Abstract

NIR imaging methods do not require ionizing radiation and have great potential for detecting caries lesions (tooth decay) on high-risk proximal and occlusal tooth surfaces and at the earliest stages of development. Previous in vitro and in vivo studies at 1300-nm demonstrated that high contrast reflectance and transillumination images could be acquired of caries lesions on tooth proximal and occlusal surfaces where most new decay is found. Water absorption varies markedly between 1200 and 1600-nm and the scattering properties of enamel and the underlying dentin have not been characterized in this region. Hyperspectral reflectance studies show lower reflectivity from sound enamel and dentin at NIR wavelengths with higher water absorption. The purpose of this imaging study was to determine which NIR wavelengths between 1200 and 1600-nm provide the highest contrast of demineralization or caries lesions for each of the different modes of NIR imaging, including transillumination of proximal and occlusal surfaces along with cross polarization reflectance measurements. A tungsten halogen lamp with several spectral filters and a Ge-enhanced CMOS focal plane array (FPA) sensitive from 400 to 1600-nm were used to acquire the images of caries lesions on extracted teeth. Artificial interproximal lesions were created on twelve tooth sections of 5 & 6-mm thickness that were used for transillumination imaging. Fifty-four extracted teeth with suspected occlusal lesions were also examined in both occlusal transillumination and reflectance imaging modes. Cavity preparations were also cut into whole teeth and filled with composite and used to compare the contrast between composite and enamel at NIR wavelengths. NIR wavelengths longer than 1400-nm are likely to have better performance for the transillumination of occlusal caries lesions while 1300-nm appears best for the transillumination of proximal surfaces. Loss of mobile water in enamel markedly reduced the transparency of the enamel at all NIR wavelengths. Significantly higher contrast was attained for reflectance measurements at wavelengths that have higher water absorption, namely 1460-nm. Wavelengths with higher water absorption also provided higher contrast of composite restorations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Fried, R. E. Glena, J. D. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt.34(7), 1278–1285 (1995).
    [CrossRef] [PubMed]
  2. R. S. Jones and D. Fried, “Attenuation of 1310-nm and 1550-nm Laser Light through Sound Dental Enamel,” Proc. SPIE4610, 187–190 (2002).
    [CrossRef]
  3. G. Jones, R. S. Jones, and D. Fried, “Transillumination of interproximal caries lesions with 830-nm light,” Proc. SPIE5313, 17–22 (2004).
    [CrossRef]
  4. R. S. Jones, G. D. Huynh, G. C. Jones, and D. Fried, “Near-infrared transillumination at 1310-nm for the imaging of early dental decay,” Opt. Express11(18), 2259–2265 (2003).
    [CrossRef] [PubMed]
  5. M. Staninec, C. Lee, C. L. Darling, and D. Fried, “In vivo near-IR imaging of approximal dental decay at 1,310 nm,” Lasers Surg. Med.42(4), 292–298 (2010).
    [CrossRef] [PubMed]
  6. C. Lee, C. L. Darling, and D. Fried, “In vitro near-infrared imaging of occlusal dental caries using a germanium enhanced CMOS camera,” Proc. SPIE7549, 75490K, 75490K-7 (2010).
    [CrossRef]
  7. C. M. Bühler, P. Ngaotheppitak, and D. Fried, “Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm,” Opt. Express13(2), 573–582 (2005).
    [CrossRef] [PubMed]
  8. D. Fried, J. D. B. Featherstone, C. L. Darling, R. S. Jones, P. Ngaotheppitak, and C. M. Buehler, Early Caries Imaging and Monitoring with Near-IR Light, Dental Clinics of North America—Incipient and Hidden Caries (W. B Saunders, Philadelphia, 2005), Vol. 49, pp. 771–794.
  9. K. Hirasuna, D. Fried, and C. L. Darling, “Near-IR imaging of developmental defects in dental enamel,” J. Biomed. Opt.13(044011), 1–7 (2008).
  10. D. Lee, D. Fried, and C. L. Darling, “Near-IR multi-modal imaging of natural occlusal lesions,” Proc. SPIE7162, 71620X, 71620X-7 (2009).
    [CrossRef]
  11. B. Angmar-Månsson and J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res.1(1), 14–20 (1987).
    [PubMed]
  12. J. J. ten Bosch, H. C. van der Mei, and P. C. F. Borsboom, “Optical monitor of in vitro caries. A comparison with chemical and microradiographic determination of mineral loss in early lesions,” Caries Res.18(6), 540–547 (1984).
    [CrossRef] [PubMed]
  13. P. E. Benson, A. Ali Shah, and D. Robert Willmot, “Polarized versus nonpolarized digital images for the measurement of demineralization surrounding orthodontic brackets,” Angle Orthod.78(2), 288–293 (2008).
    [CrossRef] [PubMed]
  14. M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” Proc. SPIE3593, 177–182 (1999).
    [CrossRef]
  15. D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7(4), 618–627 (2002).
    [CrossRef] [PubMed]
  16. C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt.11(3), 034023 (2006).
    [CrossRef] [PubMed]
  17. J. I. Wu and D. Fried, “High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at λ = 1310-nm,” Lasers Surg. Med.41(3), 208–213 (2009).
    [CrossRef] [PubMed]
  18. C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt.14(6), 064047 (2009).
    [CrossRef] [PubMed]
  19. C. Lee, D. Lee, C. L. Darling, and D. Fried, “Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm,” J. Biomed. Opt.15(4), 047011 (2010).
    [CrossRef] [PubMed]
  20. L. H. Maung, C. Lee, and D. Fried, “Near-IR Imaging of thermal changes in enamel during laser ablation,” Proc. SPIE7549(2), 1–6 (2010).
  21. K. Kaneko, K. Matsuyama, and S. Nakashima, "Quantification of early carious enamel lesions by using an infrared camera in vitro," in Proceedings of the 4th Annual Indiana Conference, G. K. Stookey, ed. (Indiana University School of Dentistry, Indianapolis, 1999), pp. 83–100.
  22. M. Ando, G. K. Stookey, and D. T. Zero, “Ability of quantitative light-induced fluorescence (QLF) to assess the activity of white spot lesions during dehydration,” Am. J. Dent.19(1), 15–18 (2006).
    [PubMed]
  23. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, Tutorial Texts Vol. TT38 (SPIE, Bellingham, 2000).

