Abstract

In studies of in vivo extracellular recording, we usually penetrate electrodes almost blindly into the neural tissue, in order to detect the neural activity from an expected target location at a certain depth. After the recording, it is necessary for us to determine the position of the electrodes precisely. Generally, to identify the position of the electrode, one method is to examine the postmortem tissue sample at micron resolution. The other method is using MRI and it does not have enough resolution to resolve the neural structures. To solve such problems, we propose swept source optical coherence tomography (SS-OCT) as a tool to visualize the cross-sectional image of the neural target structure along with the penetrating electrode. We focused on a rodent olfactory bulb (OB) as the target. We succeeded in imaging both the OB layer structure and the penetrating electrode, simultaneously. The method has the advantage of detecting the electrode shape and the position in real time, in vivo. These results indicate the possibility of using SS-OCT as a powerful tool for guiding the electrode into the target tissue precisely in real time and localizing the electrode tip during electrophysiological recordings.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Fantana, E. R. Soucy, and M. Meister, “Rat olfactory bulb mitral cells receive sparse glomerular inputs,” Neuron59(5), 802–814 (2008).
    [CrossRef] [PubMed]
  2. S. Nagayama, Y. K. Takahashi, Y. Yoshihara, and K. Mori, “Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb,” J. Neurophysiol.91(6), 2532–2540 (2004).
    [CrossRef] [PubMed]
  3. E. R. Griff, M. Mafhouz, A. Perrut, and M. A. Chaput, “Comparison of identified mitral and tufted cells in freely breathing rats: I. Conduction velocity and spontaneous activity,” Chem. Senses33(9), 779–792 (2008).
    [CrossRef] [PubMed]
  4. J. Chapuis, S. Garcia, B. Messaoudi, M. Thevenet, G. Ferreira, R. Gervais, and N. Ravel, “The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats,” J. Neurosci.29(33), 10287–10298 (2009).
    [CrossRef] [PubMed]
  5. T. Sato, G. Uchida, and M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex19(8), 1870–1888 (2009).
    [CrossRef] [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  7. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010).
    [CrossRef] [PubMed]
  8. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography (Springer-Verlag, 2008).
  9. B. E. Bouma and G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  10. W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, and K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci. 171.19 (2010).
  11. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods124(1), 83–92 (2003).
    [CrossRef] [PubMed]
  12. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
    [CrossRef] [PubMed]
  13. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  14. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  15. H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, V. D. Madjarova, H. Kadono, and M. Tanifuji, “In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy,” Biomed. Opt. Express2(8), 2279–2287 (2011).
    [CrossRef] [PubMed]
  16. W. R. Chen, J. Midtgaard, and G. M. Shepherd, “Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells,” Science278(5337), 463–467 (1997).
    [CrossRef] [PubMed]
  17. H. Matsumoto, H. Kashiwadani, H. Nagao, A. Aiba, and K. Mori, “Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb,” J. Neurophysiol.101(4), 1890–1900 (2009).
    [CrossRef] [PubMed]
  18. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).
    [CrossRef] [PubMed]
  19. S. A. Boppart, “Optical coherence tomography: technology and applications for neuroimaging,” Psychophysiology40(4), 529–541 (2003).
    [CrossRef] [PubMed]
  20. M. Lalancette-Hébert, D. Phaneuf, G. Soucy, Y. C. Weng, and J. Kriz, “Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation,” Brain132(4), 940–954 (2009).
    [CrossRef] [PubMed]
  21. S. Breit, J. B. Schulz, and A. L. Benabid, “Deep brain stimulation,” Cell Tissue Res.318(1), 275–288 (2004).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

2009 (5)

H. Matsumoto, H. Kashiwadani, H. Nagao, A. Aiba, and K. Mori, “Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb,” J. Neurophysiol.101(4), 1890–1900 (2009).
[CrossRef] [PubMed]

M. Lalancette-Hébert, D. Phaneuf, G. Soucy, Y. C. Weng, and J. Kriz, “Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation,” Brain132(4), 940–954 (2009).
[CrossRef] [PubMed]

J. Chapuis, S. Garcia, B. Messaoudi, M. Thevenet, G. Ferreira, R. Gervais, and N. Ravel, “The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats,” J. Neurosci.29(33), 10287–10298 (2009).
[CrossRef] [PubMed]

T. Sato, G. Uchida, and M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex19(8), 1870–1888 (2009).
[CrossRef] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

