Abstract

Ultrashort UV pulses at 258 nm with repetition rate of 10 kHz have been used to irradiate buffer solution of antibody. The tryptophan residues strongly absorb this radiation thus becoming capable to disrupt the disulfide bridges located next to them. Due to their high reactivity the opened bridges can anchor a gold plate more efficiently than other sites of the macromolecule giving rise to preferential orientations of the variable part of the antibody. UV irradiation has been applied to anchor antiIgG antibody to the electrode of a Quartz Crystal Microbalance (QCM) that lends itself as a sensor, the antibody acting as the bio-receptor. An increase of the QCM sensitivity and of the linear range has been measured when the antibody is irradiated with UV laser pulses. The photo-induced reactions leading to disulfide bridge breakage have been analyzed by means of a chemical assay that confirms our explanation. The control of disulfide bridges by UV light paves the way to important applications for sensing purpose since cysteine in combination with tryptophan can act as a hook to link refractory bio-receptors to surfaces.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit.20(3), 154–184 (2007).
    [CrossRef] [PubMed]
  2. J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol.6(4), 203–215 (2011).
    [CrossRef] [PubMed]
  3. Y. G. Lee and K. S. Chang, “Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid,” Talanta65(5), 1335–1342 (2005).
    [CrossRef] [PubMed]
  4. X. Su, Y. J. Wu, and W. Knoll, “Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization,” Biosens. Bioelectron.21(5), 719–726 (2005).
    [CrossRef] [PubMed]
  5. E. Ostuni, L. Yan, and G. M. Whitesides, “The interaction of proteins with self-assembled monolayers of alkanethiolates on gold and silver,” Colloids Surf.13, 3–30 (1999).
  6. Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express16(22), 18514–18523 (2008).
    [CrossRef] [PubMed]
  7. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express16(25), 20834–20847 (2008).
    [CrossRef] [PubMed]
  8. H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland)10(11), 9630–9646 (2010).
    [CrossRef]
  9. M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15(2), 343–351 (2006).
    [CrossRef] [PubMed]
  10. C. A. Janeway, Jr., P. Travers, M. Walport, and M. J. Shlomchiket, Immunobiology (Garland Science, 2001).
  11. M. T. Neves-Petersen, Z. Gryczynski, J. Lakowicz, P. Fojan, S. Pedersen, E. Petersen, and S. Bjørn Petersen, “High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue,” Protein Sci.11(3), 588–600 (2002).
    [CrossRef] [PubMed]
  12. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  13. R. Weinkauf, P. Aicher, G. Wesley, J. Grotemeyer, and E. W. Schlag, “Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules,” J. Phys. Chem.98(34), 8381–8391 (1994).
    [CrossRef]
  14. B. Gu, K. Lou, H. T. Wang, and W. Ji, “Dynamics of two-photon-induced three-photon absorption in nanosecond, picosecond, and femtosecond regimes,” Opt. Lett.35(3), 417–419 (2010).
    [CrossRef] [PubMed]
  15. DataBank RCSB PDB, IgG structure ( http://www.rcsb.org/pdb/explore/explore.do?structureId=3I75 ).
  16. T. R. Ioerger, C. Du, and D. S. Linthicum, “Conservation of cys-cys trp structural triads and their geometry in the protein domains of immunoglobulin superfamily members,” Mol. Immunol.36(6), 373–386 (1999).
    [CrossRef] [PubMed]
  17. G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Z. Phys.155(2), 206–222 (1959).
    [CrossRef]
  18. G. L. Ellman, “Tissue sulfhydryl groups,” Arch. Biochem. Biophys.82(1), 70–77 (1959).
    [CrossRef] [PubMed]
  19. C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, and W. Fu, “Development of a quartz crystal microbalance biosensor with aptamer as bio-recognition element,” Sensors (Basel Switzerland)10(6), 5859–5871 (2010).
    [CrossRef]

2011 (1)

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol.6(4), 203–215 (2011).
[CrossRef] [PubMed]

2010 (3)