2010 (4)

C. Lee, D. Lee, C. L. Darling, and D. Fried, “Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm,” J. Biomed. Opt.15(4), 047011 (2010).
[CrossRef] [PubMed]

L. H. Maung, C. Lee, and D. Fried, “Near-IR Imaging of thermal changes in enamel during laser ablation,” Proc. SPIE7549(2), 1–6 (2010).

M. Staninec, C. Lee, C. L. Darling, and D. Fried, “In vivo near-IR imaging of approximal dental decay at 1,310 nm,” Lasers Surg. Med.42(4), 292–298 (2010).
[CrossRef] [PubMed]

C. Lee, C. L. Darling, and D. Fried, “In vitro near-infrared imaging of occlusal dental caries using a germanium enhanced CMOS camera,” Proc. SPIE7549, 75490K, 75490K-7 (2010).
[CrossRef]

2009 (3)

D. Lee, D. Fried, and C. L. Darling, “Near-IR multi-modal imaging of natural occlusal lesions,” Proc. SPIE7162, 71620X, 71620X-7 (2009).
[CrossRef]

J. I. Wu and D. Fried, “High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at λ = 1310-nm,” Lasers Surg. Med.41(3), 208–213 (2009).
[CrossRef] [PubMed]

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt.14(6), 064047 (2009).
[CrossRef] [PubMed]

2008 (2)

K. Hirasuna, D. Fried, and C. L. Darling, “Near-IR imaging of developmental defects in dental enamel,” J. Biomed. Opt.13(044011), 1–7 (2008).

