Abstract

Full-field OCT has proved to be a powerful high-resolution cellular imaging tool for biological tissues. However the standard bulk full-field OCT setup does not match the size requirements for most in situ and in vivo imaging applications. We adapted its principle into a rigid needle-like probe using two coupled interferometers and incoherent illumination: an external processing interferometer is used for in-depth scanning, while a distal common-path interferometer at the tip of the probe collects light backscattered from the tissue. Our experimental setup achieves an axial and transversal resolution in tissue of 1.8 µm and 3.5 µm respectively, for a sensitivity of −80 dB. We present ex vivo images of human breast tissue, and in vivo images of different areas of human skin, which reveal cellular-level structures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997).
    [CrossRef] [PubMed]
  3. T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
    [CrossRef] [PubMed]
  4. N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
    [CrossRef] [PubMed]
  5. B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
    [CrossRef] [PubMed]
  6. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express16(24), 19434–19446 (2008).
    [CrossRef] [PubMed]
  7. M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J Pathol Inform2(28), 28 (2011).
    [PubMed]
  8. O. Assayag, A. Latrive, M. Antoine, B. Sigal, A. Burcheri, F. Harms, B. de Poly, S. Gigan, and A. C. Boccara, “Ex situ and in situ intra-operative optical biopsy using Light-CT,” presented at Advances in Optics for Biotechnology, Medicine and Surgery XII, Naples, Florida, USA, June 5–8, 2011 (Engineering Conferences International).
  9. W.-Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express14(19), 8675–8684 (2006).
    [CrossRef] [PubMed]
  10. H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol.18(9), 2949–2957 (2007).
    [CrossRef]
  11. H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatam, “Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems,” J. Mod. Opt.52(14), 1965–1979 (2005).
    [CrossRef]
  12. A. Dubois and A. C. Boccara, “Full-field optical coherence tomography” in Optical Coherence Tomography, E.D. W. Drexler and J. G. Fujimoto, eds. (Springer, 2009), pp. 565–591.
  13. H. D. Ford and R. P. Tatam, “Full-field optical coherence tomography using a fibre imaging bundle,” Proc. SPIE6079, 60791H, 60791H-9 (2006).
    [CrossRef]
  14. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett.29(11), 1236–1238 (2004).
    [CrossRef] [PubMed]
  15. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett.27(7), 530–532 (2002).
    [CrossRef] [PubMed]
  16. P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal theta line-scanning microscope for imaging human tissues,” Appl. Opt.46(10), 1843–1851 (2007).
    [CrossRef] [PubMed]
  17. A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010).
    [CrossRef] [PubMed]
  18. H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, and S. Liu, “In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography,” J. Biomed. Opt.15(3), 036012 (2010).
    [CrossRef] [PubMed]
  19. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express14(8), 3238–3246 (2006).
    [CrossRef] [PubMed]

2011

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J Pathol Inform2(28), 28 (2011).
[PubMed]

2010

H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, and S. Liu, “In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography,” J. Biomed. Opt.15(3), 036012 (2010).
[CrossRef] [PubMed]

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010).
[CrossRef] [PubMed]

2009

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

2008

2007

P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal theta line-scanning microscope for imaging human tissues,” Appl. Opt.46(10), 1843–1851 (2007).
[CrossRef] [PubMed]

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol.18(9), 2949–2957 (2007).
[CrossRef]

2006

2005

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatam, “Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems,” J. Mod. Opt.52(14), 1965–1979 (2005).
[CrossRef]

2004

2002

1997

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Aguirre, A. D.

Beddows, R.

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatam, “Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems,” J. Mod. Opt.52(14), 1965–1979 (2005).
[CrossRef]

Boccara, A. C.

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

W.-Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express14(19), 8675–8684 (2006).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Brenner, M.

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Casaubieilh, P.

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatam, “Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems,” J. Mod. Opt.52(14), 1965–1979 (2005).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Curatolo, A.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Danthu, V.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Denk, W.

DiMarzio, C. A.

Dubois, A.

Dwyer, P. J.

Ferguson, R. D.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ford, H. D.

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol.18(9), 2949–2957 (2007).
[CrossRef]

H. D. Ford and R. P. Tatam, “Full-field optical coherence tomography using a fibre imaging bundle,” Proc. SPIE6079, 60791H, 60791H-9 (2006).
[CrossRef]

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatam, “Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems,” J. Mod. Opt.52(14), 1965–1979 (2005).
[CrossRef]

Fujimoto, J. G.

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Garcia-Garcia, H. M.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

Georges, P.

Goderie, T. P. M.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

Gonzalo, N.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Guo, S.

Guo, Z.

H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, and S. Liu, “In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography,” J. Biomed. Opt.15(3), 036012 (2010).
[CrossRef] [PubMed]

Hammer, D. X.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

He, Y.

H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, and S. Liu, “In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography,” J. Biomed. Opt.15(3), 036012 (2010).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, S.-W.

Iftimia, N.

Iftimia, N. V.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Jain, M.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J Pathol Inform2(28), 28 (2011).
[PubMed]

Kirk, R. W.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Koljenovic, S.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, S.

H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, and S. Liu, “In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography,” J. Biomed. Opt.15(3), 036012 (2010).
[CrossRef] [PubMed]

Manzoor, M.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J Pathol Inform2(28), 28 (2011).
[PubMed]

Mastik, F.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

McLaughlin, R. A.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Moreau, J.

Mujat, M.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Mukai, D.

