Abstract

Multiple diameter single fiber reflectance (MDSFR) measurements of turbid media can be used to determine the reduced scattering coefficient (μ′s) and a parameter that characterizes the phase function (γ). The MDSFR method utilizes a semi-empirical model that expresses the collected single fiber reflectance intensity as a function of fiber diameter (dfiber), μ′s, and γ. This study investigated the sensitivity of the MDSFR estimates of μ′s and γ to the choice of fiber diameters and spectral information incorporated into the fitting procedure. The fit algorithm was tested using Monte Carlo simulations of single fiber reflectance intensities that investigated biologically relevant ranges of scattering properties (μ′s ∈ [0.4 – 4]mm−1) and phase functions (γ ∈ [1.4 – 1.9]) and for multiple fiber diameters (dfiber ∈ [0.2 – 1.5] mm). MDSFR analysis yielded accurate estimates of μ′s and γ over the wide range of scattering combinations; parameter accuracy was shown to be sensitive to the range of fiber diameters included in the analysis, but not to the number of intermediate fibers. Moreover, accurate parameter estimates were obtained without a priori knowledge about the spectral shape of γ. Observations were used to develop heuristic guidelines for the design of clinically applicable MDSFR probes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Boustany, S. Boppart, and V. Backman, “Microscopic Imaging and Spectroscopy with Scattered Light,” Annu. Rev. Biomed. Eng.12, 285–314 (2010).
    [CrossRef] [PubMed]
  2. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
    [CrossRef] [PubMed]
  3. I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Tech. Gastrointest. Endosc.7, 100–105 (2005).
    [CrossRef]
  4. J. Mourant, J. Boyer, A. Hielscher, and I. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett.21, 546–548 (1996).
    [CrossRef] [PubMed]
  5. M. Canpolat and J. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol.45, 1127–1140 (2000).
    [CrossRef] [PubMed]
  6. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A16, 2935–2945 (1999).
    [CrossRef]
  7. A. Kienle, F. Forster, and R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,” Opt. Lett.26, 1571–1573 (2001).
    [CrossRef]
  8. F. Bevilacqua, D. Piguet, P. Marquet, J. Gross, B. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt.38, 4939–4950 (1999).
    [CrossRef]
  9. E. Hull and T. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A18, 584–599 (2001).
    [CrossRef]
  10. P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003).
    [CrossRef] [PubMed]
  11. H. Tian, Y. Liu, and L. Wang, “Influence of the third-order parameter on diffuse reflectance at small source-detector separations,” Opt. Lett.31, 933–935 (2006).
    [CrossRef] [PubMed]
  12. S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2, 1687–1702 (2011).
    [CrossRef] [PubMed]
  13. S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
    [CrossRef] [PubMed]
  14. W.F. Cheong, S.A. Prahl, and A.J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect.26, 2166–2185 (1990).
    [CrossRef]
  15. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11, 064026 (2006).
    [CrossRef]
  16. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy,” Phys. Med. Biol.54, 6991–7008 (2009).
    [CrossRef] [PubMed]
  17. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett.36, 2791–2793 (2011).
    [CrossRef] [PubMed]
  18. P. Bargo, S. Prahl, and S. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt.42, 3187–3197 (2003).
    [CrossRef] [PubMed]
  19. L. Wang, S. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed.47, 131–146 (1995).
    [CrossRef]
  20. A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt.5, 83–92 (2000).
    [CrossRef] [PubMed]
  21. J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt.10, 044014 (2005).
    [CrossRef]
  22. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett.30, 3051–3053 (2005).
    [CrossRef] [PubMed]
  23. F. Bevilacqua, A. Berger, A. Cerussi, D. Jakubowski, and B. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt.39, 6498–6507 (2000).
    [CrossRef]
  24. J. Mourant, J. Freyer, A. Hielscher, A. Eick, D. Shen, and T. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37, 3586–3593 (1998).
    [CrossRef]
  25. A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt.13, 054044 (2008).
    [CrossRef] [PubMed]
  26. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett.27, 246–248 (2002).
    [CrossRef]
  27. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13, 050501 (2008).
    [CrossRef] [PubMed]
  28. G. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45, 1062–1071 (2006).
    [CrossRef] [PubMed]
  29. D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online5, 49 (2006).
    [CrossRef] [PubMed]
  30. R. Reif, O. A’Amar, and I. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt.46, 7317–7328 (2007).
    [CrossRef] [PubMed]
  31. R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M.-A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” Opt. Express17, 17502–17516 (2009).
    [CrossRef] [PubMed]
  32. A. Kim, M. Roy, F. Dadani, and B. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18, 5580–5594 (2010).
    [CrossRef] [PubMed]

