Abstract

The purpose of this study was to investigate how the geometry of a fiber optic probe affects the transmission and reflection of light through the scleral eye wall. Two geometrical parameters of the fiber probe were investigated: the source-detector distance and the fiber protrusion, i.e. the length of the fiber extending from the flat surface of the fiber probe. For optimization of the fiber optic probe geometry, fluorescence stained choroidal tumor phantoms in ex vivo porcine eyes were measured with both diffuse reflectance- and laser-induced fluorescence spectroscopy. The strength of the fluorescence signal compared to the excitation signal was used as a measure for optimization. Intraocular pressure (IOP) and temperature were monitored to assess the impact of the probe on the eye. For visualizing any possible damage caused by the probe, the scleral surface was imaged with scanning electron microscopy after completion of the spectroscopic measurements. A source-detector distance of 5 mm with zero fiber protrusion was considered optimal in terms of spectroscopic contrast, however, a slight fiber protrusion of 0.5 mm is argued to be advantageous for clinical measurements. The study further indicates that transscleral spectroscopy can be safely performed in human eyes under in vivo conditions, without leading to an unacceptable IOP elevation, a significant rise in tissue temperature, or any visible damage to the scleral surface.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opinion Biotechnol.20, 119–131 (2009).
    [CrossRef]
  2. I. Rennie, “Things that go bump in the light. the differential diagnosis of posterior uveal melanomas,” Eye16, 325–346 (2002).
    [CrossRef] [PubMed]
  3. J. A. Shields, A. Mashayekhi, R. A. Seong, and C. l. Shields, “Pseudomelanomas of the posterior uveal tract: The 2006 Taylor R. Smith Lecture,” Retina25, 767–771 (2005).
    [CrossRef] [PubMed]
  4. J. Krohn, C. T. Xu, P. Svenmarker, D. Khoptyar, and S. Andersson-Engels, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of melanin in a uveal melanoma phantom of ex vivo porcine eyes,” Exp. Eye Res.90, 330–336 (2010).
    [CrossRef]
  5. C. T. Xu, P. Svenmarker, S. Andersson-Engels, and J. Krohn, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of haemoglobin in experimental choroidal tumours,” Acta Ophthalmol., http://onlinelibrary.wiley.com/doi/10.1111/j.1755-3768.2010.02037.x/full .
    [PubMed]
  6. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13, 041302 (2008).
    [CrossRef] [PubMed]
  7. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
    [CrossRef]
  8. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption-spectroscopy in tissue-simulating materials - a theoretical and experimental-study of photon paths,” Appl. Opt.34, 22–30 (1995).
    [CrossRef] [PubMed]
  9. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M.N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett.28,120–122 (2003).
    [CrossRef] [PubMed]
  10. C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation” J. Biomed. Opt.8, 237–247 (2003).
    [CrossRef] [PubMed]
  11. M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues - an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
    [CrossRef] [PubMed]
  12. M. Maus, Principles and Practice of Ophthalmology: Clinical Practice (W.B. Saunders, 1994), vol. 3.
  13. I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
    [CrossRef]
  14. H. Hh and M. Schwanengel, “Continuous measurement of intraocular pressure by the codman micro sensor for several days - a case report,” Klin. Monatsbl. Augenheilkd.215, 186–196 (1999).
  15. G. Zijlstra, Willem, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin - determination and application (VSP, 2000).
    [PubMed]
  16. K. Palmer and D. Williams, “Optical-properties of water in near-infrared,” J. Opt. Soc. Am.64, 1107–1110 (1974).
    [CrossRef]
  17. N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin invivo,” J. Investigative Dermatol.85, 38–42 (1985).
    [CrossRef]
  18. R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt.14 (2009).
    [CrossRef] [PubMed]
  19. B. Cameron, N. Saffra, and M. Strominger, “Laser in situ keratomileusis-induced optic neuropathy,” Ophthalmology108, 660–665 (2001).
    [CrossRef] [PubMed]
  20. Y. Ti and W.-C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express16, 4250–4262 (2008).
    [CrossRef] [PubMed]
  21. K. C. Y. Chan, A. Poostchi, T. Wong, E. A. Insult, N. Sachdev, and A. P. Wells, “Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma,” Ophthalmology115, 667–672 (2008).
    [CrossRef]
  22. J. H. Prince, Anatomy and histology of the eye and orbit in domestic animals (C. C. Thomas, Springfield, Ill., 1960).
  23. T. Olsen, S. Aaberg, D. Geroski, and H. Edelhauser, “Human sclera: thickness and surface area,” Am. J. Ophthalmol.125, 237–241 (1998).
    [CrossRef] [PubMed]
  24. R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
    [CrossRef]
  25. T. Olsen, S. Sanderson, X. Feng, and W. Hubbard, “Porcine sclera: thickness and surface area,” Investigative Ophthalmol. Visual Sci.43, 2529–2532 (2002).
  26. J. Krohn and T. Bertelsen, “Light microscopy of uveoscleral drainage routes after gelatine injections into the suprachoroidal space,” Acta Ophthalmol. Scan.76, 521–527 (1998).
    [CrossRef]
  27. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11 (2006).
    [CrossRef] [PubMed]
  28. J. Swartling, J. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt.42, 4612–4620 (2003).
    [CrossRef] [PubMed]
  29. J. Krohn, O. R. Monge, T. N. Skorpen, S. J. Mørk, and O. Dahl, “Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation,” Eye221398–1403 (2008).
    [CrossRef]

2010 (3)

J. Krohn, C. T. Xu, P. Svenmarker, D. Khoptyar, and S. Andersson-Engels, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of melanin in a uveal melanoma phantom of ex vivo porcine eyes,” Exp. Eye Res.90, 330–336 (2010).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

2009 (2)

R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt.14 (2009).
[CrossRef] [PubMed]

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opinion Biotechnol.20, 119–131 (2009).
[CrossRef]

2008 (4)

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13, 041302 (2008).
[CrossRef] [PubMed]

K. C. Y. Chan, A. Poostchi, T. Wong, E. A. Insult, N. Sachdev, and A. P. Wells, “Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma,” Ophthalmology115, 667–672 (2008).
[CrossRef]

J. Krohn, O. R. Monge, T. N. Skorpen, S. J. Mørk, and O. Dahl, “Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation,” Eye221398–1403 (2008).
[CrossRef]

Y. Ti and W.-C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express16, 4250–4262 (2008).
[CrossRef] [PubMed]

2006 (2)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11 (2006).
[CrossRef] [PubMed]

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

2005 (1)

J. A. Shields, A. Mashayekhi, R. A. Seong, and C. l. Shields, “Pseudomelanomas of the posterior uveal tract: The 2006 Taylor R. Smith Lecture,” Retina25, 767–771 (2005).
[CrossRef] [PubMed]

2003 (3)

2002 (2)

I. Rennie, “Things that go bump in the light. the differential diagnosis of posterior uveal melanomas,” Eye16, 325–346 (2002).
[CrossRef] [PubMed]

T. Olsen, S. Sanderson, X. Feng, and W. Hubbard, “Porcine sclera: thickness and surface area,” Investigative Ophthalmol. Visual Sci.43, 2529–2532 (2002).

2001 (1)

B. Cameron, N. Saffra, and M. Strominger, “Laser in situ keratomileusis-induced optic neuropathy,” Ophthalmology108, 660–665 (2001).
[CrossRef] [PubMed]

1999 (1)

H. Hh and M. Schwanengel, “Continuous measurement of intraocular pressure by the codman micro sensor for several days - a case report,” Klin. Monatsbl. Augenheilkd.215, 186–196 (1999).

1998 (2)

T. Olsen, S. Aaberg, D. Geroski, and H. Edelhauser, “Human sclera: thickness and surface area,” Am. J. Ophthalmol.125, 237–241 (1998).
[CrossRef] [PubMed]

J. Krohn and T. Bertelsen, “Light microscopy of uveoscleral drainage routes after gelatine injections into the suprachoroidal space,” Acta Ophthalmol. Scan.76, 521–527 (1998).
[CrossRef]

1995 (2)

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues - an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption-spectroscopy in tissue-simulating materials - a theoretical and experimental-study of photon paths,” Appl. Opt.34, 22–30 (1995).
[CrossRef] [PubMed]

1985 (1)

N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin invivo,” J. Investigative Dermatol.85, 38–42 (1985).
[CrossRef]

1974 (1)

Aaberg, S.

T. Olsen, S. Aaberg, D. Geroski, and H. Edelhauser, “Human sclera: thickness and surface area,” Am. J. Ophthalmol.125, 237–241 (1998).
[CrossRef] [PubMed]

Andersson-Engels, S.

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Baqer, A.

N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin invivo,” J. Investigative Dermatol.85, 38–42 (1985).
[CrossRef]

Bertelsen, T.

J. Krohn and T. Bertelsen, “Light microscopy of uveoscleral drainage routes after gelatine injections into the suprachoroidal space,” Acta Ophthalmol. Scan.76, 521–527 (1998).
[CrossRef]

Bono, A.

R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt.14 (2009).
[CrossRef] [PubMed]

Brown, J. Q.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opinion Biotechnol.20, 119–131 (2009).
[CrossRef]

Buursma, A.

G. Zijlstra, Willem, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin - determination and application (VSP, 2000).
[PubMed]

Cameron, B.

B. Cameron, N. Saffra, and M. Strominger, “Laser in situ keratomileusis-induced optic neuropathy,” Ophthalmology108, 660–665 (2001).
[CrossRef] [PubMed]

Carrara, M.

R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt.14 (2009).
[CrossRef] [PubMed]

Chan, K. C. Y.

K. C. Y. Chan, A. Poostchi, T. Wong, E. A. Insult, N. Sachdev, and A. P. Wells, “Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma,” Ophthalmology115, 667–672 (2008).
[CrossRef]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Dahl, O.

J. Krohn, O. R. Monge, T. N. Skorpen, S. J. Mørk, and O. Dahl, “Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation,” Eye221398–1403 (2008).
[CrossRef]

Dam, J.

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Edelhauser, H.

T. Olsen, S. Aaberg, D. Geroski, and H. Edelhauser, “Human sclera: thickness and surface area,” Am. J. Ophthalmol.125, 237–241 (1998).
[CrossRef] [PubMed]

Ediger, M.N.

Eilaghi, A.

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

Ethier, C. R.

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

Feng, X.

T. Olsen, S. Sanderson, X. Feng, and W. Hubbard, “Porcine sclera: thickness and surface area,” Investigative Ophthalmol. Visual Sci.43, 2529–2532 (2002).

Flanagan, J. G.

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

Geroski, D.

T. Olsen, S. Aaberg, D. Geroski, and H. Edelhauser, “Human sclera: thickness and surface area,” Am. J. Ophthalmol.125, 237–241 (1998).
[CrossRef] [PubMed]

Gerritsen, A. F. C.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues - an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Hh, H.

H. Hh and M. Schwanengel, “Continuous measurement of intraocular pressure by the codman micro sensor for several days - a case report,” Klin. Monatsbl. Augenheilkd.215, 186–196 (1999).

Hoefnagel, P. P. W.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Hubbard, W.

T. Olsen, S. Sanderson, X. Feng, and W. Hubbard, “Porcine sclera: thickness and surface area,” Investigative Ophthalmol. Visual Sci.43, 2529–2532 (2002).

Insult, E. A.

K. C. Y. Chan, A. Poostchi, T. Wong, E. A. Insult, N. Sachdev, and A. P. Wells, “Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma,” Ophthalmology115, 667–672 (2008).
[CrossRef]

Jacques, S. L.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13, 041302 (2008).
[CrossRef] [PubMed]

Khoptyar, D.

J. Krohn, C. T. Xu, P. Svenmarker, D. Khoptyar, and S. Andersson-Engels, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of melanin in a uveal melanoma phantom of ex vivo porcine eyes,” Exp. Eye Res.90, 330–336 (2010).
[CrossRef]

Kolff, C. F.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Kollias, N.

N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin invivo,” J. Investigative Dermatol.85, 38–42 (1985).
[CrossRef]

Krohn, J.

J. Krohn, C. T. Xu, P. Svenmarker, D. Khoptyar, and S. Andersson-Engels, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of melanin in a uveal melanoma phantom of ex vivo porcine eyes,” Exp. Eye Res.90, 330–336 (2010).
[CrossRef]

J. Krohn, O. R. Monge, T. N. Skorpen, S. J. Mørk, and O. Dahl, “Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation,” Eye221398–1403 (2008).
[CrossRef]

J. Krohn and T. Bertelsen, “Light microscopy of uveoscleral drainage routes after gelatine injections into the suprachoroidal space,” Acta Ophthalmol. Scan.76, 521–527 (1998).
[CrossRef]

Lin, W.-C.

Liu, Q.

C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation” J. Biomed. Opt.8, 237–247 (2003).
[CrossRef] [PubMed]

Marchesini, R.

R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt.14 (2009).
[CrossRef] [PubMed]

Mashayekhi, A.

J. A. Shields, A. Mashayekhi, R. A. Seong, and C. l. Shields, “Pseudomelanomas of the posterior uveal tract: The 2006 Taylor R. Smith Lecture,” Retina25, 767–771 (2005).
[CrossRef] [PubMed]

Mastenbroek, T. J.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Matchette, L. S.

Maus, M.

M. Maus, Principles and Practice of Ophthalmology: Clinical Practice (W.B. Saunders, 1994), vol. 3.

Mller, G.

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues - an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Monge, O. R.

J. Krohn, O. R. Monge, T. N. Skorpen, S. J. Mørk, and O. Dahl, “Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation,” Eye221398–1403 (2008).
[CrossRef]

Mørk, S. J.

J. Krohn, O. R. Monge, T. N. Skorpen, S. J. Mørk, and O. Dahl, “Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation,” Eye221398–1403 (2008).
[CrossRef]

Norman, R. E.

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

Olsen, T.

T. Olsen, S. Sanderson, X. Feng, and W. Hubbard, “Porcine sclera: thickness and surface area,” Investigative Ophthalmol. Visual Sci.43, 2529–2532 (2002).

T. Olsen, S. Aaberg, D. Geroski, and H. Edelhauser, “Human sclera: thickness and surface area,” Am. J. Ophthalmol.125, 237–241 (1998).
[CrossRef] [PubMed]

Osei, E. K.

Palmer, G. M.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opinion Biotechnol.20, 119–131 (2009).
[CrossRef]

Palmer, K.

Patterson, M. S.

Pfefer, T. J.

Picken, S. J.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Pogue, B. W.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13, 041302 (2008).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11 (2006).
[CrossRef] [PubMed]

Poostchi, A.

K. C. Y. Chan, A. Poostchi, T. Wong, E. A. Insult, N. Sachdev, and A. P. Wells, “Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma,” Ophthalmology115, 667–672 (2008).
[CrossRef]

Portnoy, S.

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

Prince, J. H.

J. H. Prince, Anatomy and histology of the eye and orbit in domestic animals (C. C. Thomas, Springfield, Ill., 1960).

Ramanujam, N.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opinion Biotechnol.20, 119–131 (2009).
[CrossRef]

C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation” J. Biomed. Opt.8, 237–247 (2003).
[CrossRef] [PubMed]

Rausch, S. M. K.

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

Rennie, I.

I. Rennie, “Things that go bump in the light. the differential diagnosis of posterior uveal melanomas,” Eye16, 325–346 (2002).
[CrossRef] [PubMed]

Roggan, A.

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues - an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Ross, A. M.

Sachdev, N.

K. C. Y. Chan, A. Poostchi, T. Wong, E. A. Insult, N. Sachdev, and A. P. Wells, “Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma,” Ophthalmology115, 667–672 (2008).
[CrossRef]

Saffra, N.

B. Cameron, N. Saffra, and M. Strominger, “Laser in situ keratomileusis-induced optic neuropathy,” Ophthalmology108, 660–665 (2001).
[CrossRef] [PubMed]

Sanderson, S.

T. Olsen, S. Sanderson, X. Feng, and W. Hubbard, “Porcine sclera: thickness and surface area,” Investigative Ophthalmol. Visual Sci.43, 2529–2532 (2002).

Schoemaker, I.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Schutte, S.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Schwanengel, M.

H. Hh and M. Schwanengel, “Continuous measurement of intraocular pressure by the codman micro sensor for several days - a case report,” Klin. Monatsbl. Augenheilkd.215, 186–196 (1999).

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues - an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Seong, R. A.

J. A. Shields, A. Mashayekhi, R. A. Seong, and C. l. Shields, “Pseudomelanomas of the posterior uveal tract: The 2006 Taylor R. Smith Lecture,” Retina25, 767–771 (2005).
[CrossRef] [PubMed]

Shields, C. l.

J. A. Shields, A. Mashayekhi, R. A. Seong, and C. l. Shields, “Pseudomelanomas of the posterior uveal tract: The 2006 Taylor R. Smith Lecture,” Retina25, 767–771 (2005).
[CrossRef] [PubMed]

Shields, J. A.

J. A. Shields, A. Mashayekhi, R. A. Seong, and C. l. Shields, “Pseudomelanomas of the posterior uveal tract: The 2006 Taylor R. Smith Lecture,” Retina25, 767–771 (2005).
[CrossRef] [PubMed]

Sigal, I. A.

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

Simonsz, H. J.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Skorpen, T. N.

J. Krohn, O. R. Monge, T. N. Skorpen, S. J. Mørk, and O. Dahl, “Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation,” Eye221398–1403 (2008).
[CrossRef]

Sled, J. G.

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

Spekreijse, H.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Strominger, M.

B. Cameron, N. Saffra, and M. Strominger, “Laser in situ keratomileusis-induced optic neuropathy,” Ophthalmology108, 660–665 (2001).
[CrossRef] [PubMed]

Svenmarker, P.

J. Krohn, C. T. Xu, P. Svenmarker, D. Khoptyar, and S. Andersson-Engels, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of melanin in a uveal melanoma phantom of ex vivo porcine eyes,” Exp. Eye Res.90, 330–336 (2010).
[CrossRef]

Swartling, J.

Tertinegg, I.

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

Ti, Y.

van Assendelft, O. W.

G. Zijlstra, Willem, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin - determination and application (VSP, 2000).
[PubMed]

van der Helm, F. C. T.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Vishwanath, K.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opinion Biotechnol.20, 119–131 (2009).
[CrossRef]

Wells, A. P.

K. C. Y. Chan, A. Poostchi, T. Wong, E. A. Insult, N. Sachdev, and A. P. Wells, “Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma,” Ophthalmology115, 667–672 (2008).
[CrossRef]

Wielopolski, P. A.

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

Willem,

G. Zijlstra, Willem, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin - determination and application (VSP, 2000).
[PubMed]

Williams, D.

Wilson, B. C.

Wong, T.

K. C. Y. Chan, A. Poostchi, T. Wong, E. A. Insult, N. Sachdev, and A. P. Wells, “Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma,” Ophthalmology115, 667–672 (2008).
[CrossRef]

Xu, C. T.

J. Krohn, C. T. Xu, P. Svenmarker, D. Khoptyar, and S. Andersson-Engels, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of melanin in a uveal melanoma phantom of ex vivo porcine eyes,” Exp. Eye Res.90, 330–336 (2010).
[CrossRef]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Zhu, C. F.

C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation” J. Biomed. Opt.8, 237–247 (2003).
[CrossRef] [PubMed]

Zijlstra, G.

G. Zijlstra, Willem, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin - determination and application (VSP, 2000).
[PubMed]

Acta Ophthalmol. Scan. (1)

J. Krohn and T. Bertelsen, “Light microscopy of uveoscleral drainage routes after gelatine injections into the suprachoroidal space,” Acta Ophthalmol. Scan.76, 521–527 (1998).
[CrossRef]

Am. J. Ophthalmol. (1)

T. Olsen, S. Aaberg, D. Geroski, and H. Edelhauser, “Human sclera: thickness and surface area,” Am. J. Ophthalmol.125, 237–241 (1998).
[CrossRef] [PubMed]

Appl. Opt. (2)

Curr. Opinion Biotechnol. (1)

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opinion Biotechnol.20, 119–131 (2009).
[CrossRef]

Exp. Eye Res. (2)

J. Krohn, C. T. Xu, P. Svenmarker, D. Khoptyar, and S. Andersson-Engels, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of melanin in a uveal melanoma phantom of ex vivo porcine eyes,” Exp. Eye Res.90, 330–336 (2010).
[CrossRef]

R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010).
[CrossRef]

Eye (2)

I. Rennie, “Things that go bump in the light. the differential diagnosis of posterior uveal melanomas,” Eye16, 325–346 (2002).
[CrossRef] [PubMed]

J. Krohn, O. R. Monge, T. N. Skorpen, S. J. Mørk, and O. Dahl, “Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation,” Eye221398–1403 (2008).
[CrossRef]

Investigative Ophthalmol. Visual Sci. (2)

T. Olsen, S. Sanderson, X. Feng, and W. Hubbard, “Porcine sclera: thickness and surface area,” Investigative Ophthalmol. Visual Sci.43, 2529–2532 (2002).

I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006).
[CrossRef]

J. Biomed. Opt. (4)

R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt.14 (2009).
[CrossRef] [PubMed]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13, 041302 (2008).
[CrossRef] [PubMed]

C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation” J. Biomed. Opt.8, 237–247 (2003).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11 (2006).
[CrossRef] [PubMed]

J. Investigative Dermatol. (1)

N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin invivo,” J. Investigative Dermatol.85, 38–42 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

Klin. Monatsbl. Augenheilkd. (1)

H. Hh and M. Schwanengel, “Continuous measurement of intraocular pressure by the codman micro sensor for several days - a case report,” Klin. Monatsbl. Augenheilkd.215, 186–196 (1999).

Ophthalmology (2)

B. Cameron, N. Saffra, and M. Strominger, “Laser in situ keratomileusis-induced optic neuropathy,” Ophthalmology108, 660–665 (2001).
[CrossRef] [PubMed]

K. C. Y. Chan, A. Poostchi, T. Wong, E. A. Insult, N. Sachdev, and A. P. Wells, “Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma,” Ophthalmology115, 667–672 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues - an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Retina (1)

J. A. Shields, A. Mashayekhi, R. A. Seong, and C. l. Shields, “Pseudomelanomas of the posterior uveal tract: The 2006 Taylor R. Smith Lecture,” Retina25, 767–771 (2005).
[CrossRef] [PubMed]

Other (4)

C. T. Xu, P. Svenmarker, S. Andersson-Engels, and J. Krohn, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of haemoglobin in experimental choroidal tumours,” Acta Ophthalmol., http://onlinelibrary.wiley.com/doi/10.1111/j.1755-3768.2010.02037.x/full .
[PubMed]

M. Maus, Principles and Practice of Ophthalmology: Clinical Practice (W.B. Saunders, 1994), vol. 3.

J. H. Prince, Anatomy and histology of the eye and orbit in domestic animals (C. C. Thomas, Springfield, Ill., 1960).

G. Zijlstra, Willem, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin - determination and application (VSP, 2000).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Photograph of a cross-sectioned porcine eye. (a) Choroidal tumor phantom in the suprachoroidal space. Note that the phantom is in close contact with the surrounding tissues. (b) The crystalline lens in the anterior segment of the eye. (c) The optic nerve entering the posterior pole of the eye.

Fig. 2
Fig. 2

Optical setup used during the experiments. A fiber-coupled halogen lamp delivered a wide spectrum covering the visible and near-infrared spectral regions through a multimode (MM) fiber (600 μm core) to the eye. Light was collected with a second multi-mode fiber and coupled to a spectrometer for spectroscopy measurements. Sequentially, a 785 nm diode laser was used together with an 810-nm interference filter, which attenuated the excitation light to a level were both the fluorescence and the excitation signal could be measured simultaneously.

Fig. 3
Fig. 3

Schematic illustration of the experimental setup and the principle of transscleral diffuse optical spectroscopy. (a) Porcine eye in a gelatin-filled plastic container placed on an electronic scale. (b) Cross section of the probe and the eye. The optical fibers (for incident and detected light) are fixed by two plastic screws and centered on the scleral surface over the tumor phantom. The phantom (red) is located in the suprachoroidal space between the sclera (white) and the retina and retinal pigment epithelium (light blue and black). (c) Front and side view of the probe end. The fiber protrusion t, from the distal end of the probe, can be varied between 0, 0.5, 1.0 and 1.5 mm. The source-detector distance d equals 3, 4, 5 or 6 mm for the four different probes used. The diameter D of the probe itself is 10 mm.

Fig. 4
Fig. 4

Photograph of a porcine eye placed in the gelatin cup and applanated by the fiber probe mounted on the micrometer-translator stage.

Fig. 5
Fig. 5

Normalized fluorescence spectra for 3 porcine eyes with varying fiber source-detector distance and a fiber protrusion of 1.0 mm.

Fig. 6
Fig. 6

Normalized fluorescence spectra for 3 porcine eyes with varying fiber protrusion and a fiber source-detector distance of 5 mm.

Fig. 7
Fig. 7

Transscleral spectroscopy spectra for 3 porcine eyes with varying fiber source-detector distance and a fiber protrusion of 1.0 mm.

Fig. 8
Fig. 8

Transscleral spectroscopy spectra for 3 porcine eyes with varying fiber protrusion and a fiber source-detector distance of 5 mm.

Fig. 9
Fig. 9

Scanning electron microscopy image of the outer scleral surface from an eye that has been measured by a probe with 5 mm fiber source-detector distance and a fiber protrusion of 0.5 mm. The dashed circles indicate the areas where the optical fibers have indented the sclera. Note the plain surface and lack of any imprint from the fibers.

Tables (1)

Tables Icon

Table 1 Measure of the fluorescence from the stained phantom in comparison to the transmitted excitation light, Γ, in 6 different porcine eyes with varying fiber source-detector distance and fiber protrusion. The ‘x’ indicates the source-detector distance or protrusion used in combination with the varied source-detector distance or protrusion.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ = 800 820 S d λ 782 788 S d λ

Metrics