2008 (2)

E. R. Griff, M. Mafhouz, A. Perrut, and M. A. Chaput, “Comparison of identified mitral and tufted cells in freely breathing rats: I. Conduction velocity and spontaneous activity,” Chem. Senses33(9), 779–792 (2008).
[CrossRef] [PubMed]

A. L. Fantana, E. R. Soucy, and M. Meister, “Rat olfactory bulb mitral cells receive sparse glomerular inputs,” Neuron59(5), 802–814 (2008).
[CrossRef] [PubMed]

2004 (2)

S. Nagayama, Y. K. Takahashi, Y. Yoshihara, and K. Mori, “Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb,” J. Neurophysiol.91(6), 2532–2540 (2004).
[CrossRef] [PubMed]

S. Breit, J. B. Schulz, and A. L. Benabid, “Deep brain stimulation,” Cell Tissue Res.318(1), 275–288 (2004).
[CrossRef] [PubMed]

2003 (3)

S. A. Boppart, “Optical coherence tomography: technology and applications for neuroimaging,” Psychophysiology40(4), 529–541 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods124(1), 83–92 (2003).
[CrossRef] [PubMed]

1997 (2)

W. R. Chen, J. Midtgaard, and G. M. Shepherd, “Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells,” Science278(5337), 463–467 (1997).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Aguirre, A. D.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

Aiba, A.

H. Matsumoto, H. Kashiwadani, H. Nagao, A. Aiba, and K. Mori, “Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb,” J. Neurophysiol.101(4), 1890–1900 (2009).
[CrossRef] [PubMed]

Benabid, A. L.

S. Breit, J. B. Schulz, and A. L. Benabid, “Deep brain stimulation,” Cell Tissue Res.318(1), 275–288 (2004).
[CrossRef] [PubMed]

Boas, D. A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

Boppart, S. A.

S. A. Boppart, “Optical coherence tomography: technology and applications for neuroimaging,” Psychophysiology40(4), 529–541 (2003).
[CrossRef] [PubMed]

Breit, S.

S. Breit, J. B. Schulz, and A. L. Benabid, “Deep brain stimulation,” Cell Tissue Res.318(1), 275–288 (2004).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chapuis, J.

J. Chapuis, S. Garcia, B. Messaoudi, M. Thevenet, G. Ferreira, R. Gervais, and N. Ravel, “The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats,” J. Neurosci.29(33), 10287–10298 (2009).
[CrossRef] [PubMed]

Chaput, M. A.

E. R. Griff, M. Mafhouz, A. Perrut, and M. A. Chaput, “Comparison of identified mitral and tufted cells in freely breathing rats: I. Conduction velocity and spontaneous activity,” Chem. Senses33(9), 779–792 (2008).
[CrossRef] [PubMed]

Chen, W. R.

W. R. Chen, J. Midtgaard, and G. M. Shepherd, “Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells,” Science278(5337), 463–467 (1997).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

Chinn, S. R.

Choma, M. A.

Devor, A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

Fantana, A. L.

A. L. Fantana, E. R. Soucy, and M. Meister, “Rat olfactory bulb mitral cells receive sparse glomerular inputs,” Neuron59(5), 802–814 (2008).
[CrossRef] [PubMed]

Ferreira, G.

J. Chapuis, S. Garcia, B. Messaoudi, M. Thevenet, G. Ferreira, R. Gervais, and N. Ravel, “The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats,” J. Neurosci.29(33), 10287–10298 (2009).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Garcia, S.

J. Chapuis, S. Garcia, B. Messaoudi, M. Thevenet, G. Ferreira, R. Gervais, and N. Ravel, “The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats,” J. Neurosci.29(33), 10287–10298 (2009).
[CrossRef] [PubMed]

Gervais, R.

J. Chapuis, S. Garcia, B. Messaoudi, M. Thevenet, G. Ferreira, R. Gervais, and N. Ravel, “The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats,” J. Neurosci.29(33), 10287–10298 (2009).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Griff, E. R.

E. R. Griff, M. Mafhouz, A. Perrut, and M. A. Chaput, “Comparison of identified mitral and tufted cells in freely breathing rats: I. Conduction velocity and spontaneous activity,” Chem. Senses33(9), 779–792 (2008).
[CrossRef] [PubMed]

Hanazono, G.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, and K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci. 171.19 (2010).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods124(1), 83–92 (2003).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Igarashi, K. M.