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland)10(11), 9630–9646 (2010).
[CrossRef]

B. Gu, K. Lou, H. T. Wang, and W. Ji, “Dynamics of two-photon-induced three-photon absorption in nanosecond, picosecond, and femtosecond regimes,” Opt. Lett.35(3), 417–419 (2010).
[CrossRef] [PubMed]

C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, and W. Fu, “Development of a quartz crystal microbalance biosensor with aptamer as bio-recognition element,” Sensors (Basel Switzerland)10(6), 5859–5871 (2010).
[CrossRef]

2008 (2)

2007 (1)

M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit.20(3), 154–184 (2007).
[CrossRef] [PubMed]

2006 (1)

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15(2), 343–351 (2006).
[CrossRef] [PubMed]

2005 (2)

Y. G. Lee and K. S. Chang, “Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid,” Talanta65(5), 1335–1342 (2005).
[CrossRef] [PubMed]

X. Su, Y. J. Wu, and W. Knoll, “Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization,” Biosens. Bioelectron.21(5), 719–726 (2005).
[CrossRef] [PubMed]

2002 (1)

M. T. Neves-Petersen, Z. Gryczynski, J. Lakowicz, P. Fojan, S. Pedersen, E. Petersen, and S. Bjørn Petersen, “High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue,” Protein Sci.11(3), 588–600 (2002).
[CrossRef] [PubMed]

1999 (2)

E. Ostuni, L. Yan, and G. M. Whitesides, “The interaction of proteins with self-assembled monolayers of alkanethiolates on gold and silver,” Colloids Surf.13, 3–30 (1999).

T. R. Ioerger, C. Du, and D. S. Linthicum, “Conservation of cys-cys trp structural triads and their geometry in the protein domains of immunoglobulin superfamily members,” Mol. Immunol.36(6), 373–386 (1999).
[CrossRef] [PubMed]

1994 (1)

R. Weinkauf, P. Aicher, G. Wesley, J. Grotemeyer, and E. W. Schlag, “Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules,” J. Phys. Chem.98(34), 8381–8391 (1994).
[CrossRef]

1959 (2)

G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Z. Phys.155(2), 206–222 (1959).
[CrossRef]

G. L. Ellman, “Tissue sulfhydryl groups,” Arch. Biochem. Biophys.82(1), 70–77 (1959).
[CrossRef] [PubMed]

Agger, C.

Aicher, P.

R. Weinkauf, P. Aicher, G. Wesley, J. Grotemeyer, and E. W. Schlag, “Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules,” J. Phys. Chem.98(34), 8381–8391 (1994).
[CrossRef]

Arlett, J. L.

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol.6(4), 203–215 (2011).
[CrossRef] [PubMed]

Bang, O.

Bjørn Petersen, S.

M. T. Neves-Petersen, Z. Gryczynski, J. Lakowicz, P. Fojan, S. Pedersen, E. Petersen, and S. Bjørn Petersen, “High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue,” Protein Sci.11(3), 588–600 (2002).
[CrossRef] [PubMed]

Chang, K. S.

Y. G. Lee and K. S. Chang, “Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid,” Talanta65(5), 1335–1342 (2005).
[CrossRef] [PubMed]

Cooper, M. A.

M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit.20(3), 154–184 (2007).
[CrossRef] [PubMed]

Daghestani, H. N.

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland)10(11), 9630–9646 (2010).
[CrossRef]

Day, B. W.

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland)10(11), 9630–9646 (2010).
[CrossRef]

Du, C.

T. R. Ioerger, C. Du, and D. S. Linthicum, “Conservation of cys-cys trp structural triads and their geometry in the protein domains of immunoglobulin superfamily members,” Mol. Immunol.36(6), 373–386 (1999).
[CrossRef] [PubMed]

Duroux, M.

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15(2), 343–351 (2006).
[CrossRef] [PubMed]

Ebendorff-Heidepriem, H.

Ellman, G. L.