2011

2010

2009

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy,” Phys. Med. Biol.54, 6991–7008 (2009).
[CrossRef] [PubMed]

R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M.-A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” Opt. Express17, 17502–17516 (2009).
[CrossRef] [PubMed]

2008

A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt.13, 054044 (2008).
[CrossRef] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13, 050501 (2008).
[CrossRef] [PubMed]

2007

2006

G. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45, 1062–1071 (2006).
[CrossRef] [PubMed]

H. Tian, Y. Liu, and L. Wang, “Influence of the third-order parameter on diffuse reflectance at small source-detector separations,” Opt. Lett.31, 933–935 (2006).
[CrossRef] [PubMed]

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online5, 49 (2006).
[CrossRef] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11, 064026 (2006).
[CrossRef]

2005

J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt.10, 044014 (2005).
[CrossRef]

I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Tech. Gastrointest. Endosc.7, 100–105 (2005).
[CrossRef]

M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett.30, 3051–3053 (2005).
[CrossRef] [PubMed]

2003

P. Bargo, S. Prahl, and S. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt.42, 3187–3197 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
[CrossRef] [PubMed]

P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003).
[CrossRef] [PubMed]

2002

2001

2000

F. Bevilacqua, A. Berger, A. Cerussi, D. Jakubowski, and B. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt.39, 6498–6507 (2000).
[CrossRef]

M. Canpolat and J. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol.45, 1127–1140 (2000).
[CrossRef] [PubMed]

A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt.5, 83–92 (2000).
[CrossRef] [PubMed]

1999

1998

1996

1995

L. Wang, S. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed.47, 131–146 (1995).
[CrossRef]

1990

W.F. Cheong, S.A. Prahl, and A.J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect.26, 2166–2185 (1990).
[CrossRef]

A’Amar, O.

Agrawal, A.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online5, 49 (2006).
[CrossRef] [PubMed]

Alfano, R. R.

Amelink, A.

Backman, V.

N. Boustany, S. Boppart, and V. Backman, “Microscopic Imaging and Spectroscopy with Scattered Light,” Annu. Rev. Biomed. Eng.12, 285–314 (2010).
[CrossRef] [PubMed]

Bargo, P.

Berger, A.

Bevilacqua, F.

Bigio, I.

Boehlau-Godau, M.

A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt.5, 83–92 (2000).
[CrossRef] [PubMed]

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
[CrossRef] [PubMed]

Boppart, S.

N. Boustany, S. Boppart, and V. Backman, “Microscopic Imaging and Spectroscopy with Scattered Light,” Annu. Rev. Biomed. Eng.12, 285–314 (2010).
[CrossRef] [PubMed]

Boustany, N.

N. Boustany, S. Boppart, and V. Backman, “Microscopic Imaging and Spectroscopy with Scattered Light,” Annu. Rev. Biomed. Eng.12, 285–314 (2010).
[CrossRef] [PubMed]

Boyer, J.

Canpolat, M.

M. Canpolat and J. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol.45, 1127–1140 (2000).
[CrossRef] [PubMed]

Cerussi, A.

Chandra, M.

Charvet, I.

P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003).
[CrossRef] [PubMed]

Cheong, W.F.

W.F. Cheong, S.A. Prahl, and A.J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect.26, 2166–2185 (1990).
[CrossRef]

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
[CrossRef] [PubMed]

Dadani, F.

Decraemer, W. F.

J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt.10, 044014 (2005).
[CrossRef]

Depeursinge, C.

Dirckx, J. J. J.

J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt.10, 044014 (2005).
[CrossRef]

Drezek, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
[CrossRef] [PubMed]

Eick, A.

Follen, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
[CrossRef] [PubMed]

Forster, F.

Foster, T.

Freyer, J.

Gamm, U. A.

Georgakoudi, I.

I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Tech. Gastrointest. Endosc.7, 100–105 (2005).
[CrossRef]

Ghislain, M.

P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003).
[CrossRef] [PubMed]

Gross, J.

Guillaud, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
[CrossRef] [PubMed]

Hibst, R.

Hielscher, A.

Hull, E.

Jacques, S.

P. Bargo, S. Prahl, and S. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt.42, 3187–3197 (2003).
[CrossRef] [PubMed]

L. Wang, S. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed.47, 131–146 (1995).
[CrossRef]

Jakubowski, D.

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11, 064026 (2006).
[CrossRef]

Johnson, T.

Kanick, S. C.

Kienle, A.

Kim, A.

Knüttel, A.

A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt.5, 83–92 (2000).
[CrossRef] [PubMed]

Kuypers, L. C.

