Abstract

We compared absolute values of regional tissue hemoglobin saturation (StO2), reproducibility, and dynamic range of four different instruments on the forearm of adults. The sensors were repositioned 10 times on each subject. Dynamic range was estimated by exercise with subsequent arterial occlusion. Mean StO2 was 70.1% ± 6.7 with INVOS 5100, 69.4% ± 5.0 with NIRO 200 NX, 63.4% ± 4.5 with NIRO 300, and 60.8% ± 3.6 with OxyPrem. The corresponding reproducibility Sw was 5.4% (CI 4.4–6.9), 4.4% (CI 3.5–5.2), 4.1% (CI 3.3–4.9), and 2.7% (CI 2.2–3.2), respectively. The dynamic ranges ΔStO2 were 45.0%, 46.8%, 44.8%, and 27.8%, respectively. In conclusion, the three commercial NIRS instruments showed different absolute values, whereas reproducibility and dynamic range were quite similar.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
    [CrossRef] [PubMed]
  2. M. C. Toet, P. M. A. Lemmers, L. J. van Schelven, and F. van Bel, “Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome,” Pediatrics 117(2), 333–339 (2006).
    [CrossRef] [PubMed]
  3. J. C. Hirsch, J. R. Charpie, R. G. Ohye, and J. G. Gurney, “Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management,” Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 13(1), 51–54 (2010).
    [CrossRef] [PubMed]
  4. G. Greisen, “Is near-infrared spectroscopy living up to its promises?” Semin. Fetal Neonatal Med. 11(6), 498–502 (2006).
    [CrossRef] [PubMed]
  5. R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput. 17(7/8), 385–391 (2002).
    [CrossRef] [PubMed]
  6. A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth. 13(5), 384–391 (2003).
    [CrossRef] [PubMed]
  7. L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11(5), 054005 (2006).
    [CrossRef] [PubMed]
  8. J. Menke, U. Voss, G. Möller, and G. Jorch, “Reproducibility of cerebral near infrared spectroscopy in neonates,” Biol. Neonate 83(1), 6–11 (2003).
    [CrossRef] [PubMed]
  9. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
    [CrossRef] [PubMed]
  10. L. C. Sorensen, T. S. Leung, and G. Greisen, “Comparison of cerebral oxygen saturation in premature infants by near-infrared spatially resolved spectroscopy: observations on probe-dependent bias,” J. Biomed. Opt. 13(6), 064013 (2008).
    [CrossRef] [PubMed]
  11. F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
    [CrossRef] [PubMed]
  12. P. M. A. Lemmers, M. C. Toet, and F. van Bel, “Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants,” Pediatrics 121(1), 142–147 (2008).
    [CrossRef] [PubMed]
  13. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
    [CrossRef] [PubMed]
  14. P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
    [CrossRef] [PubMed]
  15. S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
    [CrossRef]
  16. “NIRS Technology,” www.somanetics.com/our-technology/nirs-technology#trend .
  17. D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
    [CrossRef]
  18. J. M. Bland and D. G. Altman, “Measurement error,” BMJ 313(7059), 744 (1996).
    [PubMed]
  19. K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth. Analg. 94(3), 586–590 (2002).
    [CrossRef] [PubMed]
  20. E. G. McKeating, J. R. Monjardino, D. F. Signorini, M. J. Souter, and P. J. Andrews, “A comparison of the Invos 3100 and the Critikon 2020 near-infrared spectrophotometers as monitors of cerebral oxygenation,” Anaesthesia 52(2), 136–140 (1997).
    [CrossRef] [PubMed]
  21. M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
    [CrossRef] [PubMed]
  22. N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18(2), 160–166 (2008).
    [PubMed]
  23. T. Komiyama, V. Quaresima, H. Shigematsu, and M. Ferrari, “Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation,” Clin. Sci. 101(6), 715–718 (2001).
    [CrossRef] [PubMed]
  24. K. Shiroishi, R. Kime, T. Osada, N. Murase, K. Shimomura, and T. Katsumura, “Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise,” Adv. Exp. Med. Biol. 662, 379–384 (2010).
    [CrossRef] [PubMed]
  25. C. E. Cooper, S.-M. Penfold, C. E. Elwell, and C. Angus, “Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals,” Adv. Exp. Med. Biol. 662, 177–181 (2010).
    [CrossRef] [PubMed]
  26. T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58(4), 477–479 (1995).
    [CrossRef] [PubMed]
  27. G. Grubhofer, A. Lassnigg, F. Manlik, E. Marx, W. Trubel, and M. Hiesmayr, “The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy,” Anaesthesia 52(2), 116–120 (1997).
    [CrossRef] [PubMed]
  28. P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
    [CrossRef] [PubMed]
  29. C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
    [CrossRef] [PubMed]
  30. A. Dullenkopf, A. Kolarova, G. Schulz, B. Frey, O. Baenziger, and M. Weiss, “Reproducibility of cerebral oxygenation measurement in neonates and infants in the clinical setting using the NIRO 300 oximeter,” Pediatr. Crit. Care Med. 6(3), 344–347 (2005).
    [CrossRef] [PubMed]
  31. J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res. 8(2), 135–160 (1999).
    [CrossRef] [PubMed]
  32. M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16(5), 057004 (2011).
    [CrossRef] [PubMed]
  33. H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
    [CrossRef] [PubMed]
  34. F. Y. Wong, T. Alexiou, T. Samarasinghe, V. Brodecky, and A. M. Walker, “Cerebral arterial and venous contributions to tissue oxygenation index measured using spatially resolved spectroscopy in newborn lambs,” Anesthesiology 113(6), 1385–1391 (2010).
    [CrossRef] [PubMed]
  35. F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, and M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol. 19(2), e1–e11 (2009).
    [CrossRef] [PubMed]
  36. K. J. Kek, R. Kibe, M. Niwayama, N. Kudo, and K. Yamamoto, “Optical imaging instrument for muscle oxygenation based on spatially resolved spectroscopy,” Opt. Express 16(22), 18173–18187 (2008).
    [CrossRef] [PubMed]
  37. N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med. 31(6), 846–850 (2005).
    [CrossRef] [PubMed]
  38. G. Buunk, J. G. van der Hoeven, and A. E. Meinders, “A comparison of near-infrared spectroscopy and jugular bulb oximetry in comatose patients resuscitated from a cardiac arrest,” Anaesthesia 53(1), 13–19 (1998).
    [CrossRef] [PubMed]
  39. M. S. Ali, M. Harmer, R. S. Vaughan, J. A. Dunne, and I. P. Latto, “Spatially resolved spectroscopy (NIRO-300) does not agree with jugular bulb oxygen saturation in patients undergoing warm bypass surgery,” Can. J. Anaesth. 48(5), 497–501 (2001).
    [CrossRef] [PubMed]
  40. C. D. Kurth, J. C. McCann, J. Wu, L. Miles, and A. W. Loepke, “Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets,” Anesth. Analg. 108(4), 1268–1277 (2009).
    [CrossRef] [PubMed]
  41. X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas. 28(10), 1251–1265 (2007).
    [CrossRef] [PubMed]