G. L. Ellman, “Tissue sulfhydryl groups,” Arch. Biochem. Biophys.82(1), 70–77 (1959).
[CrossRef] [PubMed]

Fojan, P.

M. T. Neves-Petersen, Z. Gryczynski, J. Lakowicz, P. Fojan, S. Pedersen, E. Petersen, and S. Bjørn Petersen, “High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue,” Protein Sci.11(3), 588–600 (2002).
[CrossRef] [PubMed]

Foo, T. C.

Fu, W.

C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, and W. Fu, “Development of a quartz crystal microbalance biosensor with aptamer as bio-recognition element,” Sensors (Basel Switzerland)10(6), 5859–5871 (2010).
[CrossRef]

Grotemeyer, J.

R. Weinkauf, P. Aicher, G. Wesley, J. Grotemeyer, and E. W. Schlag, “Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules,” J. Phys. Chem.98(34), 8381–8391 (1994).
[CrossRef]

Gryczynski, Z.

M. T. Neves-Petersen, Z. Gryczynski, J. Lakowicz, P. Fojan, S. Pedersen, E. Petersen, and S. Bjørn Petersen, “High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue,” Protein Sci.11(3), 588–600 (2002).
[CrossRef] [PubMed]

Gu, B.

Heuck, M.

Hoffmann, P.

Ioerger, T. R.

T. R. Ioerger, C. Du, and D. S. Linthicum, “Conservation of cys-cys trp structural triads and their geometry in the protein domains of immunoglobulin superfamily members,” Mol. Immunol.36(6), 373–386 (1999).
[CrossRef] [PubMed]

Ji, W.

Klitgaard, S.

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15(2), 343–351 (2006).
[CrossRef] [PubMed]

Knoll, W.

X. Su, Y. J. Wu, and W. Knoll, “Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization,” Biosens. Bioelectron.21(5), 719–726 (2005).
[CrossRef] [PubMed]

Lakowicz, J.

M. T. Neves-Petersen, Z. Gryczynski, J. Lakowicz, P. Fojan, S. Pedersen, E. Petersen, and S. Bjørn Petersen, “High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue,” Protein Sci.11(3), 588–600 (2002).
[CrossRef] [PubMed]

Lee, Y. G.

Y. G. Lee and K. S. Chang, “Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid,” Talanta65(5), 1335–1342 (2005).
[CrossRef] [PubMed]

Linthicum, D. S.

T. R. Ioerger, C. Du, and D. S. Linthicum, “Conservation of cys-cys trp structural triads and their geometry in the protein domains of immunoglobulin superfamily members,” Mol. Immunol.36(6), 373–386 (1999).
[CrossRef] [PubMed]

Lou, K.

Monro, T. M.

Moore, R. C.

Myers, E. B.

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol.6(4), 203–215 (2011).
[CrossRef] [PubMed]

Neves-Petersen, M. T.

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15(2), 343–351 (2006).
[CrossRef] [PubMed]

M. T. Neves-Petersen, Z. Gryczynski, J. Lakowicz, P. Fojan, S. Pedersen, E. Petersen, and S. Bjørn Petersen, “High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue,” Protein Sci.11(3), 588–600 (2002).
[CrossRef] [PubMed]

Ostuni, E.

E. Ostuni, L. Yan, and G. M. Whitesides, “The interaction of proteins with self-assembled monolayers of alkanethiolates on gold and silver,” Colloids Surf.13, 3–30 (1999).

Ott, J. R.

Pedersen, S.

M. T. Neves-Petersen, Z. Gryczynski, J. Lakowicz, P. Fojan, S. Pedersen, E. Petersen, and S. Bjørn Petersen, “High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue,” Protein Sci.11(3), 588–600 (2002).
[CrossRef] [PubMed]

Petersen, E.

M. T. Neves-Petersen, Z. Gryczynski, J. Lakowicz, P. Fojan, S. Pedersen, E. Petersen, and S. Bjørn Petersen, “High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue,” Protein Sci.11(3), 588–600 (2002).
[CrossRef] [PubMed]

Petersen, S. B.