Mukai, D. S.

Mukherjee, S.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J Pathol Inform2(28), 28 (2011).
[PubMed]

Nadolny, S.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J Pathol Inform2(28), 28 (2011).
[PubMed]

Noble, P. B.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Oh, W.-Y.

Oosterhuis, J. W.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Quirk, B. C.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Rajadhyaksha, M.

Regar, E.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

Sacchet, D.

Sampson, D. D.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Sawinski, J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Serruys, P. W.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

Shukla, N.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J Pathol Inform2(28), 28 (2011).
[PubMed]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tatam, R. P.

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol.18(9), 2949–2957 (2007).
[CrossRef]

H. D. Ford and R. P. Tatam, “Full-field optical coherence tomography using a fibre imaging bundle,” Proc. SPIE6079, 60791H, 60791H-9 (2006).
[CrossRef]

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatam, “Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems,” J. Mod. Opt.52(14), 1965–1979 (2005).
[CrossRef]

Tearney, G. J.

W.-Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express14(19), 8675–8684 (2006).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Tran, P. H.

Ustun, T.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Vabre, L.

van der Steen, A. F. W.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

van Leenders, G. J. L. H.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

van Soest, G.

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

Wei, H.

H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, and S. Liu, “In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography,” J. Biomed. Opt.15(3), 036012 (2010).
[CrossRef] [PubMed]

Xie, T.

Xiong, H.

H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, and S. Liu, “In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography,” J. Biomed. Opt.15(3), 036012 (2010).
[CrossRef] [PubMed]

Yelin, R.

Zeng, C.

H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, and S. Liu, “In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography,” J. Biomed. Opt.15(3), 036012 (2010).
[CrossRef] [PubMed]

Zhong, H.

H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, and S. Liu, “In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography,” J. Biomed. Opt.15(3), 036012 (2010).
[CrossRef] [PubMed]

Zhou, C.

Appl. Opt.

Int. J. Cardiovasc. Imaging

T. P. M. Goderie, G. van Soest, H. M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G. J. L. H. van Leenders, F. Mastik, E. Regar, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro,” Int. J. Cardiovasc. Imaging26(8), 843–850 (2010).
[CrossRef] [PubMed]

J Pathol Inform

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J Pathol Inform2(28), 28 (2011).
[PubMed]

J. Biomed. Opt.

H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, and S. Liu, “In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography,” J. Biomed. Opt.15(3), 036012 (2010).
[CrossRef] [PubMed]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

J. Mod. Opt.

H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatam, “Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems,” J. Mod. Opt.52(14), 1965–1979 (2005).
[CrossRef]

Meas. Sci. Technol.

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol.18(9), 2949–2957 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

H. D. Ford and R. P. Tatam, “Full-field optical coherence tomography using a fibre imaging bundle,” Proc. SPIE6079, 60791H, 60791H-9 (2006).
[CrossRef]

Rev. Sci. Instrum.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Other

A. Dubois and A. C. Boccara, “Full-field optical coherence tomography” in Optical Coherence Tomography, E.D. W. Drexler and J. G. Fujimoto, eds. (Springer, 2009), pp. 565–591.

O. Assayag, A. Latrive, M. Antoine, B. Sigal, A. Burcheri, F. Harms, B. de Poly, S. Gigan, and A. C. Boccara, “Ex situ and in situ intra-operative optical biopsy using Light-CT,” presented at Advances in Optics for Biotechnology, Medicine and Surgery XII, Naples, Florida, USA, June 5–8, 2011 (Engineering Conferences International).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of a full-field OCT system with two coupled interferometers.

Fig. 2
Fig. 2

Simplified principle of our full-field OCT system with a common-path imaging interferometer (focusing and conjugating optics are not shown).

Fig. 3
Fig. 3

Signal collected on one point of the 2-D detector showing interference fringes coming from a planar mirror placed at 25 µm ahead of the probe in air. The path length difference of the imaging interferometer is thus 50 µm. The path length difference of the external interferometer is scanned from 30 to 70 µm using a step motor.

Fig. 4
Fig. 4

Direct image of a 1951 USAF target.

Fig. 5
Fig. 5

En face image of a polyurethane phantom with TiO2 beads acquired with our setup at a depth of 100 µm. Field of view is 1.5 mm x 1.5 mm.

Fig. 6
Fig. 6

En face images of fixed human breast tissue at depths of 20 µm and 30 µm. Field of view is 1.5 mm x 1.5 mm.

Fig. 7
Fig. 7

En face images of fixed human breast tissue at depth 40 µm on two different areas (upper images and lower images). (A) & (C): classical FFOCT images. (B) & (D): corresponding endoscopic FFOCT images. Field of view is 1 mm x 1 mm.

Fig. 8
Fig. 8

En face images of in vivo human lip. The probe is placed directly in contact with the tissue (A). Lip tissue at 20 µm under the surface showing wrinkles (B) and lip tissue at 60 µm under the surface showing a pattern of epithelial cells (arrows) (C). Field of view is 1 mm x 1 mm.

Fig. 9
Fig. 9

En face images of in vivo human skin. (A) The probe is applied on forearm tissue: healthy tissue at 20 µm under the surface (B) (C) showing wrinkles and epithelial cells (arrows). (C) The probe is applied on a mole: mole tissue at 20 µm under the surface (E) (F) showing only a few epithelial cells (arrows) and long fibered structures. Field of view is 1 mm x 1 mm.

Metrics