Abstract

We propose and studied optical coherence tomography (OCT) combining spectroscopic (SOCT) and speckle variance (svOCT) functions to effectively detect locations of microvasculatures and assess blood oxygen saturation level. Chorioallantoic membrane of a chick embryo was imaged in vivo to perform the analysis of the system. We also studied the effect of speckle in spectral domain using experimental data and performed time-averaging to reduce speckle noise locally. We combined SOCT and svOCT images using hue, saturation and value (HSV) color map to show the localized spectroscopic property of blood. Results show distinct spectroscopic properties between arterial blood and capillary blood.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Khoobehi, J. M. Beach, and H. Kawano, “Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head,” Invest. Ophthalmol. Vis. Sci.45(5), 1464–1472 (2004).
    [CrossRef] [PubMed]
  2. K. R. Denninghoff, M. H. Smith, and L. Hillman, “Retinal imaging techniques in diabetes,” Diabetes Technol. Ther.2(1), 111–113 (2000).
    [CrossRef] [PubMed]
  3. J. C. Ramella-Roman, S. A. Mathews, H. Kandimalla, A. Nabili, D. D. Duncan, S. A. D’Anna, S. M. Shah, and Q. D. Nguyen, “Measurement of oxygen saturation in the retina with a spectroscopic sensitive multi aperture camera,” Opt. Express16(9), 6170–6182 (2008).
    [CrossRef] [PubMed]
  4. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011).
    [CrossRef] [PubMed]
  5. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011).
    [CrossRef] [PubMed]
  6. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
    [CrossRef] [PubMed]
  7. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000).
    [CrossRef] [PubMed]
  8. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett.28(16), 1436–1438 (2003).
    [CrossRef] [PubMed]
  9. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett.30(9), 1015–1017 (2005).
    [CrossRef] [PubMed]
  10. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett.34(9), 1435–1437 (2009).
    [CrossRef] [PubMed]
  11. C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett.33(5), 416–418 (2008).
    [CrossRef] [PubMed]
  12. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express1(1), 310–317 (2010).
    [CrossRef] [PubMed]
  13. X. Liu and J. U. Kang, “Depth-resolved blood oxygen saturation assessment using spectroscopic common-path Fourier domain optical coherence tomography,” IEEE Trans. Biomed. Eng.57(10), 2572–2575 (2010).
    [CrossRef] [PubMed]
  14. J. W. Goodman, Statistical Optics (Wiley, 1985).
  15. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
    [CrossRef]
  16. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000).
    [CrossRef] [PubMed]
  17. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A22(4), 593–596 (2005).
    [CrossRef] [PubMed]
  18. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express15(10), 6200–6209 (2007).
    [CrossRef] [PubMed]
  19. M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
    [CrossRef] [PubMed]
  20. B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Opt. Lett.35(14), 2445–2447 (2010).
    [CrossRef] [PubMed]
  21. C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express13(14), 5450–5462 (2005).
    [CrossRef] [PubMed]
  22. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  23. Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, “Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon,” Invest. Ophthalmol. Vis. Sci.35(11), 3825–3834 (1994).
    [PubMed]
  24. N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege, and N. V. Thakor, “High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast,” J. Neurosci. Methods176(2), 230–236 (2009).
    [CrossRef] [PubMed]
  25. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
    [CrossRef] [PubMed]
  26. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
    [CrossRef] [PubMed]
  27. T. Leng, J. M. Miller, K. V. Bilbao, D. V. Palanker, P. Huie, and M. S. Blumenkranz, “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina24(3), 427–434 (2004).
    [CrossRef] [PubMed]
  28. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  29. Oregon Medical Laser Center, “Optical properties spectra,” http://omlc.ogi.edu/spectra/index.html .
  30. M. Loeve, Probability Theory (Springer-Verlag, 1977)
  31. K. Zhang and J. U. Kang, “Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,” Electron. Lett.47(5), 309–310 (2011).
    [CrossRef]
  32. K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
    [CrossRef] [PubMed]
  33. V.-D. Tuan, ed., 2003 Biomedical Photonics Handbook (CRC Press, Boca Raton, FL).
  34. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
    [CrossRef]
  35. C. Xu, D. Marks, M. Do, and S. Boppart, “Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,” Opt. Express12(20), 4790–4803 (2004).
    [CrossRef] [PubMed]
  36. F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett.35(17), 2843–2845 (2010).
    [CrossRef] [PubMed]

