Abstract

We consider acquisition schemes that maximize the fraction of images that contain only a single activated molecule (as opposed to multiple activated molecules) in superresolution localization microscopy of fluorescent probes. During a superresolution localization microscopy experiment, irreversible photobleaching destroys fluorescent molecules, limiting the ability to monitor the dynamics of long-lived processes. Here we consider experiments controlled by a single wavelength, so that the bleaching and activation rates are coupled variables. We use variational techniques and kinetic models to demonstrate that this coupling of bleaching and activation leads to very different optimal control schemes, depending on the detailed kinetics of fluorophore activation and bleaching. Likewise, we show that the robustness of the acquisition scheme is strongly dependent on the detailed kinetics of activation and bleaching.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Lidke, B. Rieger, T. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using blinking statistics,” Opt. Express13, 7052–7062 (2005).
    [CrossRef] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
    [CrossRef] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods3, 793–795 (2006).
    [CrossRef] [PubMed]
  4. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
    [CrossRef] [PubMed]
  5. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82, 2775–2783 (2002).
    [CrossRef] [PubMed]
  6. R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophysical Journal86, 1185–1200 (2004).
    [CrossRef] [PubMed]
  7. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5, 417–423 (2008).
    [CrossRef] [PubMed]
  8. S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
    [CrossRef] [PubMed]
  9. D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009).
    [CrossRef] [PubMed]
  10. N. A. Frost, H. Shroff, H. Kong, E. Betzig, and T. A. Blanpied, “Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines,” Neuron67, 86–99 (2010).
    [CrossRef] [PubMed]
  11. S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proc. Natl. Acad. Sci. U.S.A.104, 17370 (2007).
    [CrossRef] [PubMed]
  12. T. A. Brown, R. D. Fetter, A. N. Tkachuk, and D. A. Clayton, “Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using palm,” Methods51, 458–463 (2010).
    [CrossRef] [PubMed]
  13. B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3d storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods5, 1047 (2008).
    [CrossRef] [PubMed]
  14. J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
    [CrossRef] [PubMed]
  15. C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, “Superresolution microscopy on the basis of engineered dark states,” J. Am. Chem. Soc130, 16840–16841 (2008).
    [CrossRef] [PubMed]
  16. D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J.96, L22–L24 (2009).
    [CrossRef] [PubMed]
  17. M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
    [CrossRef]
  18. I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
    [CrossRef] [PubMed]
  19. S. Lee, M. Thompson, M. A. Schwartz, L. Shapiro, and W. E. Moerner, “Super-resolution imaging of the nucleoid-associated protein hu in caulobacter crescentus,” Biophys. J.100, L31–L33 (2011).
    [CrossRef] [PubMed]
  20. J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A.106, 8107–8112 (2009).
    [CrossRef] [PubMed]
  21. E. Shore and A. Small, “Optimal acquisition scheme for subwavelength localization microscopy of bleachable fluorophores,” Opt. Lett.36, 289–291 (2011).
    [CrossRef] [PubMed]
  22. A. Small, “Theoretical limits on errors and acquisition rates in localizing switchable fluorophores,” Biophys. J.96, L16–L18 (2009).
    [CrossRef] [PubMed]
  23. F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express2, 1377–1393 (2011).
    [CrossRef] [PubMed]
  24. H. Goldstein, Classical mechanics (Addison-Wesley Pub. Co., 1980).
  25. B. Chachuat, Nonlinear and Dynamic Optimization: From Theory to Practice (Laboratoire dAutomatique, Ecole Polytechnique Federale de Lausanne, Lecture Notes for Winter Semester, 2007).
  26. M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opinion Chem. Biol.12, 505–514 (2008).
    [CrossRef]
  27. T. Gould and S. Hess, “Nanoscale biological fluorescence imaging: Breaking the diffraction barrier,” Methods Cell Biol.89, 329–358 (2008).
    [CrossRef]
  28. C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7, 373–375 (2010).
    [CrossRef] [PubMed]
  29. C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, “Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis,” Anal. Chem70, 2651–2659 (1998).
    [CrossRef] [PubMed]
  30. G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods4, 81–86 (2007).
    [CrossRef]