2011 (4)

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
[CrossRef] [PubMed]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[CrossRef] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16(5), 057004 (2011).
[CrossRef] [PubMed]

2010 (4)

F. Y. Wong, T. Alexiou, T. Samarasinghe, V. Brodecky, and A. M. Walker, “Cerebral arterial and venous contributions to tissue oxygenation index measured using spatially resolved spectroscopy in newborn lambs,” Anesthesiology 113(6), 1385–1391 (2010).
[CrossRef] [PubMed]

K. Shiroishi, R. Kime, T. Osada, N. Murase, K. Shimomura, and T. Katsumura, “Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise,” Adv. Exp. Med. Biol. 662, 379–384 (2010).
[CrossRef] [PubMed]

C. E. Cooper, S.-M. Penfold, C. E. Elwell, and C. Angus, “Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals,” Adv. Exp. Med. Biol. 662, 177–181 (2010).
[CrossRef] [PubMed]

J. C. Hirsch, J. R. Charpie, R. G. Ohye, and J. G. Gurney, “Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management,” Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 13(1), 51–54 (2010).
[CrossRef] [PubMed]

2009 (2)

F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, and M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol. 19(2), e1–e11 (2009).
[CrossRef] [PubMed]

C. D. Kurth, J. C. McCann, J. Wu, L. Miles, and A. W. Loepke, “Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets,” Anesth. Analg. 108(4), 1268–1277 (2009).
[CrossRef] [PubMed]

2008 (4)

K. J. Kek, R. Kibe, M. Niwayama, N. Kudo, and K. Yamamoto, “Optical imaging instrument for muscle oxygenation based on spatially resolved spectroscopy,” Opt. Express 16(22), 18173–18187 (2008).
[CrossRef] [PubMed]

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18(2), 160–166 (2008).
[PubMed]

L. C. Sorensen, T. S. Leung, and G. Greisen, “Comparison of cerebral oxygen saturation in premature infants by near-infrared spatially resolved spectroscopy: observations on probe-dependent bias,” J. Biomed. Opt. 13(6), 064013 (2008).
[CrossRef] [PubMed]

P. M. A. Lemmers, M. C. Toet, and F. van Bel, “Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants,” Pediatrics 121(1), 142–147 (2008).
[CrossRef] [PubMed]

2007 (1)

X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas. 28(10), 1251–1265 (2007).
[CrossRef] [PubMed]

2006 (3)

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11(5), 054005 (2006).
[CrossRef] [PubMed]

G. Greisen, “Is near-infrared spectroscopy living up to its promises?” Semin. Fetal Neonatal Med. 11(6), 498–502 (2006).
[CrossRef] [PubMed]

M. C. Toet, P. M. A. Lemmers, L. J. van Schelven, and F. van Bel, “Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome,” Pediatrics 117(2), 333–339 (2006).
[CrossRef] [PubMed]

2005 (2)

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med. 31(6), 846–850 (2005).
[CrossRef] [PubMed]

A. Dullenkopf, A. Kolarova, G. Schulz, B. Frey, O. Baenziger, and M. Weiss, “Reproducibility of cerebral oxygenation measurement in neonates and infants in the clinical setting using the NIRO 300 oximeter,” Pediatr. Crit. Care Med. 6(3), 344–347 (2005).
[CrossRef] [PubMed]

2003 (2)

J. Menke, U. Voss, G. Möller, and G. Jorch, “Reproducibility of cerebral near infrared spectroscopy in neonates,” Biol. Neonate 83(1), 6–11 (2003).
[CrossRef] [PubMed]

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth. 13(5), 384–391 (2003).
[CrossRef] [PubMed]

2002 (3)

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput. 17(7/8), 385–391 (2002).
[CrossRef] [PubMed]

K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth. Analg. 94(3), 586–590 (2002).
[CrossRef] [PubMed]

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[CrossRef] [PubMed]

2001 (3)

T. Komiyama, V. Quaresima, H. Shigematsu, and M. Ferrari, “Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation,” Clin. Sci. 101(6), 715–718 (2001).
[CrossRef] [PubMed]

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

M. S. Ali, M. Harmer, R. S. Vaughan, J. A. Dunne, and I. P. Latto, “Spatially resolved spectroscopy (NIRO-300) does not agree with jugular bulb oxygen saturation in patients undergoing warm bypass surgery,” Can. J. Anaesth. 48(5), 497–501 (2001).
[CrossRef] [PubMed]

2000 (1)

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[CrossRef] [PubMed]

1999 (3)