Ito, K.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, and K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci. 171.19 (2010).

Izatt, J. A.

Kadono, H.

H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, V. D. Madjarova, H. Kadono, and M. Tanifuji, “In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy,” Biomed. Opt. Express2(8), 2279–2287 (2011).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods124(1), 83–92 (2003).
[CrossRef] [PubMed]

Kang, J. U.

Kashiwadani, H.

H. Matsumoto, H. Kashiwadani, H. Nagao, A. Aiba, and K. Mori, “Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb,” J. Neurophysiol.101(4), 1890–1900 (2009).
[CrossRef] [PubMed]

Kriz, J.

M. Lalancette-Hébert, D. Phaneuf, G. Soucy, Y. C. Weng, and J. Kriz, “Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation,” Brain132(4), 940–954 (2009).
[CrossRef] [PubMed]

Lalancette-Hébert, M.

M. Lalancette-Hébert, D. Phaneuf, G. Soucy, Y. C. Weng, and J. Kriz, “Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation,” Brain132(4), 940–954 (2009).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Madjarova, V. D.

Mafhouz, M.

E. R. Griff, M. Mafhouz, A. Perrut, and M. A. Chaput, “Comparison of identified mitral and tufted cells in freely breathing rats: I. Conduction velocity and spontaneous activity,” Chem. Senses33(9), 779–792 (2008).
[CrossRef] [PubMed]

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods124(1), 83–92 (2003).
[CrossRef] [PubMed]

Matsumoto, H.

H. Matsumoto, H. Kashiwadani, H. Nagao, A. Aiba, and K. Mori, “Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb,” J. Neurophysiol.101(4), 1890–1900 (2009).
[CrossRef] [PubMed]

Meister, M.

A. L. Fantana, E. R. Soucy, and M. Meister, “Rat olfactory bulb mitral cells receive sparse glomerular inputs,” Neuron59(5), 802–814 (2008).
[CrossRef] [PubMed]

Messaoudi, B.

J. Chapuis, S. Garcia, B. Messaoudi, M. Thevenet, G. Ferreira, R. Gervais, and N. Ravel, “The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats,” J. Neurosci.29(33), 10287–10298 (2009).
[CrossRef] [PubMed]

Midtgaard, J.

W. R. Chen, J. Midtgaard, and G. M. Shepherd, “Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells,” Science278(5337), 463–467 (1997).
[CrossRef] [PubMed]

Mori, K.

H. Matsumoto, H. Kashiwadani, H. Nagao, A. Aiba, and K. Mori, “Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb,” J. Neurophysiol.101(4), 1890–1900 (2009).
[CrossRef] [PubMed]

S. Nagayama, Y. K. Takahashi, Y. Yoshihara, and K. Mori, “Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb,” J. Neurophysiol.91(6), 2532–2540 (2004).
[CrossRef] [PubMed]

Nagao, H.

H. Matsumoto, H. Kashiwadani, H. Nagao, A. Aiba, and K. Mori, “Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb,” J. Neurophysiol.101(4), 1890–1900 (2009).
[CrossRef] [PubMed]

Nagayama, S.

S. Nagayama, Y. K. Takahashi, Y. Yoshihara, and K. Mori, “Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb,” J. Neurophysiol.91(6), 2532–2540 (2004).
[CrossRef] [PubMed]

Nakamichi, Y.

Nanjo, T.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, and K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci. 171.19 (2010).

Nishiyama, J.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, and K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci. 171.19 (2010).

Perrut, A.

E. R. Griff, M. Mafhouz, A. Perrut, and M. A. Chaput, “Comparison of identified mitral and tufted cells in freely breathing rats: I. Conduction velocity and spontaneous activity,” Chem. Senses33(9), 779–792 (2008).
[CrossRef] [PubMed]

Phaneuf, D.

M. Lalancette-Hébert, D. Phaneuf, G. Soucy, Y. C. Weng, and J. Kriz, “Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation,” Brain132(4), 940–954 (2009).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rajagopalan, U. M.

Ravel, N.

J. Chapuis, S. Garcia, B. Messaoudi, M. Thevenet, G. Ferreira, R. Gervais, and N. Ravel, “The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats,” J. Neurosci.29(33), 10287–10298 (2009).
[CrossRef] [PubMed]

Ruvinskaya, L.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

Sarunic, M. V.

Sato, T.

T. Sato, G. Uchida, and M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex19(8), 1870–1888 (2009).
[CrossRef] [PubMed]

Schulz, J. B.

S. Breit, J. B. Schulz, and A. L. Benabid, “Deep brain stimulation,” Cell Tissue Res.318(1), 275–288 (2004).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shepherd, G. M.

W. R. Chen, J. Midtgaard, and G. M. Shepherd, “Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells,” Science278(5337), 463–467 (1997).
[CrossRef] [PubMed]

Soucy, E. R.

A. L. Fantana, E. R. Soucy, and M. Meister, “Rat olfactory bulb mitral cells receive sparse glomerular inputs,” Neuron59(5), 802–814 (2008).
[CrossRef] [PubMed]

Soucy, G.

M. Lalancette-Hébert, D. Phaneuf, G. Soucy, Y. C. Weng, and J. Kriz, “Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation,” Brain132(4), 940–954 (2009).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Suzuki, W.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, and K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci. 171.19 (2010).

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Takahashi, Y. K.

S. Nagayama, Y. K. Takahashi, Y. Yoshihara, and K. Mori, “Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb,” J. Neurophysiol.91(6), 2532–2540 (2004).
[CrossRef] [PubMed]

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods124(1), 83–92 (2003).
[CrossRef] [PubMed]

Tanifuji, M.

H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, V. D. Madjarova, H. Kadono, and M. Tanifuji, “In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy,” Biomed. Opt. Express2(8), 2279–2287 (2011).
[CrossRef] [PubMed]

T. Sato, G. Uchida, and M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex19(8), 1870–1888 (2009).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods124(1), 83–92 (2003).
[CrossRef] [PubMed]

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, and K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci. 171.19 (2010).

Thevenet, M.

J. Chapuis, S. Garcia, B. Messaoudi, M. Thevenet, G. Ferreira, R. Gervais, and N. Ravel, “The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats,” J. Neurosci.29(33), 10287–10298 (2009).
[CrossRef] [PubMed]

Tsunoda, K.

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, and K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci. 171.19 (2010).

Uchida, G.

T. Sato, G. Uchida, and M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex19(8), 1870–1888 (2009).
[CrossRef] [PubMed]

Watanabe, H.

Weng, Y. C.

M. Lalancette-Hébert, D. Phaneuf, G. Soucy, Y. C. Weng, and J. Kriz, “Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation,” Brain132(4), 940–954 (2009).
[CrossRef] [PubMed]

Wojtkowski, M.

Yang, C.

Yoshihara, Y.

S. Nagayama, Y. K. Takahashi, Y. Yoshihara, and K. Mori, “Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb,” J. Neurophysiol.91(6), 2532–2540 (2004).
[CrossRef] [PubMed]

Zhang, K.

Appl. Opt. (1)

Biomed. Opt. Express (1)

Brain (1)

M. Lalancette-Hébert, D. Phaneuf, G. Soucy, Y. C. Weng, and J. Kriz, “Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation,” Brain132(4), 940–954 (2009).
[CrossRef] [PubMed]

Cell Tissue Res. (1)

S. Breit, J. B. Schulz, and A. L. Benabid, “Deep brain stimulation,” Cell Tissue Res.318(1), 275–288 (2004).
[CrossRef] [PubMed]

Cereb. Cortex (1)

T. Sato, G. Uchida, and M. Tanifuji, “Cortical columnar organization is reconsidered in inferior temporal cortex,” Cereb. Cortex19(8), 1870–1888 (2009).
[CrossRef] [PubMed]

Chem. Senses (1)

E. R. Griff, M. Mafhouz, A. Perrut, and M. A. Chaput, “Comparison of identified mitral and tufted cells in freely breathing rats: I. Conduction velocity and spontaneous activity,” Chem. Senses33(9), 779–792 (2008).
[CrossRef] [PubMed]

J. Neurophysiol. (2)

H. Matsumoto, H. Kashiwadani, H. Nagao, A. Aiba, and K. Mori, “Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb,” J. Neurophysiol.101(4), 1890–1900 (2009).
[CrossRef] [PubMed]

S. Nagayama, Y. K. Takahashi, Y. Yoshihara, and K. Mori, “Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb,” J. Neurophysiol.91(6), 2532–2540 (2004).
[CrossRef] [PubMed]

J. Neurosci. (1)

J. Chapuis, S. Garcia, B. Messaoudi, M. Thevenet, G. Ferreira, R. Gervais, and N. Ravel, “The way an odor is experienced during aversive conditioning determines the extent of the network recruited during retrieval: a multisite electrophysiological study in rats,” J. Neurosci.29(33), 10287–10298 (2009).
[CrossRef] [PubMed]

J. Neurosci. Methods (2)

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods124(1), 83–92 (2003).
[CrossRef] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

Neuron (1)

A. L. Fantana, E. R. Soucy, and M. Meister, “Rat olfactory bulb mitral cells receive sparse glomerular inputs,” Neuron59(5), 802–814 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Psychophysiology (1)

S. A. Boppart, “Optical coherence tomography: technology and applications for neuroimaging,” Psychophysiology40(4), 529–541 (2003).
[CrossRef] [PubMed]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

W. R. Chen, J. Midtgaard, and G. M. Shepherd, “Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells,” Science278(5337), 463–467 (1997).
[CrossRef] [PubMed]

Other (3)

W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography (Springer-Verlag, 2008).

B. E. Bouma and G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).

W. Suzuki, G. Hanazono, T. Nanjo, K. Ito, J. Nishiyama, M. Tanifuji, and K. Tsunoda, “Intrinsic signals in different layers of macaque retina revealed by optical coherence tomography (OCT),” Abstr. Soc. Neurosci. 171.19 (2010).

Supplementary Material (2)

» Media 1: MPG (3813 KB)     
» Media 2: MPG (1199 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Neural layer structure of OB imaged by using SS-OCT. OB consists of distinctive different layers, namely: glomerulous layer (GL), external plexiform layer (EPL), mitral cell body layer (MCL) and granule cell layer (GCL). Here, we choose MCL as our specific target layer that is known to contain mainly cell bodies from which extracellular recordings are usually done. The arrows on the left corner indicate the anterior-posterior and dorsal-ventral parts of the rat. A, anterior; P, posterior; D, dorsal; V, ventral. Scale bar, 100 μm.

Fig. 2
Fig. 2

(a) A schematic view of the olfactory bulb (OB) with an electrode penetration and the OCT probe unit. The arrows on the left corner indicate the anterior-posterior and dorsal-ventral parts of the rat. A, anterior; P, posterior; D, dorsal; V, ventral. (b) A schematic of the magnified view of the electrode into mitral cell body layer (MCL) of OB. The angle between the optical axis and the electrode was set to be approximately 45 degree. (c) An optical micrograph of the optical probe unit of SS-OCT and the electrode probe unit. (d) An optical micrograph of the electrode with the external insulator seen as white and the exposed tungsten electrode seen rather as gray with the scale bar corresponding to 50 μm.

Fig. 3
Fig. 3

Raw OCT B-scan images obtained during the electrode penetration process at different times (a) t = 0, (b) t = 7, (c) t = 10.5, and (d) t = 14 sec. The penetration process was monitored and finally reaching the target location of MCL. We saw granular structure corresponding to speckles appearing as a result of multiple scattering within the probing coherence volume. The arrows on the left corner indicate the anterior-posterior and dorsal-ventral parts of the rat. A, anterior; P, posterior; D, dorsal; V, ventral. Scale bar, 100 μm. Refer to the movie (Media 1) of raw images.

Fig. 4
Fig. 4

Five-frame averaged OCT B-scan images obtained during the electrode penetration process at different times (a) t = 0 sec; (b) t = 7 sec; (c) t = 10.5 sec; (d) t = 14 sec. The penetration process was clearly seen and finally reaching the target location of MCL. The arrows on the left corner indicate the anterior-posterior and dorsal-ventral parts of the rat. A, anterior; P, posterior; D, dorsal; V, ventral. Scale bar, 100 μm. Refer to the movie (Media 2) of five-frame averaged images.

Fig. 5
Fig. 5

(a) Averaged OCT B-scan image of OB with the stationary electrode being positioned at the target location MCL of OB. (b) Averaged OCT image same as (a) with inverted dynamic range to have a clear visualization of the target layer in relation to the electrode. Part below the electrode in the OCT signal was not detectable because the electrode practically reflected the sample beam. The arrows on the left corner indicate the anterior-posterior and dorsal-ventral parts of the rat. A, anterior; P, posterior; D, dorsal; V, ventral. Scale bar, 100 μm.

Metrics