2011 (3)

2010 (5)

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7, 373–375 (2010).
[CrossRef] [PubMed]

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
[CrossRef] [PubMed]

T. A. Brown, R. D. Fetter, A. N. Tkachuk, and D. A. Clayton, “Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using palm,” Methods51, 458–463 (2010).
[CrossRef] [PubMed]

N. A. Frost, H. Shroff, H. Kong, E. Betzig, and T. A. Blanpied, “Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines,” Neuron67, 86–99 (2010).
[CrossRef] [PubMed]

2009 (5)

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J.96, L22–L24 (2009).
[CrossRef] [PubMed]

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009).
[CrossRef] [PubMed]

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A.106, 8107–8112 (2009).
[CrossRef] [PubMed]

A. Small, “Theoretical limits on errors and acquisition rates in localizing switchable fluorophores,” Biophys. J.96, L16–L18 (2009).
[CrossRef] [PubMed]

2008 (6)

M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opinion Chem. Biol.12, 505–514 (2008).
[CrossRef]

T. Gould and S. Hess, “Nanoscale biological fluorescence imaging: Breaking the diffraction barrier,” Methods Cell Biol.89, 329–358 (2008).
[CrossRef]

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5, 417–423 (2008).
[CrossRef] [PubMed]

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3d storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods5, 1047 (2008).
[CrossRef] [PubMed]

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, “Superresolution microscopy on the basis of engineered dark states,” J. Am. Chem. Soc130, 16840–16841 (2008).
[CrossRef] [PubMed]

2007 (2)

S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proc. Natl. Acad. Sci. U.S.A.104, 17370 (2007).
[CrossRef] [PubMed]

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods4, 81–86 (2007).
[CrossRef]

2006 (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods3, 793–795 (2006).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophysical Journal86, 1185–1200 (2004).
[CrossRef] [PubMed]

2002 (1)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82, 2775–2783 (2002).
[CrossRef] [PubMed]

1998 (1)

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, “Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis,” Anal. Chem70, 2651–2659 (1998).
[CrossRef] [PubMed]

Baddeley, D.

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J.96, L22–L24 (2009).
[CrossRef] [PubMed]

Bates, M.

M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opinion Chem. Biol.12, 505–514 (2008).
[CrossRef]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods3, 793–795 (2006).
[CrossRef] [PubMed]

Betzig, E.

N. A. Frost, H. Shroff, H. Kong, E. Betzig, and T. A. Blanpied, “Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines,” Neuron67, 86–99 (2010).
[CrossRef] [PubMed]

D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009).
[CrossRef] [PubMed]

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5, 417–423 (2008).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Blanpied, T. A.

N. A. Frost, H. Shroff, H. Kong, E. Betzig, and T. A. Blanpied, “Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines,” Neuron67, 86–99 (2010).
[CrossRef] [PubMed]

Bock, H.

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Bossi, M.

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

Brandenburg, B.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3d storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods5, 1047 (2008).
[CrossRef] [PubMed]

Brown, T. A.

T. A. Brown, R. D. Fetter, A. N. Tkachuk, and D. A. Clayton, “Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using palm,” Methods51, 458–463 (2010).
[CrossRef] [PubMed]

Byars, J. M.

Cannell, M. B.

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J.96, L22–L24 (2009).
[CrossRef] [PubMed]

Chachuat, B.

B. Chachuat, Nonlinear and Dynamic Optimization: From Theory to Practice (Laboratoire dAutomatique, Ecole Polytechnique Federale de Lausanne, Lecture Notes for Winter Semester, 2007).

Clayton, D. A.

T. A. Brown, R. D. Fetter, A. N. Tkachuk, and D. A. Clayton, “Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using palm,” Methods51, 458–463 (2010).
[CrossRef] [PubMed]

Cordes, T.

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A.106, 8107–8112 (2009).
[CrossRef] [PubMed]

Cremer, C.

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J.96, L22–L24 (2009).
[CrossRef] [PubMed]

Crooks, G. E.

D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Dong, Y.

S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
[CrossRef] [PubMed]

Donnert, G.