J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res. 8(2), 135–160 (1999).
[CrossRef] [PubMed]

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[CrossRef]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

1998 (1)

G. Buunk, J. G. van der Hoeven, and A. E. Meinders, “A comparison of near-infrared spectroscopy and jugular bulb oximetry in comatose patients resuscitated from a cardiac arrest,” Anaesthesia 53(1), 13–19 (1998).
[CrossRef] [PubMed]

1997 (2)

G. Grubhofer, A. Lassnigg, F. Manlik, E. Marx, W. Trubel, and M. Hiesmayr, “The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy,” Anaesthesia 52(2), 116–120 (1997).
[CrossRef] [PubMed]

E. G. McKeating, J. R. Monjardino, D. F. Signorini, M. J. Souter, and P. J. Andrews, “A comparison of the Invos 3100 and the Critikon 2020 near-infrared spectrophotometers as monitors of cerebral oxygenation,” Anaesthesia 52(2), 136–140 (1997).
[CrossRef] [PubMed]

1996 (1)

J. M. Bland and D. G. Altman, “Measurement error,” BMJ 313(7059), 744 (1996).
[PubMed]

1995 (2)

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58(4), 477–479 (1995).
[CrossRef] [PubMed]

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[CrossRef]

1992 (2)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Abdul-Khaliq, H.

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med. 31(6), 846–850 (2005).
[CrossRef] [PubMed]

Alexiou, T.

F. Y. Wong, T. Alexiou, T. Samarasinghe, V. Brodecky, and A. M. Walker, “Cerebral arterial and venous contributions to tissue oxygenation index measured using spatially resolved spectroscopy in newborn lambs,” Anesthesiology 113(6), 1385–1391 (2010).
[CrossRef] [PubMed]

Ali, M. S.

M. S. Ali, M. Harmer, R. S. Vaughan, J. A. Dunne, and I. P. Latto, “Spatially resolved spectroscopy (NIRO-300) does not agree with jugular bulb oxygen saturation in patients undergoing warm bypass surgery,” Can. J. Anaesth. 48(5), 497–501 (2001).
[CrossRef] [PubMed]

Al-Rawi, P. G.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Altman, D. G.

J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res. 8(2), 135–160 (1999).
[CrossRef] [PubMed]

J. M. Bland and D. G. Altman, “Measurement error,” BMJ 313(7059), 744 (1996).
[PubMed]

Anderson, I.

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Andrews, P. J.

E. G. McKeating, J. R. Monjardino, D. F. Signorini, M. J. Souter, and P. J. Andrews, “A comparison of the Invos 3100 and the Critikon 2020 near-infrared spectrophotometers as monitors of cerebral oxygenation,” Anaesthesia 52(2), 136–140 (1997).
[CrossRef] [PubMed]

Angus, C.

C. E. Cooper, S.-M. Penfold, C. E. Elwell, and C. Angus, “Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals,” Adv. Exp. Med. Biol. 662, 177–181 (2010).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Baenziger, O.

A. Dullenkopf, A. Kolarova, G. Schulz, B. Frey, O. Baenziger, and M. Weiss, “Reproducibility of cerebral oxygenation measurement in neonates and infants in the clinical setting using the NIRO 300 oximeter,” Pediatr. Crit. Care Med. 6(3), 344–347 (2005).
[CrossRef] [PubMed]

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth. 13(5), 384–391 (2003).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Barbieri, B.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[CrossRef]

Berger, F.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18(2), 160–166 (2008).
[PubMed]

Berger, K.-U.

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Biallas, M.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[CrossRef] [PubMed]

Blackstock, D.

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput. 17(7/8), 385–391 (2002).
[CrossRef] [PubMed]

Bland, J. M.

J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res. 8(2), 135–160 (1999).
[CrossRef] [PubMed]

J. M. Bland and D. G. Altman, “Measurement error,” BMJ 313(7059), 744 (1996).
[PubMed]

Broadhead, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Brodecky, V.

F. Y. Wong, T. Alexiou, T. Samarasinghe, V. Brodecky, and A. M. Walker, “Cerebral arterial and venous contributions to tissue oxygenation index measured using spatially resolved spectroscopy in newborn lambs,” Anesthesiology 113(6), 1385–1391 (2010).
[CrossRef] [PubMed]

Bucher, H. U.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Bucher, H.-U.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[CrossRef] [PubMed]

Buunk, G.

G. Buunk, J. G. van der Hoeven, and A. E. Meinders, “A comparison of near-infrared spectroscopy and jugular bulb oximetry in comatose patients resuscitated from a cardiac arrest,” Anaesthesia 53(1), 13–19 (1998).
[CrossRef] [PubMed]

Cerussi, A. E.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[CrossRef]

Charpie, J. R.

J. C. Hirsch, J. R. Charpie, R. G. Ohye, and J. G. Gurney, “Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management,” Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 13(1), 51–54 (2010).
[CrossRef] [PubMed]

Cooper, C. E.

C. E. Cooper, S.-M. Penfold, C. E. Elwell, and C. Angus, “Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals,” Adv. Exp. Med. Biol. 662, 177–181 (2010).
[CrossRef] [PubMed]

Cope, M.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[CrossRef]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Delpy, D. T.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[CrossRef]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Dibbelt, L.

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Dietz, V.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Ding, H.

X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas. 28(10), 1251–1265 (2007).
[CrossRef] [PubMed]

X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas. 28(10), 1251–1265 (2007).
[CrossRef] [PubMed]

Dullenkopf, A.

A. Dullenkopf, A. Kolarova, G. Schulz, B. Frey, O. Baenziger, and M. Weiss, “Reproducibility of cerebral oxygenation measurement in neonates and infants in the clinical setting using the NIRO 300 oximeter,” Pediatr. Crit. Care Med. 6(3), 344–347 (2005).
[CrossRef] [PubMed]

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth. 13(5), 384–391 (2003).
[CrossRef] [PubMed]

Dunne, J. A.