P. E. Benson, A. Ali Shah, and D. Robert Willmot, “Polarized versus nonpolarized digital images for the measurement of demineralization surrounding orthodontic brackets,” Angle Orthod.78(2), 288–293 (2008).
[CrossRef] [PubMed]

2006 (2)

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt.11(3), 034023 (2006).
[CrossRef] [PubMed]

M. Ando, G. K. Stookey, and D. T. Zero, “Ability of quantitative light-induced fluorescence (QLF) to assess the activity of white spot lesions during dehydration,” Am. J. Dent.19(1), 15–18 (2006).
[PubMed]

2005 (1)

2004 (1)

G. Jones, R. S. Jones, and D. Fried, “Transillumination of interproximal caries lesions with 830-nm light,” Proc. SPIE5313, 17–22 (2004).
[CrossRef]

2003 (1)

2002 (2)

R. S. Jones and D. Fried, “Attenuation of 1310-nm and 1550-nm Laser Light through Sound Dental Enamel,” Proc. SPIE4610, 187–190 (2002).
[CrossRef]

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7(4), 618–627 (2002).
[CrossRef] [PubMed]

1999 (1)

M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” Proc. SPIE3593, 177–182 (1999).
[CrossRef]

1995 (1)

1987 (1)

B. Angmar-Månsson and J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res.1(1), 14–20 (1987).
[PubMed]

1984 (1)

J. J. ten Bosch, H. C. van der Mei, and P. C. F. Borsboom, “Optical monitor of in vitro caries. A comparison with chemical and microradiographic determination of mineral loss in early lesions,” Caries Res.18(6), 540–547 (1984).
[CrossRef] [PubMed]

Ali Shah, A.

P. E. Benson, A. Ali Shah, and D. Robert Willmot, “Polarized versus nonpolarized digital images for the measurement of demineralization surrounding orthodontic brackets,” Angle Orthod.78(2), 288–293 (2008).
[CrossRef] [PubMed]

Ando, M.

M. Ando, G. K. Stookey, and D. T. Zero, “Ability of quantitative light-induced fluorescence (QLF) to assess the activity of white spot lesions during dehydration,” Am. J. Dent.19(1), 15–18 (2006).
[PubMed]

Angmar-Månsson, B.

B. Angmar-Månsson and J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res.1(1), 14–20 (1987).
[PubMed]

Benson, P. E.

P. E. Benson, A. Ali Shah, and D. Robert Willmot, “Polarized versus nonpolarized digital images for the measurement of demineralization surrounding orthodontic brackets,” Angle Orthod.78(2), 288–293 (2008).
[CrossRef] [PubMed]

Borsboom, P. C. F.

J. J. ten Bosch, H. C. van der Mei, and P. C. F. Borsboom, “Optical monitor of in vitro caries. A comparison with chemical and microradiographic determination of mineral loss in early lesions,” Caries Res.18(6), 540–547 (1984).
[CrossRef] [PubMed]

Breunig, T. M.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7(4), 618–627 (2002).
[CrossRef] [PubMed]

Bühler, C. M.

Colston, B. W.

M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” Proc. SPIE3593, 177–182 (1999).
[CrossRef]

Darling, C. L.

M. Staninec, C. Lee, C. L. Darling, and D. Fried, “In vivo near-IR imaging of approximal dental decay at 1,310 nm,” Lasers Surg. Med.42(4), 292–298 (2010).
[CrossRef] [PubMed]

C. Lee, D. Lee, C. L. Darling, and D. Fried, “Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm,” J. Biomed. Opt.15(4), 047011 (2010).
[CrossRef] [PubMed]

C. Lee, C. L. Darling, and D. Fried, “In vitro near-infrared imaging of occlusal dental caries using a germanium enhanced CMOS camera,” Proc. SPIE7549, 75490K, 75490K-7 (2010).
[CrossRef]

D. Lee, D. Fried, and C. L. Darling, “Near-IR multi-modal imaging of natural occlusal lesions,” Proc. SPIE7162, 71620X, 71620X-7 (2009).
[CrossRef]

K. Hirasuna, D. Fried, and C. L. Darling, “Near-IR imaging of developmental defects in dental enamel,” J. Biomed. Opt.13(044011), 1–7 (2008).

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt.11(3), 034023 (2006).
[CrossRef] [PubMed]

Ellwood, R.

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt.14(6), 064047 (2009).
[CrossRef] [PubMed]

Everett, M. J.

M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” Proc. SPIE3593, 177–182 (1999).
[CrossRef]

Featherstone, J. D.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7(4), 618–627 (2002).
[CrossRef] [PubMed]

D. Fried, R. E. Glena, J. D. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt.34(7), 1278–1285 (1995).
[CrossRef] [PubMed]

Featherstone, J. D. B.

M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” Proc. SPIE3593, 177–182 (1999).
[CrossRef]

Fried, D.

M. Staninec, C. Lee, C. L. Darling, and D. Fried, “In vivo near-IR imaging of approximal dental decay at 1,310 nm,” Lasers Surg. Med.42(4), 292–298 (2010).
[CrossRef] [PubMed]

L. H. Maung, C. Lee, and D. Fried, “Near-IR Imaging of thermal changes in enamel during laser ablation,” Proc. SPIE7549(2), 1–6 (2010).

C. Lee, D. Lee, C. L. Darling, and D. Fried, “Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm,” J. Biomed. Opt.15(4), 047011 (2010).
[CrossRef] [PubMed]

C. Lee, C. L. Darling, and D. Fried, “In vitro near-infrared imaging of occlusal dental caries using a germanium enhanced CMOS camera,” Proc. SPIE7549, 75490K, 75490K-7 (2010).
[CrossRef]

D. Lee, D. Fried, and C. L. Darling, “Near-IR multi-modal imaging of natural occlusal lesions,” Proc. SPIE7162, 71620X, 71620X-7 (2009).
[CrossRef]

J. I. Wu and D. Fried, “High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at λ = 1310-nm,” Lasers Surg. Med.41(3), 208–213 (2009).
[CrossRef] [PubMed]

K. Hirasuna, D. Fried, and C. L. Darling, “Near-IR imaging of developmental defects in dental enamel,” J. Biomed. Opt.13(044011), 1–7 (2008).

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt.11(3), 034023 (2006).
[CrossRef] [PubMed]

C. M. Bühler, P. Ngaotheppitak, and D. Fried, “Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm,” Opt. Express13(2), 573–582 (2005).
[CrossRef] [PubMed]

G. Jones, R. S. Jones, and D. Fried, “Transillumination of interproximal caries lesions with 830-nm light,” Proc. SPIE5313, 17–22 (2004).
[CrossRef]

R. S. Jones, G. D. Huynh, G. C. Jones, and D. Fried, “Near-infrared transillumination at 1310-nm for the imaging of early dental decay,” Opt. Express11(18), 2259–2265 (2003).
[CrossRef] [PubMed]

R. S. Jones and D. Fried, “Attenuation of 1310-nm and 1550-nm Laser Light through Sound Dental Enamel,” Proc. SPIE4610, 187–190 (2002).
[CrossRef]

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7(4), 618–627 (2002).
[CrossRef] [PubMed]

M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” Proc. SPIE3593, 177–182 (1999).
[CrossRef]

D. Fried, R. E. Glena, J. D. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt.34(7), 1278–1285 (1995).
[CrossRef] [PubMed]

Glena, R. E.

Hirasuna, K.

K. Hirasuna, D. Fried, and C. L. Darling, “Near-IR imaging of developmental defects in dental enamel,” J. Biomed. Opt.13(044011), 1–7 (2008).

Huynh, G. D.

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt.11(3), 034023 (2006).
[CrossRef] [PubMed]

R. S. Jones, G. D. Huynh, G. C. Jones, and D. Fried, “Near-infrared transillumination at 1310-nm for the imaging of early dental decay,” Opt. Express11(18), 2259–2265 (2003).
[CrossRef] [PubMed]

Jones, G.

G. Jones, R. S. Jones, and D. Fried, “Transillumination of interproximal caries lesions with 830-nm light,” Proc. SPIE5313, 17–22 (2004).
[CrossRef]

Jones, G. C.

Jones, R. S.

G. Jones, R. S. Jones, and D. Fried, “Transillumination of interproximal caries lesions with 830-nm light,” Proc. SPIE5313, 17–22 (2004).
[CrossRef]

R. S. Jones, G. D. Huynh, G. C. Jones, and D. Fried, “Near-infrared transillumination at 1310-nm for the imaging of early dental decay,” Opt. Express11(18), 2259–2265 (2003).
[CrossRef] [PubMed]

R. S. Jones and D. Fried, “Attenuation of 1310-nm and 1550-nm Laser Light through Sound Dental Enamel,” Proc. SPIE4610, 187–190 (2002).
[CrossRef]

Le, C.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7(4), 618–627 (2002).
[CrossRef] [PubMed]

Lee, C.

C. Lee, D. Lee, C. L. Darling, and D. Fried, “Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm,” J. Biomed. Opt.15(4), 047011 (2010).
[CrossRef] [PubMed]

C. Lee, C. L. Darling, and D. Fried, “In vitro near-infrared imaging of occlusal dental caries using a germanium enhanced CMOS camera,” Proc. SPIE7549, 75490K, 75490K-7 (2010).
[CrossRef]

L. H. Maung, C. Lee, and D. Fried, “Near-IR Imaging of thermal changes in enamel during laser ablation,” Proc. SPIE7549(2), 1–6 (2010).

M. Staninec, C. Lee, C. L. Darling, and D. Fried, “In vivo near-IR imaging of approximal dental decay at 1,310 nm,” Lasers Surg. Med.42(4), 292–298 (2010).
[CrossRef] [PubMed]

Lee, D.

C. Lee, D. Lee, C. L. Darling, and D. Fried, “Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm,” J. Biomed. Opt.15(4), 047011 (2010).
[CrossRef] [PubMed]

D. Lee, D. Fried, and C. L. Darling, “Near-IR multi-modal imaging of natural occlusal lesions,” Proc. SPIE7162, 71620X, 71620X-7 (2009).
[CrossRef]

Maung, L. H.

L. H. Maung, C. Lee, and D. Fried, “Near-IR Imaging of thermal changes in enamel during laser ablation,” Proc. SPIE7549(2), 1–6 (2010).

Ngaotheppitak, P.

Pretty, I.

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt.14(6), 064047 (2009).
[CrossRef] [PubMed]

Robert Willmot, D.

P. E. Benson, A. Ali Shah, and D. Robert Willmot, “Polarized versus nonpolarized digital images for the measurement of demineralization surrounding orthodontic brackets,” Angle Orthod.78(2), 288–293 (2008).
[CrossRef] [PubMed]

Sathyam, U. S.

M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” Proc. SPIE3593, 177–182 (1999).
[CrossRef]

Seka, W.

Shafi, S.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7(4), 618–627 (2002).
[CrossRef] [PubMed]

Silva, L. B. D.

M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” Proc. SPIE3593, 177–182 (1999).
[CrossRef]

Staninec, M.

M. Staninec, C. Lee, C. L. Darling, and D. Fried, “In vivo near-IR imaging of approximal dental decay at 1,310 nm,” Lasers Surg. Med.42(4), 292–298 (2010).
[CrossRef] [PubMed]

Stookey, G. K.

M. Ando, G. K. Stookey, and D. T. Zero, “Ability of quantitative light-induced fluorescence (QLF) to assess the activity of white spot lesions during dehydration,” Am. J. Dent.19(1), 15–18 (2006).
[PubMed]

ten Bosch, J. J.

B. Angmar-Månsson and J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res.1(1), 14–20 (1987).
[PubMed]

J. J. ten Bosch, H. C. van der Mei, and P. C. F. Borsboom, “Optical monitor of in vitro caries. A comparison with chemical and microradiographic determination of mineral loss in early lesions,” Caries Res.18(6), 540–547 (1984).
[CrossRef] [PubMed]

van der Mei, H. C.

J. J. ten Bosch, H. C. van der Mei, and P. C. F. Borsboom, “Optical monitor of in vitro caries. A comparison with chemical and microradiographic determination of mineral loss in early lesions,” Caries Res.18(6), 540–547 (1984).
[CrossRef] [PubMed]

Wu, J. I.

J. I. Wu and D. Fried, “High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at λ = 1310-nm,” Lasers Surg. Med.41(3), 208–213 (2009).
[CrossRef] [PubMed]

Xie, J.

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7(4), 618–627 (2002).
[CrossRef] [PubMed]

Zakian, C.

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt.14(6), 064047 (2009).
[CrossRef] [PubMed]

Zero, D. T.

M. Ando, G. K. Stookey, and D. T. Zero, “Ability of quantitative light-induced fluorescence (QLF) to assess the activity of white spot lesions during dehydration,” Am. J. Dent.19(1), 15–18 (2006).
[PubMed]

Adv. Dent. Res. (1)

B. Angmar-Månsson and J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res.1(1), 14–20 (1987).
[PubMed]

Am. J. Dent. (1)

M. Ando, G. K. Stookey, and D. T. Zero, “Ability of quantitative light-induced fluorescence (QLF) to assess the activity of white spot lesions during dehydration,” Am. J. Dent.19(1), 15–18 (2006).
[PubMed]

Angle Orthod. (1)

P. E. Benson, A. Ali Shah, and D. Robert Willmot, “Polarized versus nonpolarized digital images for the measurement of demineralization surrounding orthodontic brackets,” Angle Orthod.78(2), 288–293 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Caries Res. (1)

J. J. ten Bosch, H. C. van der Mei, and P. C. F. Borsboom, “Optical monitor of in vitro caries. A comparison with chemical and microradiographic determination of mineral loss in early lesions,” Caries Res.18(6), 540–547 (1984).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

K. Hirasuna, D. Fried, and C. L. Darling, “Near-IR imaging of developmental defects in dental enamel,” J. Biomed. Opt.13(044011), 1–7 (2008).

D. Fried, J. Xie, S. Shafi, J. D. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt.7(4), 618–627 (2002).
[CrossRef] [PubMed]

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biomed. Opt.11(3), 034023 (2006).
[CrossRef] [PubMed]

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt.14(6), 064047 (2009).
[CrossRef] [PubMed]

C. Lee, D. Lee, C. L. Darling, and D. Fried, “Nondestructive assessment of the severity of occlusal caries lesions with near-infrared imaging at 1310 nm,” J. Biomed. Opt.15(4), 047011 (2010).
[CrossRef] [PubMed]

Lasers Surg. Med. (2)

J. I. Wu and D. Fried, “High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at λ = 1310-nm,” Lasers Surg. Med.41(3), 208–213 (2009).
[CrossRef] [PubMed]

M. Staninec, C. Lee, C. L. Darling, and D. Fried, “In vivo near-IR imaging of approximal dental decay at 1,310 nm,” Lasers Surg. Med.42(4), 292–298 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Proc. SPIE (6)

C. Lee, C. L. Darling, and D. Fried, “In vitro near-infrared imaging of occlusal dental caries using a germanium enhanced CMOS camera,” Proc. SPIE7549, 75490K, 75490K-7 (2010).
[CrossRef]