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods4, 81–86 (2007).
[CrossRef]

Earnshaw, W. C.

S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
[CrossRef] [PubMed]

Eggeling, C.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods4, 81–86 (2007).
[CrossRef]

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, “Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis,” Anal. Chem70, 2651–2659 (1998).
[CrossRef] [PubMed]

Fetter, R. D.

T. A. Brown, R. D. Fetter, A. N. Tkachuk, and D. A. Clayton, “Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using palm,” Methods51, 458–463 (2010).
[CrossRef] [PubMed]

Flling, J.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Flors, C.

S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
[CrossRef] [PubMed]

Folling, J.

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

Forthmann, C.

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A.106, 8107–8112 (2009).
[CrossRef] [PubMed]

C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, “Superresolution microscopy on the basis of engineered dark states,” J. Am. Chem. Soc130, 16840–16841 (2008).
[CrossRef] [PubMed]

Frost, N. A.

N. A. Frost, H. Shroff, H. Kong, E. Betzig, and T. A. Blanpied, “Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines,” Neuron67, 86–99 (2010).
[CrossRef] [PubMed]

Fukagawa, T.

S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
[CrossRef] [PubMed]

Galbraith, C. G.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5, 417–423 (2008).
[CrossRef] [PubMed]

Galbraith, J. A.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5, 417–423 (2008).
[CrossRef] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
[CrossRef] [PubMed]

Goldstein, H.

H. Goldstein, Classical mechanics (Addison-Wesley Pub. Co., 1980).

Gould, T.

T. Gould and S. Hess, “Nanoscale biological fluorescence imaging: Breaking the diffraction barrier,” Methods Cell Biol.89, 329–358 (2008).
[CrossRef]

Gould, T. J.

S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proc. Natl. Acad. Sci. U.S.A.104, 17370 (2007).
[CrossRef] [PubMed]

Greenfield, D.

D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009).
[CrossRef] [PubMed]

Gudheti, M. V.

S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proc. Natl. Acad. Sci. U.S.A.104, 17370 (2007).
[CrossRef] [PubMed]

Heilemann, M.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

Hein, B.

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

Heintzmann, R.

Hell, S. W.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods4, 81–86 (2007).
[CrossRef]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S.

T. Gould and S. Hess, “Nanoscale biological fluorescence imaging: Breaking the diffraction barrier,” Methods Cell Biol.89, 329–358 (2008).
[CrossRef]

Hess, S. T.

S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proc. Natl. Acad. Sci. U.S.A.104, 17370 (2007).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
[CrossRef] [PubMed]

Hori, T.

S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
[CrossRef] [PubMed]

Huang, B.

M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opinion Chem. Biol.12, 505–514 (2008).
[CrossRef]

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3d storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods5, 1047 (2008).
[CrossRef] [PubMed]

Huang, F.

Jakobs, S.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

Jayasinghe, I. D.

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J.96, L22–L24 (2009).
[CrossRef] [PubMed]

Jones, S. A.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3d storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods5, 1047 (2008).
[CrossRef] [PubMed]

Joseph, N.

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7, 373–375 (2010).
[CrossRef] [PubMed]

Jovin, T.

Kong, H.

N. A. Frost, H. Shroff, H. Kong, E. Betzig, and T. A. Blanpied, “Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines,” Neuron67, 86–99 (2010).
[CrossRef] [PubMed]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82, 2775–2783 (2002).
[CrossRef] [PubMed]

Lee, S.

S. Lee, M. Thompson, M. A. Schwartz, L. Shapiro, and W. E. Moerner, “Super-resolution imaging of the nucleoid-associated protein hu in caulobacter crescentus,” Biophys. J.100, L31–L33 (2011).
[CrossRef] [PubMed]

Lidke, K.

Lidke, K. A.

F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express2, 1377–1393 (2011).
[CrossRef] [PubMed]

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7, 373–375 (2010).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Liphardt, J.

D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Maas, S. A.

S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proc. Natl. Acad. Sci. U.S.A.104, 17370 (2007).
[CrossRef] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
[CrossRef] [PubMed]

McEvoy, A. L.

D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009).
[CrossRef] [PubMed]

McEwen, B. F.