M. S. Ali, M. Harmer, R. S. Vaughan, J. A. Dunne, and I. P. Latto, “Spatially resolved spectroscopy (NIRO-300) does not agree with jugular bulb oxygen saturation in patients undergoing warm bypass surgery,” Can. J. Anaesth. 48(5), 497–501 (2001).
[CrossRef] [PubMed]

Dymowski, A. R.

F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
[CrossRef] [PubMed]

Edwards, A. D.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Elwell, C.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Elwell, C. E.

C. E. Cooper, S.-M. Penfold, C. E. Elwell, and C. Angus, “Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals,” Adv. Exp. Med. Biol. 662, 177–181 (2010).
[CrossRef] [PubMed]

Essenpreis, M.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Ewert, P.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18(2), 160–166 (2008).
[PubMed]

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med. 31(6), 846–850 (2005).
[CrossRef] [PubMed]

Fantini, S.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[CrossRef]

Fattorini, L.

F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, and M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol. 19(2), e1–e11 (2009).
[CrossRef] [PubMed]

Fauchère, J.-C.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[CrossRef] [PubMed]

Felici, F.

F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, and M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol. 19(2), e1–e11 (2009).
[CrossRef] [PubMed]

Ferrari, M.

F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, and M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol. 19(2), e1–e11 (2009).
[CrossRef] [PubMed]

T. Komiyama, V. Quaresima, H. Shigematsu, and M. Ferrari, “Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation,” Clin. Sci. 101(6), 715–718 (2001).
[CrossRef] [PubMed]

Filligoi, G. C.

F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, and M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol. 19(2), e1–e11 (2009).
[CrossRef] [PubMed]

Fleck, T.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18(2), 160–166 (2008).
[PubMed]

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med. 31(6), 846–850 (2005).
[CrossRef] [PubMed]

Frey, B.

A. Dullenkopf, A. Kolarova, G. Schulz, B. Frey, O. Baenziger, and M. Weiss, “Reproducibility of cerebral oxygenation measurement in neonates and infants in the clinical setting using the NIRO 300 oximeter,” Pediatr. Crit. Care Med. 6(3), 344–347 (2005).
[CrossRef] [PubMed]

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth. 13(5), 384–391 (2003).
[CrossRef] [PubMed]

Furuya, H.

K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth. Analg. 94(3), 586–590 (2002).
[CrossRef] [PubMed]

Gagnon, F. A.

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput. 17(7/8), 385–391 (2002).
[CrossRef] [PubMed]

Gagnon, R. E.

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput. 17(7/8), 385–391 (2002).
[CrossRef] [PubMed]

Garbers, C.

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Gerber, A.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth. 13(5), 384–391 (2003).
[CrossRef] [PubMed]

Germon, T. J.

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58(4), 477–479 (1995).
[CrossRef] [PubMed]

Greisen, G.

L. C. Sorensen, T. S. Leung, and G. Greisen, “Comparison of cerebral oxygen saturation in premature infants by near-infrared spatially resolved spectroscopy: observations on probe-dependent bias,” J. Biomed. Opt. 13(6), 064013 (2008).
[CrossRef] [PubMed]

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11(5), 054005 (2006).
[CrossRef] [PubMed]

G. Greisen, “Is near-infrared spectroscopy living up to its promises?” Semin. Fetal Neonatal Med. 11(6), 498–502 (2006).
[CrossRef] [PubMed]

Grubhofer, G.

G. Grubhofer, A. Lassnigg, F. Manlik, E. Marx, W. Trubel, and M. Hiesmayr, “The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy,” Anaesthesia 52(2), 116–120 (1997).
[CrossRef] [PubMed]

Gurney, J. G.

J. C. Hirsch, J. R. Charpie, R. G. Ohye, and J. G. Gurney, “Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management,” Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 13(1), 51–54 (2010).
[CrossRef] [PubMed]

Hanke, T.

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Harmer, M.

M. S. Ali, M. Harmer, R. S. Vaughan, J. A. Dunne, and I. P. Latto, “Spatially resolved spectroscopy (NIRO-300) does not agree with jugular bulb oxygen saturation in patients undergoing warm bypass surgery,” Can. J. Anaesth. 48(5), 497–501 (2001).
[CrossRef] [PubMed]

Heinze, H.

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Heringlake, M.

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Hiesmayr, M.

G. Grubhofer, A. Lassnigg, F. Manlik, E. Marx, W. Trubel, and M. Hiesmayr, “The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy,” Anaesthesia 52(2), 116–120 (1997).
[CrossRef] [PubMed]

Hirsch, J. C.

J. C. Hirsch, J. R. Charpie, R. G. Ohye, and J. G. Gurney, “Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management,” Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 13(1), 51–54 (2010).
[CrossRef] [PubMed]

Horne, R. S. C.

F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
[CrossRef] [PubMed]

Hou, X.

X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas. 28(10), 1251–1265 (2007).
[CrossRef] [PubMed]

Hueber, D. M.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[CrossRef]

Jenny, C.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[CrossRef] [PubMed]

Jorch, G.

J. Menke, U. Voss, G. Möller, and G. Jorch, “Reproducibility of cerebral near infrared spectroscopy in neonates,” Biol. Neonate 83(1), 6–11 (2003).
[CrossRef] [PubMed]

Käbler, J. H.

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Katsumura, T.

K. Shiroishi, R. Kime, T. Osada, N. Murase, K. Shimomura, and T. Katsumura, “Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise,” Adv. Exp. Med. Biol. 662, 379–384 (2010).
[CrossRef] [PubMed]

Kawaguchi, M.

K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth. Analg. 94(3), 586–590 (2002).
[CrossRef] [PubMed]

Keel, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Kek, K. J.

Kibe, R.

Kime, R.

K. Shiroishi, R. Kime, T. Osada, N. Murase, K. Shimomura, and T. Katsumura, “Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise,” Adv. Exp. Med. Biol. 662, 379–384 (2010).
[CrossRef] [PubMed]

Kirkpatrick, P.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[CrossRef]

Kirkpatrick, P. J.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Kitaguchi, K.

K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth. Analg. 94(3), 586–590 (2002).
[CrossRef] [PubMed]

Kolarova, A.

A. Dullenkopf, A. Kolarova, G. Schulz, B. Frey, O. Baenziger, and M. Weiss, “Reproducibility of cerebral oxygenation measurement in neonates and infants in the clinical setting using the NIRO 300 oximeter,” Pediatr. Crit. Care Med. 6(3), 344–347 (2005).
[CrossRef] [PubMed]

Komiyama, T.

T. Komiyama, V. Quaresima, H. Shigematsu, and M. Ferrari, “Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation,” Clin. Sci. 101(6), 715–718 (2001).
[CrossRef] [PubMed]

Krishnan, L.

F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
[CrossRef] [PubMed]

Kudo, N.

Kurth, C. D.

C. D. Kurth, J. C. McCann, J. Wu, L. Miles, and A. W. Loepke, “Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets,” Anesth. Analg. 108(4), 1268–1277 (2009).
[CrossRef] [PubMed]

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[CrossRef] [PubMed]

Lange, P. E.

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med. 31(6), 846–850 (2005).
[CrossRef] [PubMed]

Lassnigg, A.

G. Grubhofer, A. Lassnigg, F. Manlik, E. Marx, W. Trubel, and M. Hiesmayr, “The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy,” Anaesthesia 52(2), 116–120 (1997).
[CrossRef] [PubMed]

Latto, I. P.

M. S. Ali, M. Harmer, R. S. Vaughan, J. A. Dunne, and I. P. Latto, “Spatially resolved spectroscopy (NIRO-300) does not agree with jugular bulb oxygen saturation in patients undergoing warm bypass surgery,” Can. J. Anaesth. 48(5), 497–501 (2001).
[CrossRef] [PubMed]

LeBlanc, J. G.

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput. 17(7/8), 385–391 (2002).
[CrossRef] [PubMed]

Lemmers, P. M. A.

P. M. A. Lemmers, M. C. Toet, and F. van Bel, “Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants,” Pediatrics 121(1), 142–147 (2008).
[CrossRef] [PubMed]

M. C. Toet, P. M. A. Lemmers, L. J. van Schelven, and F. van Bel, “Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome,” Pediatrics 117(2), 333–339 (2006).
[CrossRef] [PubMed]

Leung, T. S.

L. C. Sorensen, T. S. Leung, and G. Greisen, “Comparison of cerebral oxygen saturation in premature infants by near-infrared spatially resolved spectroscopy: observations on probe-dependent bias,” J. Biomed. Opt. 13(6), 064013 (2008).
[CrossRef] [PubMed]

Li, S.

X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas. 28(10), 1251–1265 (2007).
[CrossRef] [PubMed]

Loepke, A. W.

C. D. Kurth, J. C. McCann, J. Wu, L. Miles, and A. W. Loepke, “Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets,” Anesth. Analg. 108(4), 1268–1277 (2009).
[CrossRef] [PubMed]

Macnab, A. J.

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput. 17(7/8), 385–391 (2002).
[CrossRef] [PubMed]

Manara, A. R.

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58(4), 477–479 (1995).
[CrossRef] [PubMed]

Manlik, F.

G. Grubhofer, A. Lassnigg, F. Manlik, E. Marx, W. Trubel, and M. Hiesmayr, “The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy,” Anaesthesia 52(2), 116–120 (1997).
[CrossRef] [PubMed]

Marx, E.

G. Grubhofer, A. Lassnigg, F. Manlik, E. Marx, W. Trubel, and M. Hiesmayr, “The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy,” Anaesthesia 52(2), 116–120 (1997).
[CrossRef] [PubMed]

Matcher, S. J.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[CrossRef]

McCann, J. C.

C. D. Kurth, J. C. McCann, J. Wu, L. Miles, and A. W. Loepke, “Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets,” Anesth. Analg. 108(4), 1268–1277 (2009).
[CrossRef] [PubMed]

McCormick, D. C.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

McKeating, E. G.

E. G. McKeating, J. R. Monjardino, D. F. Signorini, M. J. Souter, and P. J. Andrews, “A comparison of the Invos 3100 and the Critikon 2020 near-infrared spectrophotometers as monitors of cerebral oxygenation,” Anaesthesia 52(2), 136–140 (1997).
[CrossRef] [PubMed]

Meinders, A. E.

G. Buunk, J. G. van der Hoeven, and A. E. Meinders, “A comparison of near-infrared spectroscopy and jugular bulb oximetry in comatose patients resuscitated from a cardiac arrest,” Anaesthesia 53(1), 13–19 (1998).
[CrossRef] [PubMed]

Menke, J.

J. Menke, U. Voss, G. Möller, and G. Jorch, “Reproducibility of cerebral near infrared spectroscopy in neonates,” Biol. Neonate 83(1), 6–11 (2003).
[CrossRef] [PubMed]

Miera, O.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18(2), 160–166 (2008).
[PubMed]

Miles, L.

C. D. Kurth, J. C. McCann, J. Wu, L. Miles, and A. W. Loepke, “Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets,” Anesth. Analg. 108(4), 1268–1277 (2009).
[CrossRef] [PubMed]

Möller, G.

J. Menke, U. Voss, G. Möller, and G. Jorch, “Reproducibility of cerebral near infrared spectroscopy in neonates,” Biol. Neonate 83(1), 6–11 (2003).
[CrossRef] [PubMed]

Monjardino, J. R.

E. G. McKeating, J. R. Monjardino, D. F. Signorini, M. J. Souter, and P. J. Andrews, “A comparison of the Invos 3100 and the Critikon 2020 near-infrared spectrophotometers as monitors of cerebral oxygenation,” Anaesthesia 52(2), 136–140 (1997).
[CrossRef] [PubMed]

Montenegro, L. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[CrossRef] [PubMed]

Müller, W.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16(5), 057004 (2011).
[CrossRef] [PubMed]

Murase, N.

K. Shiroishi, R. Kime, T. Osada, N. Murase, K. Shimomura, and T. Katsumura, “Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise,” Adv. Exp. Med. Biol. 662, 379–384 (2010).
[CrossRef] [PubMed]

Nagdyman, N.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18(2), 160–166 (2008).
[PubMed]

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med. 31(6), 846–850 (2005).
[CrossRef] [PubMed]

Nahid, K.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[CrossRef]

Nelson, R. J.

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58(4), 477–479 (1995).
[CrossRef] [PubMed]

Nicolson, S. C.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[CrossRef] [PubMed]

Niwayama, M.

Ohye, R. G.

J. C. Hirsch, J. R. Charpie, R. G. Ohye, and J. G. Gurney, “Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management,” Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 13(1), 51–54 (2010).
[CrossRef] [PubMed]

Osada, T.

K. Shiroishi, R. Kime, T. Osada, N. Murase, K. Shimomura, and T. Katsumura, “Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise,” Adv. Exp. Med. Biol. 662, 379–384 (2010).
[CrossRef] [PubMed]

Penfold, S.-M.

C. E. Cooper, S.-M. Penfold, C. E. Elwell, and C. Angus, “Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals,” Adv. Exp. Med. Biol. 662, 177–181 (2010).
[CrossRef] [PubMed]

Peters, B.

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18(2), 160–166 (2008).
[PubMed]

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med. 31(6), 846–850 (2005).
[CrossRef] [PubMed]

Peters, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Pichler, G.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16(5), 057004 (2011).
[CrossRef] [PubMed]

Pocivalnik, M.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16(5), 057004 (2011).
[CrossRef] [PubMed]

Potter, L. A.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Quaresima, V.

F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, and M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol. 19(2), e1–e11 (2009).
[CrossRef] [PubMed]

T. Komiyama, V. Quaresima, H. Shigematsu, and M. Ferrari, “Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation,” Clin. Sci. 101(6), 715–718 (2001).
[CrossRef] [PubMed]

Reynolds, E. O.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Rome, J.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[CrossRef] [PubMed]

Roth, S. C.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Samarasinghe, T.

F. Y. Wong, T. Alexiou, T. Samarasinghe, V. Brodecky, and A. M. Walker, “Cerebral arterial and venous contributions to tissue oxygenation index measured using spatially resolved spectroscopy in newborn lambs,” Anesthesiology 113(6), 1385–1391 (2010).
[CrossRef] [PubMed]

Sbriccoli, P.

F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, and M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol. 19(2), e1–e11 (2009).
[CrossRef] [PubMed]

Schön, J.

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Schubert, S.

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med. 31(6), 846–850 (2005).
[CrossRef] [PubMed]

Schulz, G.

A. Dullenkopf, A. Kolarova, G. Schulz, B. Frey, O. Baenziger, and M. Weiss, “Reproducibility of cerebral oxygenation measurement in neonates and infants in the clinical setting using the NIRO 300 oximeter,” Pediatr. Crit. Care Med. 6(3), 344–347 (2005).
[CrossRef] [PubMed]

Shigematsu, H.

T. Komiyama, V. Quaresima, H. Shigematsu, and M. Ferrari, “Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation,” Clin. Sci. 101(6), 715–718 (2001).
[CrossRef] [PubMed]

Shimomura, K.

K. Shiroishi, R. Kime, T. Osada, N. Murase, K. Shimomura, and T. Katsumura, “Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise,” Adv. Exp. Med. Biol. 662, 379–384 (2010).
[CrossRef] [PubMed]

Shiroishi, K.

K. Shiroishi, R. Kime, T. Osada, N. Murase, K. Shimomura, and T. Katsumura, “Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise,” Adv. Exp. Med. Biol. 662, 379–384 (2010).
[CrossRef] [PubMed]

Sievers, H.-H.

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Signorini, D. F.

E. G. McKeating, J. R. Monjardino, D. F. Signorini, M. J. Souter, and P. J. Andrews, “A comparison of the Invos 3100 and the Critikon 2020 near-infrared spectrophotometers as monitors of cerebral oxygenation,” Anaesthesia 52(2), 136–140 (1997).
[CrossRef] [PubMed]

Smielewski, P.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Smith, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Sorensen, L. C.

L. C. Sorensen, T. S. Leung, and G. Greisen, “Comparison of cerebral oxygen saturation in premature infants by near-infrared spatially resolved spectroscopy: observations on probe-dependent bias,” J. Biomed. Opt. 13(6), 064013 (2008).
[CrossRef] [PubMed]

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11(5), 054005 (2006).
[CrossRef] [PubMed]

Souter, M. J.

E. G. McKeating, J. R. Monjardino, D. F. Signorini, M. J. Souter, and P. J. Andrews, “A comparison of the Invos 3100 and the Critikon 2020 near-infrared spectrophotometers as monitors of cerebral oxygenation,” Anaesthesia 52(2), 136–140 (1997).
[CrossRef] [PubMed]

Steven, J. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[CrossRef] [PubMed]

Tang, X.

X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas. 28(10), 1251–1265 (2007).
[CrossRef] [PubMed]

Tatsumi, K.

K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth. Analg. 94(3), 586–590 (2002).
[CrossRef] [PubMed]

Tax, N.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16(5), 057004 (2011).
[CrossRef] [PubMed]

Teng, Y.

X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas. 28(10), 1251–1265 (2007).
[CrossRef] [PubMed]

Thavasothy, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Toet, M. C.

P. M. A. Lemmers, M. C. Toet, and F. van Bel, “Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants,” Pediatrics 121(1), 142–147 (2008).
[CrossRef] [PubMed]

M. C. Toet, P. M. A. Lemmers, L. J. van Schelven, and F. van Bel, “Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome,” Pediatrics 117(2), 333–339 (2006).
[CrossRef] [PubMed]

Trajkovic, I.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[CrossRef] [PubMed]

Trubel, W.

G. Grubhofer, A. Lassnigg, F. Manlik, E. Marx, W. Trubel, and M. Hiesmayr, “The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy,” Anaesthesia 52(2), 116–120 (1997).
[CrossRef] [PubMed]

Urlesberger, B.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16(5), 057004 (2011).
[CrossRef] [PubMed]

van Bel, F.

P. M. A. Lemmers, M. C. Toet, and F. van Bel, “Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants,” Pediatrics 121(1), 142–147 (2008).
[CrossRef] [PubMed]

M. C. Toet, P. M. A. Lemmers, L. J. van Schelven, and F. van Bel, “Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome,” Pediatrics 117(2), 333–339 (2006).
[CrossRef] [PubMed]

van der Hoeven, J. G.

G. Buunk, J. G. van der Hoeven, and A. E. Meinders, “A comparison of near-infrared spectroscopy and jugular bulb oximetry in comatose patients resuscitated from a cardiac arrest,” Anaesthesia 53(1), 13–19 (1998).
[CrossRef] [PubMed]

van der Zee, P.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

van Schelven, L. J.

M. C. Toet, P. M. A. Lemmers, L. J. van Schelven, and F. van Bel, “Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome,” Pediatrics 117(2), 333–339 (2006).
[CrossRef] [PubMed]

Vaughan, R. S.

M. S. Ali, M. Harmer, R. S. Vaughan, J. A. Dunne, and I. P. Latto, “Spatially resolved spectroscopy (NIRO-300) does not agree with jugular bulb oxygen saturation in patients undergoing warm bypass surgery,” Can. J. Anaesth. 48(5), 497–501 (2001).
[CrossRef] [PubMed]

von Siebenthal, K.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Voss, U.

J. Menke, U. Voss, G. Möller, and G. Jorch, “Reproducibility of cerebral near infrared spectroscopy in neonates,” Biol. Neonate 83(1), 6–11 (2003).
[CrossRef] [PubMed]

Walker, A. M.

F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
[CrossRef] [PubMed]

F. Y. Wong, T. Alexiou, T. Samarasinghe, V. Brodecky, and A. M. Walker, “Cerebral arterial and venous contributions to tissue oxygenation index measured using spatially resolved spectroscopy in newborn lambs,” Anesthesiology 113(6), 1385–1391 (2010).
[CrossRef] [PubMed]

Watzman, H. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[CrossRef] [PubMed]

Weiss, M.

A. Dullenkopf, A. Kolarova, G. Schulz, B. Frey, O. Baenziger, and M. Weiss, “Reproducibility of cerebral oxygenation measurement in neonates and infants in the clinical setting using the NIRO 300 oximeter,” Pediatr. Crit. Care Med. 6(3), 344–347 (2005).
[CrossRef] [PubMed]

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth. 13(5), 384–391 (2003).
[CrossRef] [PubMed]

Witcombe, N. B.

F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
[CrossRef] [PubMed]

Wolf, M.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Wong, F. Y.

F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
[CrossRef] [PubMed]

F. Y. Wong, T. Alexiou, T. Samarasinghe, V. Brodecky, and A. M. Walker, “Cerebral arterial and venous contributions to tissue oxygenation index measured using spatially resolved spectroscopy in newborn lambs,” Anesthesiology 113(6), 1385–1391 (2010).
[CrossRef] [PubMed]

Wu, J.

C. D. Kurth, J. C. McCann, J. Wu, L. Miles, and A. W. Loepke, “Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets,” Anesth. Analg. 108(4), 1268–1277 (2009).
[CrossRef] [PubMed]

Wyatt, J. S.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

Yamamoto, K.

Yiallourou, S. R.

F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
[CrossRef] [PubMed]

Yorkston, S.

F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
[CrossRef] [PubMed]

Yoshitani, K.

K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth. Analg. 94(3), 586–590 (2002).
[CrossRef] [PubMed]

Young, A. E.

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58(4), 477–479 (1995).
[CrossRef] [PubMed]

Zhou, C.

X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas. 28(10), 1251–1265 (2007).
[CrossRef] [PubMed]

Zotter, H.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16(5), 057004 (2011).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (3)

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992).
[CrossRef] [PubMed]

K. Shiroishi, R. Kime, T. Osada, N. Murase, K. Shimomura, and T. Katsumura, “Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise,” Adv. Exp. Med. Biol. 662, 379–384 (2010).
[CrossRef] [PubMed]

C. E. Cooper, S.-M. Penfold, C. E. Elwell, and C. Angus, “Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals,” Adv. Exp. Med. Biol. 662, 177–181 (2010).
[CrossRef] [PubMed]

Anaesthesia (4)

G. Grubhofer, A. Lassnigg, F. Manlik, E. Marx, W. Trubel, and M. Hiesmayr, “The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy,” Anaesthesia 52(2), 116–120 (1997).
[CrossRef] [PubMed]

E. G. McKeating, J. R. Monjardino, D. F. Signorini, M. J. Souter, and P. J. Andrews, “A comparison of the Invos 3100 and the Critikon 2020 near-infrared spectrophotometers as monitors of cerebral oxygenation,” Anaesthesia 52(2), 136–140 (1997).
[CrossRef] [PubMed]

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[CrossRef] [PubMed]