M. J. Everett, B. W. Colston, U. S. Sathyam, L. B. D. Silva, D. Fried, and J. D. B. Featherstone, “Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT),” Proc. SPIE3593, 177–182 (1999).
[CrossRef]

D. Lee, D. Fried, and C. L. Darling, “Near-IR multi-modal imaging of natural occlusal lesions,” Proc. SPIE7162, 71620X, 71620X-7 (2009).
[CrossRef]

L. H. Maung, C. Lee, and D. Fried, “Near-IR Imaging of thermal changes in enamel during laser ablation,” Proc. SPIE7549(2), 1–6 (2010).

R. S. Jones and D. Fried, “Attenuation of 1310-nm and 1550-nm Laser Light through Sound Dental Enamel,” Proc. SPIE4610, 187–190 (2002).
[CrossRef]

G. Jones, R. S. Jones, and D. Fried, “Transillumination of interproximal caries lesions with 830-nm light,” Proc. SPIE5313, 17–22 (2004).
[CrossRef]

Other (3)

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, Tutorial Texts Vol. TT38 (SPIE, Bellingham, 2000).

K. Kaneko, K. Matsuyama, and S. Nakashima, "Quantification of early carious enamel lesions by using an infrared camera in vitro," in Proceedings of the 4th Annual Indiana Conference, G. K. Stookey, ed. (Indiana University School of Dentistry, Indianapolis, 1999), pp. 83–100.

D. Fried, J. D. B. Featherstone, C. L. Darling, R. S. Jones, P. Ngaotheppitak, and C. M. Buehler, Early Caries Imaging and Monitoring with Near-IR Light, Dental Clinics of North America—Incipient and Hidden Caries (W. B Saunders, Philadelphia, 2005), Vol. 49, pp. 771–794.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

NIR imaging setups for (1) occlusal transillumination imaging, (2) transillumination of sections with simulated lesions, and (3) occlusal reflectance imaging (A) light, (B) prism or beamsplitter and (C) Ge-CMOS imager.

Fig. 2
Fig. 2

Transillumination images for a 5-mm thick wet tooth section from Triwave Ge-CMOS imager with (A) KG5 filter 300-800-nm, (B) 1300-nm, (C) 1460-nm, and (D) 1550-nm BP filters. The lesion is in the yellow box.

Fig. 3
Fig. 3

Transillumination images through a 5-mm thick tooth section with a LP-1300-nm filter (W) wet and (D) dry.

Fig. 4
Fig. 4

NIR transillumination images of a tooth with occlusal decay (yellow box) acquired in six wavelength regions generated using (A) 1300, (B) 1460, and (C) 1550 bandpass (BP) filters and (D) 1300, (D) 1400 and (F) 1500 longpass (LP) filters.

Fig. 5
Fig. 5

Reflectance images from Triwave imager with (A) KG5 glass filter 300-800-nm, and (B) 1300-nm and (C) 1460-nm BP filters. Lesion area is best seen in (C) as white areas. The dark areas in (A) are stains.

Fig. 6
Fig. 6

Images of a tooth with a composite restoration (Z-250, 3M) in the area of the white box. Transillumination images are shown in (A) 1460-nm, (B) 1300-nm, and (C) visible wavelengths while a visible light reflectance image is shown in D.

Tables (3)

Tables Icon

Table 1 Mean contrast ± (sd) between the sound and artificial lesion area for the tooth sections of 5-mm and 6-mm thickness (n = 5 each) for fully hydrated, dehydrated, and rehydrated samplesa

Tables Icon

Table 2 Mean contrast ± (sd) of natural occlusal caries lesions on extracted whole teeth measured in reflectance and with transillumination, n = 54a

Tables Icon

Table 3 Mean contrast ± (sd) of natural occlusal caries lesions on extracted whole teeth measured in reflectance and with transillumination sorted by histological score, n = 52

Metrics