S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
[CrossRef] [PubMed]

Medda, R.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

Mills, K. D.

S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proc. Natl. Acad. Sci. U.S.A.104, 17370 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

S. Lee, M. Thompson, M. A. Schwartz, L. Shapiro, and W. E. Moerner, “Super-resolution imaging of the nucleoid-associated protein hu in caulobacter crescentus,” Biophys. J.100, L31–L33 (2011).
[CrossRef] [PubMed]

Mukherjee, A.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

Ober, R. J.

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophysical Journal86, 1185–1200 (2004).
[CrossRef] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Ram, S.

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophysical Journal86, 1185–1200 (2004).
[CrossRef] [PubMed]

Ribeiro, S. A.

S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
[CrossRef] [PubMed]

Rieger, B.

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7, 373–375 (2010).
[CrossRef] [PubMed]

K. Lidke, B. Rieger, T. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using blinking statistics,” Opt. Express13, 7052–7062 (2005).
[CrossRef] [PubMed]

Rigler, R.

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, “Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis,” Anal. Chem70, 2651–2659 (1998).
[CrossRef] [PubMed]

Rothermel, E.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods3, 793–795 (2006).
[CrossRef] [PubMed]

Sauer, M.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

Schnle, A.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Schwartz, M. A.

S. Lee, M. Thompson, M. A. Schwartz, L. Shapiro, and W. E. Moerner, “Super-resolution imaging of the nucleoid-associated protein hu in caulobacter crescentus,” Biophys. J.100, L31–L33 (2011).
[CrossRef] [PubMed]

Schwartz, S. L.

Seidel, C. A. M.

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, “Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis,” Anal. Chem70, 2651–2659 (1998).
[CrossRef] [PubMed]

Shapiro, L.

S. Lee, M. Thompson, M. A. Schwartz, L. Shapiro, and W. E. Moerner, “Super-resolution imaging of the nucleoid-associated protein hu in caulobacter crescentus,” Biophys. J.100, L31–L33 (2011).
[CrossRef] [PubMed]

Shore, E.

Shroff, H.

N. A. Frost, H. Shroff, H. Kong, E. Betzig, and T. A. Blanpied, “Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines,” Neuron67, 86–99 (2010).
[CrossRef] [PubMed]

D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009).
[CrossRef] [PubMed]

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5, 417–423 (2008).
[CrossRef] [PubMed]

Small, A.

E. Shore and A. Small, “Optimal acquisition scheme for subwavelength localization microscopy of bleachable fluorophores,” Opt. Lett.36, 289–291 (2011).
[CrossRef] [PubMed]

A. Small, “Theoretical limits on errors and acquisition rates in localizing switchable fluorophores,” Biophys. J.96, L16–L18 (2009).
[CrossRef] [PubMed]

Smith, C. S.

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7, 373–375 (2010).
[CrossRef] [PubMed]

Soeller, C.

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J.96, L22–L24 (2009).
[CrossRef] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Steinhauer, C.

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A.106, 8107–8112 (2009).
[CrossRef] [PubMed]

C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, “Superresolution microscopy on the basis of engineered dark states,” J. Am. Chem. Soc130, 16840–16841 (2008).
[CrossRef] [PubMed]

Testa, I.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Thompson, M.

S. Lee, M. Thompson, M. A. Schwartz, L. Shapiro, and W. E. Moerner, “Super-resolution imaging of the nucleoid-associated protein hu in caulobacter crescentus,” Biophys. J.100, L31–L33 (2011).
[CrossRef] [PubMed]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82, 2775–2783 (2002).
[CrossRef] [PubMed]

Tinnefeld, P.

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A.106, 8107–8112 (2009).
[CrossRef] [PubMed]

C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, “Superresolution microscopy on the basis of engineered dark states,” J. Am. Chem. Soc130, 16840–16841 (2008).
[CrossRef] [PubMed]

Tkachuk, A. N.

T. A. Brown, R. D. Fetter, A. N. Tkachuk, and D. A. Clayton, “Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using palm,” Methods51, 458–463 (2010).
[CrossRef] [PubMed]

Vagnarelli, P.