G. Buunk, J. G. van der Hoeven, and A. E. Meinders, “A comparison of near-infrared spectroscopy and jugular bulb oximetry in comatose patients resuscitated from a cardiac arrest,” Anaesthesia 53(1), 13–19 (1998).
[CrossRef] [PubMed]

Anesth. Analg. (2)

C. D. Kurth, J. C. McCann, J. Wu, L. Miles, and A. W. Loepke, “Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets,” Anesth. Analg. 108(4), 1268–1277 (2009).
[CrossRef] [PubMed]

K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth. Analg. 94(3), 586–590 (2002).
[CrossRef] [PubMed]

Anesthesiology (3)

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).
[CrossRef] [PubMed]

F. Y. Wong, T. Alexiou, T. Samarasinghe, V. Brodecky, and A. M. Walker, “Cerebral arterial and venous contributions to tissue oxygenation index measured using spatially resolved spectroscopy in newborn lambs,” Anesthesiology 113(6), 1385–1391 (2010).
[CrossRef] [PubMed]

M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology 114(1), 58–69 (2011).
[CrossRef] [PubMed]

Biol. Neonate (1)

J. Menke, U. Voss, G. Möller, and G. Jorch, “Reproducibility of cerebral near infrared spectroscopy in neonates,” Biol. Neonate 83(1), 6–11 (2003).
[CrossRef] [PubMed]

BMJ (1)

J. M. Bland and D. G. Altman, “Measurement error,” BMJ 313(7059), 744 (1996).
[PubMed]

Can. J. Anaesth. (1)

M. S. Ali, M. Harmer, R. S. Vaughan, J. A. Dunne, and I. P. Latto, “Spatially resolved spectroscopy (NIRO-300) does not agree with jugular bulb oxygen saturation in patients undergoing warm bypass surgery,” Can. J. Anaesth. 48(5), 497–501 (2001).
[CrossRef] [PubMed]

Clin. Sci. (1)

T. Komiyama, V. Quaresima, H. Shigematsu, and M. Ferrari, “Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation,” Clin. Sci. 101(6), 715–718 (2001).
[CrossRef] [PubMed]

Intensive Care Med. (1)

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med. 31(6), 846–850 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt. 16(5), 057004 (2011).
[CrossRef] [PubMed]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt. 16(9), 097004 (2011).
[CrossRef] [PubMed]

L. C. Sorensen, T. S. Leung, and G. Greisen, “Comparison of cerebral oxygen saturation in premature infants by near-infrared spatially resolved spectroscopy: observations on probe-dependent bias,” J. Biomed. Opt. 13(6), 064013 (2008).
[CrossRef] [PubMed]

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11(5), 054005 (2006).
[CrossRef] [PubMed]

J. Clin. Monit. Comput. (1)

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput. 17(7/8), 385–391 (2002).
[CrossRef] [PubMed]

J. Electromyogr. Kinesiol. (1)

F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, and M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol. 19(2), e1–e11 (2009).
[CrossRef] [PubMed]

J. Neurol. Neurosurg. Psychiatry (1)

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58(4), 477–479 (1995).
[CrossRef] [PubMed]

Opt. Express (1)

Paediatr. Anaesth. (2)

N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth. 18(2), 160–166 (2008).
[PubMed]

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth. 13(5), 384–391 (2003).
[CrossRef] [PubMed]

Pediatr. Crit. Care Med. (1)

A. Dullenkopf, A. Kolarova, G. Schulz, B. Frey, O. Baenziger, and M. Weiss, “Reproducibility of cerebral oxygenation measurement in neonates and infants in the clinical setting using the NIRO 300 oximeter,” Pediatr. Crit. Care Med. 6(3), 344–347 (2005).
[CrossRef] [PubMed]

Pediatrics (3)

M. C. Toet, P. M. A. Lemmers, L. J. van Schelven, and F. van Bel, “Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome,” Pediatrics 117(2), 333–339 (2006).
[CrossRef] [PubMed]

F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics 127(3), e558–e565 (2011).
[CrossRef] [PubMed]

P. M. A. Lemmers, M. C. Toet, and F. van Bel, “Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants,” Pediatrics 121(1), 142–147 (2008).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Physiol. Meas. (1)

X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas. 28(10), 1251–1265 (2007).
[CrossRef] [PubMed]

Proc. SPIE (2)

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” Proc. SPIE 3597, 618–631 (1999).
[CrossRef]

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE 2389, 486–495 (1995).
[CrossRef]

Semin. Fetal Neonatal Med. (1)

G. Greisen, “Is near-infrared spectroscopy living up to its promises?” Semin. Fetal Neonatal Med. 11(6), 498–502 (2006).
[CrossRef] [PubMed]

Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. (1)

J. C. Hirsch, J. R. Charpie, R. G. Ohye, and J. G. Gurney, “Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management,” Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 13(1), 51–54 (2010).
[CrossRef] [PubMed]

Stat. Methods Med. Res. (1)

J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res. 8(2), 135–160 (1999).
[CrossRef] [PubMed]

Stroke (1)

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492–2500 (2001).
[CrossRef] [PubMed]

Other (1)

“NIRS Technology,” www.somanetics.com/our-technology/nirs-technology#trend .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustration of sensor positions during resitings (translucent white rectangle) and dynamic measurements (four opaque white ovals with position number). S, source. D, detector.

Fig. 2
Fig. 2

For each instrument: On the left side the mean StO2 with 95% CI (box) and 95% reference range. On the right side dynamic range with mean StO2 pre- and post-exercise with 95% CI (boxes)

Fig. 3
Fig. 3

A tracing of StO2 with the NIRO 200 NX during exercise and arterial occlusion

Tables (2)

Tables Icon

Table 1 Mean regional tissue oxygenation StO2 of each instrumenta

Tables Icon

Table 2 Reproducibility Sw and dynamic range ΔStO2 for each instrumenta

Metrics