies, L. N.

M. C. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
[Crossref] [PubMed]

Davis, B.

W. Tang, M. J. Collins, L. Carney, and B. Davis, “The accuracy and precision performance of four videokeratoscopes in measuring test surfaces,” Optom. Vis. Sci. 77(9), 483–491 (2000).
[Crossref] [PubMed]

Davis, B. A.

S. A. Read, M. J. Collins, D. R. Iskander, and B. A. Davis, “Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes,” J. Cataract Refract. Surg. 35(6), 1072–1081 (2009).
[Crossref] [PubMed]

Dawczynski, J.

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefes Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref] [PubMed]

de Boer, J.

de Castro, A.

Ditchburn, R. W.

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol. 119(1), 1–17 (1953).
[PubMed]

Dorronsoro, C.

Drexler, W.

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Duan, Z.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37(4), 305–311 (2005).
[Crossref]

Duker, J. S.

Dunne, M. C.

M. C. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Feuer, W. J.

H. Y. Kim, D. L. Budenz, P. S. Lee, W. J. Feuer, and K. Barton, “Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry,” Am. J. Ophthalmol. 145(2), 228–232.e1 (2008).
[Crossref] [PubMed]

Fonn, D.

T. Simpson and D. Fonn, “Optical coherence tomography of the anterior segment,” Ocul. Surf. 6(3), 117–127 (2008).
[PubMed]

Foster, P. J.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Friedman, D. S.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Fujikado, T.

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

Fujimoto, J. G.

Gambra, E.

Gao, H.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Ginsborg, B. L.

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol. 119(1), 1–17 (1953).
[PubMed]

Gora, M.

Gorczynska, I.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

P. Targowski, T. Bajraszewski, I. Gorczynska, M. Gora, A. Szkulmowska, M. Szkulmowski, M. Wojtkowski, J. J. Kaluzny, B. J. Kaluzny, and A. Kowalczyk, “Spectral optical coherence tomography for nondestructive examinations,” Opt. Appl. 36, 609–619 (2006).

Greivenkamp, J. E.

Grulkowski, I.

Hermann, B.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Hori, Y.

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

Huang, D.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology 115(12), 2159–2166 (2008).
[Crossref] [PubMed]

R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
[Crossref] [PubMed]

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg. 32(11), 1843–1850 (2006).
[Crossref] [PubMed]

Huang, S.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37(4), 305–311 (2005).
[Crossref]

Huber, R.

Inoue, T.

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

Iskander, D. R.

S. A. Read, M. J. Collins, D. R. Iskander, and B. A. Davis, “Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes,” J. Cataract Refract. Surg. 35(6), 1072–1081 (2009).
[Crossref] [PubMed]

Izatt, J. A.

Jaffe, G. J.

G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol. 137(1), 156–169 (2004).
[Crossref] [PubMed]

Kaluzny, B. J.

Kaluzny, J. J.

P. Targowski, T. Bajraszewski, I. Gorczynska, M. Gora, A. Szkulmowska, M. Szkulmowski, M. Wojtkowski, J. J. Kaluzny, B. J. Kaluzny, and A. Kowalczyk, “Spectral optical coherence tomography for nondestructive examinations,” Opt. Appl. 36, 609–619 (2006).

Karnowski, K.

Kashiwagi, K.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Keating, D.

S. Muscat, N. McKay, S. Parks, E. Kemp, and D. Keating, “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 43(6), 1791–1795 (2002).
[PubMed]

Kemp, E.

S. Muscat, N. McKay, S. Parks, E. Kemp, and D. Keating, “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 43(6), 1791–1795 (2002).
[PubMed]

Kim, H. Y.

H. Y. Kim, D. L. Budenz, P. S. Lee, W. J. Feuer, and K. Barton, “Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry,” Am. J. Ophthalmol. 145(2), 228–232.e1 (2008).
[Crossref] [PubMed]

Klyce, S. D.

S. D. Klyce and S. E. Wilson, “Methods of analysis of corneal topography,” Refract. Corneal Surg. 5(6), 368–371 (1989).
[PubMed]

Kocaoglu, O.

M. Ruggeri, O. Kocaoglu, S. Uhlhorn, D. Borja, R. Urs, T. H. Chou, V. Porciatti, J. M. Parel, and F. Manns, “Small animal ocular biometry using optical coherence tomography,” Proc. SPIE 7550, 755016, 755016-6 (2010).
[Crossref]

Koenigsdoerffer, E.

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefes Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref] [PubMed]

Kosaki, R.

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

Kowalczyk, A.

Kuo, A. N.

Laibson, P. R.

D. A. Benedetto, T. E. Clinch, and P. R. Laibson, “In vivo observation of tear dynamics using fluorophotometry,” Arch. Ophthalmol. 102(3), 410–412 (1984).
[PubMed]

Lam, A. K. C.

D. Chen and A. K. C. Lam, “Intrasession and intersession repeatability of the Pentacam system on posterior corneal assessment in the normal human eye,” J. Cataract Refract. Surg. 33(3), 448–454 (2007).
[Crossref] [PubMed]

P. Cho, A. K. C. Lam, J. Mountford, and L. Ng, “The performance of four different corneal topographers on normal human corneas and its impact on ortokeratology lens fitting,” Optom. Vis. Sci. 79(3), 175–183 (2002).
[Crossref]

Lam, D. S.

E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology 114(10), 1842–1847.e2 (2007).
[Crossref] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lavanya, R.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Lee, P. S.

H. Y. Kim, D. L. Budenz, P. S. Lee, W. J. Feuer, and K. Barton, “Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry,” Am. J. Ophthalmol. 145(2), 228–232.e1 (2008).
[Crossref] [PubMed]

Leung, C. K.

E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology 114(10), 1842–1847.e2 (2007).
[Crossref] [PubMed]

Li, E. Y.

E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology 114(10), 1842–1847.e2 (2007).
[Crossref] [PubMed]

Li, Y.

Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology 115(12), 2159–2166 (2008).
[Crossref] [PubMed]

Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47(32), 5976–5985 (2008).
[Crossref] [PubMed]

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg. 32(11), 1843–1850 (2006).
[Crossref] [PubMed]

Llorente, L.

Lu, A. T. H.

Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology 115(12), 2159–2166 (2008).
[Crossref] [PubMed]

Maeda, N.

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

Manns, F.

Marcos, S.

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J.-M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[Crossref] [PubMed]

L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, “Effect of sampling on real ocular aberration measurements,” J. Opt. Soc. Am. A 24(9), 2783–2796 (2007).
[Crossref] [PubMed]

C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express 14(13), 6142–6156 (2006).
[Crossref] [PubMed]

D. Cano, S. Barbero, and S. Marcos, “Comparison of real and computer-simulated outcomes of LASIK refractive surgery,” J. Opt. Soc. Am. A 21(6), 926–936 (2004).
[Crossref] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18(3), 263–270 (2002).
[PubMed]

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

McKay, N.

S. Muscat, N. McKay, S. Parks, E. Kemp, and D. Keating, “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 43(6), 1791–1795 (2002).
[PubMed]

Meisler, D. M.

Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology 115(12), 2159–2166 (2008).
[Crossref] [PubMed]

Melo, L. A.

R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
[Crossref] [PubMed]

Merayo-Lloves, J.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[Crossref] [PubMed]

C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
[Crossref] [PubMed]

C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express 14(13), 6142–6156 (2006).
[Crossref] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18(3), 263–270 (2002).
[PubMed]

Mihashi, T.

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

Miller, J. M.

Mohamed, S.

E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology 114(10), 1842–1847.e2 (2007).
[Crossref] [PubMed]

Moreno-Barriuso, E.

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18(3), 263–270 (2002).
[PubMed]

Mountford, J.

P. Cho, A. K. C. Lam, J. Mountford, and L. Ng, “The performance of four different corneal topographers on normal human corneas and its impact on ortokeratology lens fitting,” Optom. Vis. Sci. 79(3), 175–183 (2002).
[Crossref]

Muscat, S.

S. Muscat, N. McKay, S. Parks, E. Kemp, and D. Keating, “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 43(6), 1791–1795 (2002).
[PubMed]

Nakagawa, T.

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

Ng, L.

P. Cho, A. K. C. Lam, J. Mountford, and L. Ng, “The performance of four different corneal topographers on normal human corneas and its impact on ortokeratology lens fitting,” Optom. Vis. Sci. 79(3), 175–183 (2002).
[Crossref]

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Ortiz, S.

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Trans. Syst. Man Cybern. 66, 9–62 (1979).

Parel, J. M.

M. Ruggeri, O. Kocaoglu, S. Uhlhorn, D. Borja, R. Urs, T. H. Chou, V. Porciatti, J. M. Parel, and F. Manns, “Small animal ocular biometry using optical coherence tomography,” Proc. SPIE 7550, 755016, 755016-6 (2010).
[Crossref]

Parel, J.-M.

Parks, S.

S. Muscat, N. McKay, S. Parks, E. Kemp, and D. Keating, “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 43(6), 1791–1795 (2002).
[PubMed]

Pascual, D.

Pérez-Escudero, A.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[Crossref] [PubMed]

Pesudovs, K.

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements,” J. Cataract Refract. Surg. 34(1), 103–113 (2008).
[Crossref] [PubMed]

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Repeatability of corneal first-surface wavefront aberrations measured with Pentacam corneal topography,” J. Cataract Refract. Surg. 34(5), 727–734 (2008).
[Crossref] [PubMed]

Plesea, L.

L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13(5), 054054 (2008).
[Crossref] [PubMed]

Podoleanu, A. G.

L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13(5), 054054 (2008).
[Crossref] [PubMed]

Porciatti, V.

M. Ruggeri, O. Kocaoglu, S. Uhlhorn, D. Borja, R. Urs, T. H. Chou, V. Porciatti, J. M. Parel, and F. Manns, “Small animal ocular biometry using optical coherence tomography,” Proc. SPIE 7550, 755016, 755016-6 (2010).
[Crossref]

Potsaid, B.

Považay, B.

Radhakrishnan, S.

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
[PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Rao, S. K.

E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology 114(10), 1842–1847.e2 (2007).
[Crossref] [PubMed]

Read, S. A.

S. A. Read, M. J. Collins, D. R. Iskander, and B. A. Davis, “Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes,” J. Cataract Refract. Surg. 35(6), 1072–1081 (2009).
[Crossref] [PubMed]

Rehkopf, P. G.

Reiser, B. J.

Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology 115(12), 2159–2166 (2008).
[Crossref] [PubMed]

Remon, L.

Remón, L.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[Crossref] [PubMed]

Robert Iskander, D.

M. Zhu, M. J. Collins, and D. Robert Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 24(6), 562–571 (2004).
[Crossref] [PubMed]

Roberts, C.

C. Roberts, “Corneal topography: a review of terms and concepts,” J. Cataract Refract. Surg. 22(5), 624–629 (1996).
[PubMed]

Rollins, A. M.

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
[PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Roth, J. E.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Ruggeri, M.

M. Ruggeri, O. Kocaoglu, S. Uhlhorn, D. Borja, R. Urs, T. H. Chou, V. Porciatti, J. M. Parel, and F. Manns, “Small animal ocular biometry using optical coherence tomography,” Proc. SPIE 7550, 755016, 755016-6 (2010).
[Crossref]

Saika, M.

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

Santhirathelagan, C. T.

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements,” J. Cataract Refract. Surg. 34(1), 103–113 (2008).
[Crossref] [PubMed]

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Repeatability of corneal first-surface wavefront aberrations measured with Pentacam corneal topography,” J. Cataract Refract. Surg. 34(5), 727–734 (2008).
[Crossref] [PubMed]

Sattmann, H.

Sawides, L.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[Crossref] [PubMed]

Schuman, J. S.

Schwiegerling, J.

Seah, S. K.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Shankar, H.

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements,” J. Cataract Refract. Surg. 34(1), 103–113 (2008).
[Crossref] [PubMed]

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Repeatability of corneal first-surface wavefront aberrations measured with Pentacam corneal topography,” J. Cataract Refract. Surg. 34(5), 727–734 (2008).
[Crossref] [PubMed]

Shi, Y.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37(4), 305–311 (2005).
[Crossref]

Siedlecki, D.

Simpson, T.

T. Simpson and D. Fonn, “Optical coherence tomography of the anterior segment,” Ocul. Surf. 6(3), 117–127 (2008).
[PubMed]

Skaf, M.

R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
[Crossref] [PubMed]

Strobel, J.

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefes Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref] [PubMed]

Stuart, J. C.

Szkulmowska, A.

P. Targowski, T. Bajraszewski, I. Gorczynska, M. Gora, A. Szkulmowska, M. Szkulmowski, M. Wojtkowski, J. J. Kaluzny, B. J. Kaluzny, and A. Kowalczyk, “Spectral optical coherence tomography for nondestructive examinations,” Opt. Appl. 36, 609–619 (2006).

Szkulmowski, M.

Szlag, D.

Tang, M.

Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology 115(12), 2159–2166 (2008).
[Crossref] [PubMed]

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg. 32(11), 1843–1850 (2006).
[Crossref] [PubMed]

Tang, W.

W. Tang, M. J. Collins, L. Carney, and B. Davis, “The accuracy and precision performance of four videokeratoscopes in measuring test surfaces,” Optom. Vis. Sci. 77(9), 483–491 (2000).
[Crossref] [PubMed]

Tano, Y.

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

Taranath, D.

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements,” J. Cataract Refract. Surg. 34(1), 103–113 (2008).
[Crossref] [PubMed]

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Repeatability of corneal first-surface wavefront aberrations measured with Pentacam corneal topography,” J. Cataract Refract. Surg. 34(5), 727–734 (2008).
[Crossref] [PubMed]

Targowski, P.

P. Targowski, T. Bajraszewski, I. Gorczynska, M. Gora, A. Szkulmowska, M. Szkulmowski, M. Wojtkowski, J. J. Kaluzny, B. J. Kaluzny, and A. Kowalczyk, “Spectral optical coherence tomography for nondestructive examinations,” Opt. Appl. 36, 609–619 (2006).

Tearney, G.

Teo, L.

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Thakrar, V.

Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology 115(12), 2159–2166 (2008).
[Crossref] [PubMed]

Uhlhorn, S.

Unterhuber, A.

Urs, R.

M. Ruggeri, O. Kocaoglu, S. Uhlhorn, D. Borja, R. Urs, T. H. Chou, V. Porciatti, J. M. Parel, and F. Manns, “Small animal ocular biometry using optical coherence tomography,” Proc. SPIE 7550, 755016, 755016-6 (2010).
[Crossref]

Waring, G. O.

G. O. Waring, “Making sense of keratospeak II: Proposed conventional terminology for corneal topography,” Refract. Corneal Surg. 5(6), 362–367 (1989).
[PubMed]

Warnicki, J. W.

Wen, S.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37(4), 305–311 (2005).
[Crossref]

Westphal, V.

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
[PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Wilson, S. E.

S. D. Klyce and S. E. Wilson, “Methods of analysis of corneal topography,” Refract. Corneal Surg. 5(6), 368–371 (1989).
[PubMed]

Wojtkowski, M.

K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express 2(9), 2709–2720 (2011).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[Crossref] [PubMed]

P. Targowski, T. Bajraszewski, I. Gorczynska, M. Gora, A. Szkulmowska, M. Szkulmowski, M. Wojtkowski, J. J. Kaluzny, B. J. Kaluzny, and A. Kowalczyk, “Spectral optical coherence tomography for nondestructive examinations,” Opt. Appl. 36, 609–619 (2006).

R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
[Crossref] [PubMed]

Wolffsohn, J. S.

M. C. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
[Crossref] [PubMed]

Xie, J.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37(4), 305–311 (2005).
[Crossref]

Yazdanfar, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

Yun, S. H.

Zhao, M.

Zhu, M.

M. Zhu, M. J. Collins, and D. Robert Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 24(6), 562–571 (2004).
[Crossref] [PubMed]

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Am. J. Ophthalmol. (2)

H. Y. Kim, D. L. Budenz, P. S. Lee, W. J. Feuer, and K. Barton, “Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry,” Am. J. Ophthalmol. 145(2), 228–232.e1 (2008).
[Crossref] [PubMed]

G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol. 137(1), 156–169 (2004).
[Crossref] [PubMed]

Appl. Opt. (4)

Arch. Ophthalmol. (2)

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[PubMed]

D. A. Benedetto, T. E. Clinch, and P. R. Laibson, “In vivo observation of tear dynamics using fluorophotometry,” Arch. Ophthalmol. 102(3), 410–412 (1984).
[PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

R. Lavanya, L. Teo, D. S. Friedman, H. T. Aung, M. Baskaran, H. Gao, T. Alfred, S. K. Seah, K. Kashiwagi, P. J. Foster, and T. Aung, “Comparison of anterior chamber depth measurements using the IOLMaster, scanning peripheral anterior chamber depth analyser, and anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91(8), 1023–1026 (2007).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefes Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref] [PubMed]

IEEE Trans. Syst. Man Cybern. (1)

N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Trans. Syst. Man Cybern. 66, 9–62 (1979).

Invest. Ophthalmol. Vis. Sci. (3)

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci. 50(9), 4146–4154 (2009).
[Crossref] [PubMed]

T. Nakagawa, N. Maeda, R. Kosaki, Y. Hori, T. Inoue, M. Saika, T. Mihashi, T. Fujikado, and Y. Tano, “Higher-order aberrations due to the posterior corneal surface in patients with keratoconus,” Invest. Ophthalmol. Vis. Sci. 50(6), 2660–2665 (2009).
[Crossref] [PubMed]

S. Muscat, N. McKay, S. Parks, E. Kemp, and D. Keating, “Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 43(6), 1791–1795 (2002).
[PubMed]

J. Biomed. Opt. (3)

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

L. Plesea and A. G. Podoleanu, “Direct corneal elevation measurements using multiple delay en face optical coherence tomography,” J. Biomed. Opt. 13(5), 054054 (2008).
[Crossref] [PubMed]

M. C. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (6)

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg. 32(11), 1843–1850 (2006).
[Crossref] [PubMed]

D. Chen and A. K. C. Lam, “Intrasession and intersession repeatability of the Pentacam system on posterior corneal assessment in the normal human eye,” J. Cataract Refract. Surg. 33(3), 448–454 (2007).
[Crossref] [PubMed]

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements,” J. Cataract Refract. Surg. 34(1), 103–113 (2008).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, D. R. Iskander, and B. A. Davis, “Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes,” J. Cataract Refract. Surg. 35(6), 1072–1081 (2009).
[Crossref] [PubMed]

H. Shankar, D. Taranath, C. T. Santhirathelagan, and K. Pesudovs, “Repeatability of corneal first-surface wavefront aberrations measured with Pentacam corneal topography,” J. Cataract Refract. Surg. 34(5), 727–734 (2008).
[Crossref] [PubMed]

C. Roberts, “Corneal topography: a review of terms and concepts,” J. Cataract Refract. Surg. 22(5), 624–629 (1996).
[PubMed]

J. Opt. Soc. Am. A (3)

J. Physiol. (1)

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol. 119(1), 1–17 (1953).
[PubMed]

J. Refract. Surg. (1)

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18(3), 263–270 (2002).
[PubMed]

Lancet (1)

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

Ocul. Surf. (1)

T. Simpson and D. Fonn, “Optical coherence tomography of the anterior segment,” Ocul. Surf. 6(3), 117–127 (2008).
[PubMed]

Ophthalmic Physiol. Opt. (1)

M. Zhu, M. J. Collins, and D. Robert Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 24(6), 562–571 (2004).
[Crossref] [PubMed]

Ophthalmology (2)

Y. Li, D. M. Meisler, M. Tang, A. T. H. Lu, V. Thakrar, B. J. Reiser, and D. Huang, “Keratoconus diagnosis with optical coherence tomography pachymetry mapping,” Ophthalmology 115(12), 2159–2166 (2008).
[Crossref] [PubMed]

E. Y. Li, S. Mohamed, C. K. Leung, S. K. Rao, A. C. Cheng, C. Y. Cheung, and D. S. Lam, “Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography,” Ophthalmology 114(10), 1842–1847.e2 (2007).
[Crossref] [PubMed]

Opt. Appl. (1)

P. Targowski, T. Bajraszewski, I. Gorczynska, M. Gora, A. Szkulmowska, M. Szkulmowski, M. Wojtkowski, J. J. Kaluzny, B. J. Kaluzny, and A. Kowalczyk, “Spectral optical coherence tomography for nondestructive examinations,” Opt. Appl. 36, 609–619 (2006).

Opt. Express (11)

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
[PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[Crossref] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
[Crossref] [PubMed]

C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express 14(13), 6142–6156 (2006).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[Crossref] [PubMed]

C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37(4), 305–311 (2005).
[Crossref]

Optom. Vis. Sci. (2)

W. Tang, M. J. Collins, L. Carney, and B. Davis, “The accuracy and precision performance of four videokeratoscopes in measuring test surfaces,” Optom. Vis. Sci. 77(9), 483–491 (2000).
[Crossref] [PubMed]

P. Cho, A. K. C. Lam, J. Mountford, and L. Ng, “The performance of four different corneal topographers on normal human corneas and its impact on ortokeratology lens fitting,” Optom. Vis. Sci. 79(3), 175–183 (2002).
[Crossref]

Proc. SPIE (1)

M. Ruggeri, O. Kocaoglu, S. Uhlhorn, D. Borja, R. Urs, T. H. Chou, V. Porciatti, J. M. Parel, and F. Manns, “Small animal ocular biometry using optical coherence tomography,” Proc. SPIE 7550, 755016, 755016-6 (2010).
[Crossref]

Prog. Retin. Eye Res. (1)

R. A. Costa, M. Skaf, L. A. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).
[Crossref] [PubMed]

Refract. Corneal Surg. (2)

G. O. Waring, “Making sense of keratospeak II: Proposed conventional terminology for corneal topography,” Refract. Corneal Surg. 5(6), 362–367 (1989).
[PubMed]

S. D. Klyce and S. E. Wilson, “Methods of analysis of corneal topography,” Refract. Corneal Surg. 5(6), 368–371 (1989).
[PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Other (3)

R. F. Steinert, D Huang eds. Anterior Segment Optical Coherence Tomography, (Slack Incorporated, Thorofare, USA 2008).

S. Radhakrishnan, Y. Li, and D. Huang, “Chapter 10: Quantitative measurement of the anterior chamber angle with optical coherence tomography” pp. 109–116 in Anterior Segment Optical Coherence Tomography, R. F. Steinert, D Huang eds. (Slack Incorporated, Thorofare, USA 2008).

A. Pérez-Escudero, C. Dorronsoro, S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J Opt Soc Am A Image Sci Vis 27, 1541–1548 (2010).

Supplementary Material (4)

» Media 1: AVI (2179 KB)     
» Media 2: AVI (811 KB)     
» Media 3: AVI (633 KB)     
» Media 4: AVI (860 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Single-frame excerpts from video recordings of the processing algorithms: a) Collection of original B-Scans, containing the data acquired from an in vivo healthy eye (Media 1). b) Result of application of the statistical thresholding algorithm (Media 2). c) Data after denoising image processing (Media 3). d) Boundary detection in red (Media 4).

Fig. 2
Fig. 2

a) Elevation data (using the specular reflection as a reference) in blue and, the surface fitted to conicoid in red (note the tilt of the surface, well accounted by the fit). b) Surface fitting after tilt correction, and further denoising using Zernike fitting. Blue points are raw points used in the fitting and red points represent the fitted surface

Fig. 3
Fig. 3

Illustration of a scanning system plus a collimation-condensing lens in an anterior segment OCT system. See text for details.

Fig. 4
Fig. 4

(a) Axially integrated images of a grid used in the calibration (200x200 A-Scans, 11.25 wide system local units). (b) Automatic nodes identification (c) Vectorization of the node movement across the axial length

Fig. 5
Fig. 5

a) Map of residual fan distortion obtained from a flat optical surface with the sOCT system of the study. The surface is presented after segmentation of the image captured by the OCT and it is represented in system local coordinates (slc), except for the axial axis what it has been transformed into Euclidean coordinates for comparison purposes. b) Map of residual fan distortion after fan distortion correction.

Fig. 6
Fig. 6

a) Difference map (sOCT elevation map – profilometric elevation map), without fan distortion correction. b) Difference map (sOCT elevation map – profilometric elevation map), with fan distortion correction, for a spherical surface. c) Second and fourth order astigmatism Zernike terms from a Zernike polynomial fit to the surfaces for sOCT topographies without fan distortion correction (red) and with fan distortion correction (green). Data in μm are averages across 5 repeated measurements for each instrument, and 6-mm diameter zones.

Fig. 7
Fig. 7

a) Difference map (OCT elevation map with fan distortion correction – profilometric elevation map). b) Difference map (Placido-based videokeratgoraphy elevation map – profilometric elevation map), for an aspheric surface. Data are for a 6-mm area (optical zone of the ablation).

Fig. 8
Fig. 8

Corneal elevation maps obtained in 4 eyes obtained from different instruments (relative to the best fitting sphere). R = radii of curvature of the best fitting sphere (from fits to sphere quadrics).

Tables (4)

Tables Icon

Table 1 Nominal and fitting parameters to surface elevation maps measured with different instruments (spherical surface)

Tables Icon

Table 2 Fitting parameters to surface elevation maps measured with different instruments (aspheric surface)

Tables Icon

Table 3 Radii of curvature (from a conicoid fitting) of anterior corneal elevation maps measured with different instruments (10 eyes from 5 subjects)

Tables Icon

Table 4 Asphericities (from a conicoid fitting) of anterior corneal elevation maps measured with different instruments (10 eyes from 5 subjects)

Metrics