2011 (3)

2010 (7)

K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
[CrossRef] [PubMed]

F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett.35(17), 2843–2845 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Opt. Lett.35(14), 2445–2447 (2010).
[CrossRef] [PubMed]

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express1(1), 310–317 (2010).
[CrossRef] [PubMed]

X. Liu and J. U. Kang, “Depth-resolved blood oxygen saturation assessment using spectroscopic common-path Fourier domain optical coherence tomography,” IEEE Trans. Biomed. Eng.57(10), 2572–2575 (2010).
[CrossRef] [PubMed]

2009 (2)

D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett.34(9), 1435–1437 (2009).
[CrossRef] [PubMed]

N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege, and N. V. Thakor, “High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast,” J. Neurosci. Methods176(2), 230–236 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (1)

2005 (3)

2004 (4)

C. Xu, D. Marks, M. Do, and S. Boppart, “Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,” Opt. Express12(20), 4790–4803 (2004).
[CrossRef] [PubMed]

T. Leng, J. M. Miller, K. V. Bilbao, D. V. Palanker, P. Huie, and M. S. Blumenkranz, “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina24(3), 427–434 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

B. Khoobehi, J. M. Beach, and H. Kawano, “Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head,” Invest. Ophthalmol. Vis. Sci.45(5), 1464–1472 (2004).
[CrossRef] [PubMed]

2003 (2)

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett.28(16), 1436–1438 (2003).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

2000 (3)

1999 (2)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef]

1994 (1)

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, “Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon,” Invest. Ophthalmol. Vis. Sci.35(11), 3825–3834 (1994).
[PubMed]

Aalders, M. C. G.

An, L.

Araie, M.

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, “Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon,” Invest. Ophthalmol. Vis. Sci.35(11), 3825–3834 (1994).
[PubMed]

Bashkansky, M.

Beach, J. M.

B. Khoobehi, J. M. Beach, and H. Kawano, “Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head,” Invest. Ophthalmol. Vis. Sci.45(5), 1464–1472 (2004).
[CrossRef] [PubMed]

Bilbao, K. V.

T. Leng, J. M. Miller, K. V. Bilbao, D. V. Palanker, P. Huie, and M. S. Blumenkranz, “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina24(3), 427–434 (2004).
[CrossRef] [PubMed]

Blumenkranz, M. S.

T. Leng, J. M. Miller, K. V. Bilbao, D. V. Palanker, P. Huie, and M. S. Blumenkranz, “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina24(3), 427–434 (2004).
[CrossRef] [PubMed]

Boas, D. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bonesi, M.

Boppart, S.

Bouma, B. E.

Cable, A.

Carney, P.

Chowdhury, S.

Curatolo, A.

D’Anna, S. A.

Denninghoff, K. R.

K. R. Denninghoff, M. H. Smith, and L. Hillman, “Retinal imaging techniques in diabetes,” Diabetes Technol. Ther.2(1), 111–113 (2000).
[CrossRef] [PubMed]

Desjardins, A. E.

Do, M.

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef]

Drexler, W.

Duker, J.

Duncan, D. D.

Dunn, A. K.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Eguchi, S.

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, “Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon,” Invest. Ophthalmol. Vis. Sci.35(11), 3825–3834 (1994).
[PubMed]

Faber, D. J.

Fercher, A. F.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Francis, P.

Friebel, M.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef]

Fujii, H.

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, “Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon,” Invest. Ophthalmol. Vis. Sci.35(11), 3825–3834 (1994).
[PubMed]

Fujimoto, J.

Fujimoto, J. G.

Götzinger, E.

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef]

Hassler, K.

Hillman, L.

K. R. Denninghoff, M. H. Smith, and L. Hillman, “Retinal imaging techniques in diabetes,” Diabetes Technol. Ther.2(1), 111–113 (2000).
[CrossRef] [PubMed]

Hillman, T. R.

Hitzenberger, C. K.

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Huie, P.

T. Leng, J. M. Miller, K. V. Bilbao, D. V. Palanker, P. Huie, and M. S. Blumenkranz, “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina24(3), 427–434 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

Jaillon, F.

Jarvi, M.

Jia, X.

N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege, and N. V. Thakor, “High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast,” J. Neurosci. Methods176(2), 230–236 (2009).
[CrossRef] [PubMed]

Jiang, J.

Kandimalla, H.

Kang, J. U.

K. Zhang and J. U. Kang, “Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,” Electron. Lett.47(5), 309–310 (2011).
[CrossRef]

K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
[CrossRef] [PubMed]

X. Liu and J. U. Kang, “Depth-resolved blood oxygen saturation assessment using spectroscopic common-path Fourier domain optical coherence tomography,” IEEE Trans. Biomed. Eng.57(10), 2572–2575 (2010).
[CrossRef] [PubMed]

Karamata, B.

Kärtner, F. X.

Kawamoto, E.

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, “Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon,” Invest. Ophthalmol. Vis. Sci.35(11), 3825–3834 (1994).
[PubMed]

Kawano, H.

B. Khoobehi, J. M. Beach, and H. Kawano, “Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head,” Invest. Ophthalmol. Vis. Sci.45(5), 1464–1472 (2004).
[CrossRef] [PubMed]

Kennedy, B. F.

Khoobehi, B.

B. Khoobehi, J. M. Beach, and H. Kawano, “Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head,” Invest. Ophthalmol. Vis. Sci.45(5), 1464–1472 (2004).
[CrossRef] [PubMed]

Khurana, M.

Ko, T.

Kowalczyk, A.

Lasser, T.

Laubscher, M.

Lee, C. K.

Lee, K.

Leitgeb, R.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Leitgeb, R. A.

Leng, T.

T. Leng, J. M. Miller, K. V. Bilbao, D. V. Palanker, P. Huie, and M. S. Blumenkranz, “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina24(3), 427–434 (2004).
[CrossRef] [PubMed]

Leung, M. K. K.

Li, N.

N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege, and N. V. Thakor, “High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast,” J. Neurosci. Methods176(2), 230–236 (2009).
[CrossRef] [PubMed]

Li, X. D.

Liu, X.

X. Liu and J. U. Kang, “Depth-resolved blood oxygen saturation assessment using spectroscopic common-path Fourier domain optical coherence tomography,” IEEE Trans. Biomed. Eng.57(10), 2572–2575 (2010).
[CrossRef] [PubMed]

Lu, C. W.

Makita, S.

Mariampillai, A.

Marks, D.

Mathews, S. A.

Mik, E. G.

Miller, J. M.

T. Leng, J. M. Miller, K. V. Bilbao, D. V. Palanker, P. Huie, and M. S. Blumenkranz, “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina24(3), 427–434 (2004).
[CrossRef] [PubMed]

Miura, M.

Morgner, U.

Moriyama, E. H.

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Motaghiannezam, S. M.

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef]

Munce, N. R.

Murari, K.

N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege, and N. V. Thakor, “High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast,” J. Neurosci. Methods176(2), 230–236 (2009).
[CrossRef] [PubMed]

Nabili, A.

Nguyen, Q. D.

Oh, W. Y.

Palanker, D. V.

T. Leng, J. M. Miller, K. V. Bilbao, D. V. Palanker, P. Huie, and M. S. Blumenkranz, “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina24(3), 427–434 (2004).
[CrossRef] [PubMed]

Parlapalli, R.

N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege, and N. V. Thakor, “High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast,” J. Neurosci. Methods176(2), 230–236 (2009).
[CrossRef] [PubMed]

Pircher, M.

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Pitris, C.

Ramella-Roman, J. C.

Rege, A.

N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege, and N. V. Thakor, “High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast,” J. Neurosci. Methods176(2), 230–236 (2009).
[CrossRef] [PubMed]

Reintjes, J.

Robles, F. E.

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef]

Sampson, D. D.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

Shah, S. M.

Smith, M. H.

K. R. Denninghoff, M. H. Smith, and L. Hillman, “Retinal imaging techniques in diabetes,” Diabetes Technol. Ther.2(1), 111–113 (2000).
[CrossRef] [PubMed]

Srinivasan, V.

Standish, B. A.

Tamaki, Y.

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, “Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon,” Invest. Ophthalmol. Vis. Sci.35(11), 3825–3834 (1994).
[PubMed]

Tearney, G. J.

Thakor, N. V.

N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege, and N. V. Thakor, “High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast,” J. Neurosci. Methods176(2), 230–236 (2009).
[CrossRef] [PubMed]

Torzicky, T.

Tsai, M. T.

Vakoc, B. J.

van Leeuwen, T. G.

Vitkin, A.

Vitkin, I. A.

Wang, R. K.

Wang, Y. M.

Wax, A.

Wilson, B. C.

Wilson, D. J.

Wojtkowski, M.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

Xu, C.

Yamanari, M.

Yang, C. C.

Yang, V. X. D.

Yasuno, Y.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

Zhang, K.

K. Zhang and J. U. Kang, “Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,” Electron. Lett.47(5), 309–310 (2011).
[CrossRef]

K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
[CrossRef] [PubMed]

Zotter, S.

Biomed. Opt. Express (1)

Diabetes Technol. Ther. (1)

K. R. Denninghoff, M. H. Smith, and L. Hillman, “Retinal imaging techniques in diabetes,” Diabetes Technol. Ther.2(1), 111–113 (2000).
[CrossRef] [PubMed]

Electron. Lett. (1)

K. Zhang and J. U. Kang, “Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,” Electron. Lett.47(5), 309–310 (2011).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

X. Liu and J. U. Kang, “Depth-resolved blood oxygen saturation assessment using spectroscopic common-path Fourier domain optical coherence tomography,” IEEE Trans. Biomed. Eng.57(10), 2572–2575 (2010).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, “Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon,” Invest. Ophthalmol. Vis. Sci.35(11), 3825–3834 (1994).
[PubMed]

B. Khoobehi, J. M. Beach, and H. Kawano, “Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head,” Invest. Ophthalmol. Vis. Sci.45(5), 1464–1472 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999).
[CrossRef]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege, and N. V. Thakor, “High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast,” J. Neurosci. Methods176(2), 230–236 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Express (8)

A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express15(10), 6200–6209 (2007).
[CrossRef] [PubMed]

J. C. Ramella-Roman, S. A. Mathews, H. Kandimalla, A. Nabili, D. D. Duncan, S. A. D’Anna, S. M. Shah, and Q. D. Nguyen, “Measurement of oxygen saturation in the retina with a spectroscopic sensitive multi aperture camera,” Opt. Express16(9), 6170–6182 (2008).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express13(14), 5450–5462 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

C. Xu, D. Marks, M. Do, and S. Boppart, “Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,” Opt. Express12(20), 4790–4803 (2004).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
[CrossRef] [PubMed]

Opt. Lett. (11)

F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett.35(17), 2843–2845 (2010).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
[CrossRef] [PubMed]

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000).
[CrossRef] [PubMed]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett.28(16), 1436–1438 (2003).
[CrossRef] [PubMed]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett.30(9), 1015–1017 (2005).
[CrossRef] [PubMed]

D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett.34(9), 1435–1437 (2009).
[CrossRef] [PubMed]

C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett.33(5), 416–418 (2008).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Opt. Lett.35(14), 2445–2447 (2010).
[CrossRef] [PubMed]

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000).
[CrossRef] [PubMed]

Retina (1)

T. Leng, J. M. Miller, K. V. Bilbao, D. V. Palanker, P. Huie, and M. S. Blumenkranz, “The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation,” Retina24(3), 427–434 (2004).
[CrossRef] [PubMed]

Other (4)

Oregon Medical Laser Center, “Optical properties spectra,” http://omlc.ogi.edu/spectra/index.html .

M. Loeve, Probability Theory (Springer-Verlag, 1977)

V.-D. Tuan, ed., 2003 Biomedical Photonics Handbook (CRC Press, Boca Raton, FL).

J. W. Goodman, Statistical Optics (Wiley, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Molar extinction coefficient spectra of Hb (blue) and HbO2 (red).

Fig. 2
Fig. 2

A chick embryo with part of its inner shell membrane peeled

Fig. 3
Fig. 3

(a) B-mode OCT image without averaging; (b) B-mode OCT image obtained by averaging 500 frames

Fig. 4
Fig. 4

svOCT images obtained by using 10 (a), 100 (b) and 500 (c) frames of OCT images to calculate the speckle variance.

Fig. 5
Fig. 5

(a)–(h) Histogram of signal intensity at Pixels 1–8; (i) autocorrelation function of signal intensity obtained from points 1–4 (red curves) and obtained from points 5–8 (black curves).

Fig. 6
Fig. 6

(a) Localized spectra obtained in the vicinity of Point A without averaging; (b)Localized spectra obtained in the vicinity of Point B without averaging; (c)Localized spectra obtained in the vicinity of Point A obtained by averaging 500 spectra; (d)Localized spectra obtained in the vicinity of Point B obtained by averaging 500 spectra.

Fig. 7
Fig. 7

SOCT images obtained from the STFT method using 1 (a), 10 (b), 100 (c), 500 (d) frames of OCT data; SOCT images obtained from the TW method using 1 (e), 10 (f), 100 (g), 500 (h) frames of OCT data.

Fig. 8
Fig. 8

(a) Thresholded svOCT image that highlights blood vessels; (b) combined svOCT image and SOCT image obtained from STFT method; (c) combined svOCT image and SOCT image obtained from TW method; (d) the vicinities of Points 1, 2, 3 and 4 in the combined svOCT and SOCT image from STFT method; (e) the vicinities of Points 1, 2, 3 and 4 in the combined svOCT and SOCT image from TW method; (f) and (g) shows γ(z) obtained, corresponding to Point 1 to 4, from STFT method and TW method, respectively.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I OCT ( z )= F 1 [ S OCT (k) ]
S O 2 = C Hb O 2 C Hb O 2 + C Hb
α= C Hb ε Hb + C Hb O 2 ε Hb O 2
α=C[ ε Hb +S O 2 ( ε Hb O 2 ε Hb ) ]
S OCT (k)= S 0 (k)M( k,z )cos( 2kz )dz             = U( k,z )cos( 2kz )dz
V(k, z 0 )=| F{ I OCT ( z )exp[ 4ln2 ( z z 0 ) 2 L 2 ] } |
γ( z )=log( I short I long )=log( I short )log( I long )
I long ( z )=| F 1 [ S OCT (k) G long (k) ] |
I short ( z )=| F 1 [ S OCT (k) G short (k) ] |
γ( z )=log( I 0,long I 0,short )+zC[ Δ ε Hb +S O 2 ( Δ ε Hb O 2 Δ ε Hb ) ]
ρ( | I OCT | )= | I OCT | σ OCT 2 exp( | I OCT 2 | 2 σ OCT 2 )
S V jm = 1 I mean,jm 1 N 0 i=0 N 0 1 ( I i'jm I mean,jm ) 2
I mean,jm = 1 N 0 i=0 N 0 1 I i'jm
V measure, i ( k, z 0 )= N s,i ( k, z 0 )V( k, z 0 )
1 N 0 i=0 N 0 1 V measure, i ( k, z 0 ) = 1 N 0 [ i=0 N 0 1 N s,i ( k ) ]V( k, z 0 )= N s V( k, z 0 )
I OCT = I 0 e ( α s + α a )z
m=C[ Δ ε Hb +S O 2 ( Δ ε Hb O 2 Δ ε Hb ) ]+( α s,long α s,short )

Metrics