J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt.10, 044014 (2005).
[CrossRef]

Liu, Y.

Macaulay, C.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
[CrossRef] [PubMed]

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
[CrossRef] [PubMed]

Marquet, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. Gross, B. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt.38, 4939–4950 (1999).
[CrossRef]

Matchette, L. S.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online5, 49 (2006).
[CrossRef] [PubMed]

McKenna, B.

Meda, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003).
[CrossRef] [PubMed]

Mourant, J.

Mycek, M.-A.

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13, 050501 (2008).
[CrossRef] [PubMed]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11, 064026 (2006).
[CrossRef]

Ory, G.

P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003).
[CrossRef] [PubMed]

Palmer, G.

Pfefer, T. J.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online5, 49 (2006).
[CrossRef] [PubMed]

Piguet, D.

Prahl, S.

Prahl, S.A.

W.F. Cheong, S.A. Prahl, and A.J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect.26, 2166–2185 (1990).
[CrossRef]

Purdy, J.

Rajaram, N.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13, 050501 (2008).
[CrossRef] [PubMed]

Ramanujam, N.

Reif, R.

Richards-Kortum, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
[CrossRef] [PubMed]

Robinson, D. J.

Roy, M.

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11, 064026 (2006).
[CrossRef]

Scheiman, J.

Schouten, M.

Sharma, D.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online5, 49 (2006).
[CrossRef] [PubMed]

Shen, D.

Simeone, D.

Sterenborg, H. J. C. M.

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2, 1687–1702 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett.36, 2791–2793 (2011).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy,” Phys. Med. Biol.54, 6991–7008 (2009).
[CrossRef] [PubMed]

A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt.13, 054044 (2008).
[CrossRef] [PubMed]

R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett.27, 246–248 (2002).
[CrossRef]

Thueler, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003).
[CrossRef] [PubMed]

Tian, H.

Tromberg, B.

Tunnell, J. W.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13, 050501 (2008).
[CrossRef] [PubMed]

Van Dam, J.

I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Tech. Gastrointest. Endosc.7, 100–105 (2005).
[CrossRef]

van Veen, R. L. P.

Verkruysse, W.

Vermeulen, B.

P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003).
[CrossRef] [PubMed]

Wang, L.

H. Tian, Y. Liu, and L. Wang, “Influence of the third-order parameter on diffuse reflectance at small source-detector separations,” Opt. Lett.31, 933–935 (2006).
[CrossRef] [PubMed]

L. Wang, S. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed.47, 131–146 (1995).
[CrossRef]

Welch, A.J.

W.F. Cheong, S.A. Prahl, and A.J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect.26, 2166–2185 (1990).
[CrossRef]

Wilson, B.

Wilson, R. H.

Xu, M.

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11, 064026 (2006).
[CrossRef]

Zheng, L.

L. Wang, S. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed.47, 131–146 (1995).
[CrossRef]

Annu. Rev. Biomed. Eng.

N. Boustany, S. Boppart, and V. Backman, “Microscopic Imaging and Spectroscopy with Scattered Light,” Annu. Rev. Biomed. Eng.12, 285–314 (2010).
[CrossRef] [PubMed]

Appl. Opt.

Biomed. Eng. Online

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online5, 49 (2006).
[CrossRef] [PubMed]

Biomed. Opt. Express

Comp. Meth. Prog. Biomed.

L. Wang, S. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed.47, 131–146 (1995).
[CrossRef]

IEEE J. Quantum Elect.

W.F. Cheong, S.A. Prahl, and A.J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect.26, 2166–2185 (1990).
[CrossRef]

J. Biomed. Opt.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11, 064026 (2006).
[CrossRef]

A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt.5, 83–92 (2000).
[CrossRef] [PubMed]

J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt.10, 044014 (2005).
[CrossRef]

A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt.13, 054044 (2008).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003).
[CrossRef] [PubMed]

P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003).
[CrossRef] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13, 050501 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

H. Tian, Y. Liu, and L. Wang, “Influence of the third-order parameter on diffuse reflectance at small source-detector separations,” Opt. Lett.31, 933–935 (2006).
[CrossRef] [PubMed]

M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett.30, 3051–3053 (2005).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett.36, 2791–2793 (2011).
[CrossRef] [PubMed]

S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011).
[CrossRef] [PubMed]

A. Kienle, F. Forster, and R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,” Opt. Lett.26, 1571–1573 (2001).
[CrossRef]

R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett.27, 246–248 (2002).
[CrossRef]

J. Mourant, J. Boyer, A. Hielscher, and I. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett.21, 546–548 (1996).
[CrossRef] [PubMed]

Phys. Med. Biol.

M. Canpolat and J. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol.45, 1127–1140 (2000).
[CrossRef] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy,” Phys. Med. Biol.54, 6991–7008 (2009).
[CrossRef] [PubMed]

Tech. Gastrointest. Endosc.

I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Tech. Gastrointest. Endosc.7, 100–105 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Single fiber reflectance spectroscopy setup.

Fig. 2
Fig. 2

Wavelength dependent reduced scattering coefficient for the 3 scattering sets considered in simulations.

Fig. 3
Fig. 3

a) Simulated MDSFR reflectance measurements for 7 fiber diameters as a function of wavelength, and b) simulated and fitted reflectance at a single wavelength (800 nm) as a function of fiber diameter.

Fig. 4
Fig. 4

a) MDSFR estimated vs. simulated μ′s, and b) MDSFR estimated vs. simulated γ for the entire data set for all 11 wavelengths (λ = 400 – 900 nm). Calculations utilized 7 fiber diameters in the fitting procedure in the range dfiber ∈ [0.2 – 1.5] mm.

Fig. 5
Fig. 5

Effect of different fiber diameter combinations on the mean residual error of μ′s and γ estimated by single wavelength MDSFR analysis. a) and b) shows subsequent removal of large fibers; all remaining smaller fibers were included. c) and d) shows subsequent removal of small fibers; all remaining larger fibers were included. e) and f) shows removal of intermediate fibers; reflectance data from 0.2 mm and 1.5 mm fibers were always included. Note the difference in y-axis scale between panels a and b–f. Scattering set 1: μ′s = 0.4 – 1.0 mm−1; scattering set 2: μ′s = 0.9 – 2.0 mm−1; scattering set 3: μ′s = 1.8 – 4.0 mm−1.

Fig. 6
Fig. 6

Example for spectrally resolved MDSFR fitting procedure using data from scattering set 3 (μ′s(800 nm) = 2 mm−1): a) simulated MDSFR intensities for 7 fiber diameters, b) MDSFR intensity vs. fiber diameter for all wavelengths, c) estimated and simulated γ as a function of wavelength and d) estimated and simulated μ′s as a function of wavelength for I) wavelength independent γ and g1, II) wavelength dependent γ and g1 and III) random γ and g1.

Fig. 7
Fig. 7

Spectrally resolved MDSFR fitting procedure: a) estimated vs. real μ′s; b) estimated vs. real γ for I) wavelength independent γ and g, II) wavelength dependent γ and g1 and III) random γ and g1. The analysis was performed over the whole dataset including all 3 scattering ranges and all 11 wavelengths (λ = 400 – 900 nm).

Fig. 8
Fig. 8

Sensitivity of spectrally resolved MDSFR estimates of a) μ′s and b) γ to the choice of fiber diameters within a 2 fiber MDSFR probe. Data from all 11 wavelengths (λ = 400 – 900 nm) were included.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

γ = 1 g 2 1 g 1
R SF = R SF o e μ a L SF
L SF d fiber = C P F 1.54 ( μ s d fiber ) 0.18 ( 0.64 + ( μ a d fiber ) 0.64 )
R SF o = η limit ( 1 + 0.63 γ 2 e 2.31 γ 2 ( μ s d fiber ) ) [ ( μ s d fiber ) 0.57 γ 2.31 γ 2 + ( μ s d fiber ) 0.57 γ ]
μ s ( λ ) = a 1 ( λ λ 0 ) a 2
p MHG ( θ ) = α PHG ( θ , g HG ) + ( 1 α ) 3 4 π cos 2 ( θ )
R SF o ( λ i , d fiber j ) = η limit ( 1 + 0.63 γ i 2 e 2.31 γ i 2 ( a 1 ( λ i λ 0 ) a 2 ) d fiber j ) [ ( ( a 1 ( λ i λ 0 ) a 2 ) d fiber j ) 0.57 γ i 2.31 γ i 2 + ( ( a 1 ( λ i λ 0 ) a 2 ) d fiber j ) 0.57 γ i ]
R SF = η limit ( 1 + ρ 3 e ( ρ 1 μ s d fiber ) ) [ ( μ s d fiber ) ρ 2 ρ 1 + ( μ s d fiber ) ρ 2 ] e ( μ a tissue L SF )
L SF = d fiber C PF 1.54 ( μ s d fiber ) 0.18 ( 0.64 + ( μ a d fiber ) 0.64 )
μ a tissue = k c k ɛ k
R SF 0 ( d fiber ) = R SF ( d fiber ) e ( μ a tissue L SF )

Metrics