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15(2), 343–351 (2006).
[CrossRef] [PubMed]

Qi, Y.

C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, and W. Fu, “Development of a quartz crystal microbalance biosensor with aptamer as bio-recognition element,” Sensors (Basel Switzerland)10(6), 5859–5871 (2010).
[CrossRef]

Rasmussen, P. D.

Roukes, M. L.

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol.6(4), 203–215 (2011).
[CrossRef] [PubMed]

Ruan, Y.

Sauerbrey, G. Z.

G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Z. Phys.155(2), 206–222 (1959).
[CrossRef]

Schlag, E. W.

R. Weinkauf, P. Aicher, G. Wesley, J. Grotemeyer, and E. W. Schlag, “Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules,” J. Phys. Chem.98(34), 8381–8391 (1994).
[CrossRef]

Singleton, V. T.

M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit.20(3), 154–184 (2007).
[CrossRef] [PubMed]

Snabe, T.

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15(2), 343–351 (2006).
[CrossRef] [PubMed]

Su, X.

X. Su, Y. J. Wu, and W. Knoll, “Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization,” Biosens. Bioelectron.21(5), 719–726 (2005).
[CrossRef] [PubMed]

Wang, H. T.

Warren-Smith, S.

Weinkauf, R.

R. Weinkauf, P. Aicher, G. Wesley, J. Grotemeyer, and E. W. Schlag, “Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules,” J. Phys. Chem.98(34), 8381–8391 (1994).
[CrossRef]

Wesley, G.

R. Weinkauf, P. Aicher, G. Wesley, J. Grotemeyer, and E. W. Schlag, “Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules,” J. Phys. Chem.98(34), 8381–8391 (1994).
[CrossRef]

Whitesides, G. M.

E. Ostuni, L. Yan, and G. M. Whitesides, “The interaction of proteins with self-assembled monolayers of alkanethiolates on gold and silver,” Colloids Surf.13, 3–30 (1999).

Wu, Y. J.

X. Su, Y. J. Wu, and W. Knoll, “Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization,” Biosens. Bioelectron.21(5), 719–726 (2005).
[CrossRef] [PubMed]

Xia, H.

C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, and W. Fu, “Development of a quartz crystal microbalance biosensor with aptamer as bio-recognition element,” Sensors (Basel Switzerland)10(6), 5859–5871 (2010).
[CrossRef]

Yan, L.

E. Ostuni, L. Yan, and G. M. Whitesides, “The interaction of proteins with self-assembled monolayers of alkanethiolates on gold and silver,” Colloids Surf.13, 3–30 (1999).

Yao, C.

C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, and W. Fu, “Development of a quartz crystal microbalance biosensor with aptamer as bio-recognition element,” Sensors (Basel Switzerland)10(6), 5859–5871 (2010).
[CrossRef]

Zhao, Y.

C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, and W. Fu, “Development of a quartz crystal microbalance biosensor with aptamer as bio-recognition element,” Sensors (Basel Switzerland)10(6), 5859–5871 (2010).
[CrossRef]

Zhu, T.

C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, and W. Fu, “Development of a quartz crystal microbalance biosensor with aptamer as bio-recognition element,” Sensors (Basel Switzerland)10(6), 5859–5871 (2010).
[CrossRef]

Arch. Biochem. Biophys. (1)

G. L. Ellman, “Tissue sulfhydryl groups,” Arch. Biochem. Biophys.82(1), 70–77 (1959).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

X. Su, Y. J. Wu, and W. Knoll, “Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization,” Biosens. Bioelectron.21(5), 719–726 (2005).
[CrossRef] [PubMed]

Colloids Surf. (1)

E. Ostuni, L. Yan, and G. M. Whitesides, “The interaction of proteins with self-assembled monolayers of alkanethiolates on gold and silver,” Colloids Surf.13, 3–30 (1999).

J. Mol. Recognit. (1)

M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit.20(3), 154–184 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

R. Weinkauf, P. Aicher, G. Wesley, J. Grotemeyer, and E. W. Schlag, “Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules,” J. Phys. Chem.98(34), 8381–8391 (1994).
[CrossRef]

Mol. Immunol. (1)

T. R. Ioerger, C. Du, and D. S. Linthicum, “Conservation of cys-cys trp structural triads and their geometry in the protein domains of immunoglobulin superfamily members,” Mol. Immunol.36(6), 373–386 (1999).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol.6(4), 203–215 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Protein Sci. (2)

M. T. Neves-Petersen, Z. Gryczynski, J. Lakowicz, P. Fojan, S. Pedersen, E. Petersen, and S. Bjørn Petersen, “High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue,” Protein Sci.11(3), 588–600 (2002).
[CrossRef] [PubMed]

M. T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, and S. B. Petersen, “Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces,” Protein Sci.15(2), 343–351 (2006).
[CrossRef] [PubMed]

Sensors (Basel Switzerland) (2)

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland)10(11), 9630–9646 (2010).
[CrossRef]

C. Yao, T. Zhu, Y. Qi, Y. Zhao, H. Xia, and W. Fu, “Development of a quartz crystal microbalance biosensor with aptamer as bio-recognition element,” Sensors (Basel Switzerland)10(6), 5859–5871 (2010).
[CrossRef]

Talanta (1)

Y. G. Lee and K. S. Chang, “Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid,” Talanta65(5), 1335–1342 (2005).
[CrossRef] [PubMed]

Z. Phys. (1)

G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Z. Phys.155(2), 206–222 (1959).
[CrossRef]

Other (3)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

DataBank RCSB PDB, IgG structure ( http://www.rcsb.org/pdb/explore/explore.do?structureId=3I75 ).

C. A. Janeway, Jr., P. Travers, M. Walport, and M. J. Shlomchiket, Immunobiology (Garland Science, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) One UV photon is absorbed by the antibody and the disulfide bridge is opened thereby forming thiol groups. Their interaction with the gold surface leads to oriented Fab region so that the upside down position (circled in the right side of the picture) is hampered and the antigen binding is more effective.

Fig. 2
Fig. 2

(a) Experimental setup to convey the molecules to the electrode. (b) QCM cell for fluidic applications with gold electrodes. (c) Typical output showing the decrease of the frequency due to the association (anchoring) and the frequency rise produced by the dissociation (unanchoring).

Fig. 3
Fig. 3

QCM output obtained with with 5µg/mL of anti IgG) and 1µg/mL of mouse IgG of non-irradiated (black solid line) and irradiated antibody (red dashed line). The vertical dashed lines show the steps described in the text.

Fig. 4
Fig. 4

Frequency shift measured with (red circle) irradiation and without (black square) antibody UV irradiation as a function of the antigen mass concentration. The best fit obtained with Eq. (3) provides (Δf)max = 182 Hz and [M]0 = 9.6 μg/mL for the non-irradiated sample. For the irradiated sample the dashed curve is Eq. (3) with (Δf)max,IRR = 273 Hz and [M]0,IRR = 6.4 μg/mL.

Fig. 5
Fig. 5

Absorbance of antibody at 412 nm as a function of the irradiation time. The average laser power is 0.3 W. The reagent DTNB is added immediately after the laser exposure providing a measurement of the opened disulfide bridges.

Fig. 6
Fig. 6

Absorbance of antibody at 412 nm as a function of the average laser power. The irradiation time is 5′.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r=p+p( 1p )+p[ 1p( 1p ) ]+p{ 1p[ 1p( 1p ) ] }...
r=1exp( Mp )=1exp( [ M ] [ M ] 0 )
Δf= ( Δf ) max [ 1exp( [ M ] [ M ] 0 ) ]
( Δf ) max,IRR ( Δf ) max = [ M ] 0 [ M ] 0,IRR p IRR p
S IRR = δ[ ( Δf ) IRR ] δ[ M ] = ( Δf ) max,IRR [ M ] 0,IRR = ( p IRR p ) 2 S

Metrics