S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
[CrossRef] [PubMed]

van de Linde, S.

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

Vogelsang, J.

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A.106, 8107–8112 (2009).
[CrossRef] [PubMed]

C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, “Superresolution microscopy on the basis of engineered dark states,” J. Am. Chem. Soc130, 16840–16841 (2008).
[CrossRef] [PubMed]

Von Middendorf, C.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

Ward, E. S.

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophysical Journal86, 1185–1200 (2004).
[CrossRef] [PubMed]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82, 2775–2783 (2002).
[CrossRef] [PubMed]

Widengren, J.

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, “Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis,” Anal. Chem70, 2651–2659 (1998).
[CrossRef] [PubMed]

Wingreen, N. S.

D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009).
[CrossRef] [PubMed]

Wurm, C. A.

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

Zhuang, X.

M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opinion Chem. Biol.12, 505–514 (2008).
[CrossRef]

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3d storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods5, 1047 (2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods3, 793–795 (2006).
[CrossRef] [PubMed]

Zimmerberg, J.

S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proc. Natl. Acad. Sci. U.S.A.104, 17370 (2007).
[CrossRef] [PubMed]

Anal. Chem (1)

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, “Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis,” Anal. Chem70, 2651–2659 (1998).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. (1)

M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009).
[CrossRef]

Biomed. Opt. Express (1)

Biophys. J. (6)

D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J.96, L22–L24 (2009).
[CrossRef] [PubMed]

A. Small, “Theoretical limits on errors and acquisition rates in localizing switchable fluorophores,” Biophys. J.96, L16–L18 (2009).
[CrossRef] [PubMed]

I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010).
[CrossRef] [PubMed]

S. Lee, M. Thompson, M. A. Schwartz, L. Shapiro, and W. E. Moerner, “Super-resolution imaging of the nucleoid-associated protein hu in caulobacter crescentus,” Biophys. J.100, L31–L33 (2011).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006).
[CrossRef] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82, 2775–2783 (2002).
[CrossRef] [PubMed]

Biophysical Journal (1)

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophysical Journal86, 1185–1200 (2004).
[CrossRef] [PubMed]

Curr. Opinion Chem. Biol. (1)

M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opinion Chem. Biol.12, 505–514 (2008).
[CrossRef]

J. Am. Chem. Soc (1)

C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, “Superresolution microscopy on the basis of engineered dark states,” J. Am. Chem. Soc130, 16840–16841 (2008).
[CrossRef] [PubMed]

Methods (1)

T. A. Brown, R. D. Fetter, A. N. Tkachuk, and D. A. Clayton, “Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using palm,” Methods51, 458–463 (2010).
[CrossRef] [PubMed]

Methods Cell Biol. (1)

T. Gould and S. Hess, “Nanoscale biological fluorescence imaging: Breaking the diffraction barrier,” Methods Cell Biol.89, 329–358 (2008).
[CrossRef]

Nat. Methods (6)

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7, 373–375 (2010).
[CrossRef] [PubMed]

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods4, 81–86 (2007).
[CrossRef]

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3d storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods5, 1047 (2008).
[CrossRef] [PubMed]

J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008).
[CrossRef] [PubMed]

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5, 417–423 (2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods3, 793–795 (2006).
[CrossRef] [PubMed]

Neuron (1)

N. A. Frost, H. Shroff, H. Kong, E. Betzig, and T. A. Blanpied, “Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines,” Neuron67, 86–99 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

PLoS Biol. (1)

D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009).
[CrossRef] [PubMed]

Proc. Natl Acad. Sci. U.S.A. (1)

S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proc. Natl. Acad. Sci. U.S.A.104, 17370 (2007).
[CrossRef] [PubMed]

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A.106, 8107–8112 (2009).
[CrossRef] [PubMed]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006).
[CrossRef] [PubMed]

Other (2)

H. Goldstein, Classical mechanics (Addison-Wesley Pub. Co., 1980).

B. Chachuat, Nonlinear and Dynamic Optimization: From Theory to Practice (Laboratoire dAutomatique, Ecole Polytechnique Federale de Lausanne, Lecture Notes for Winter Semester, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics