Abstract

Modulated tone-burst light was employed to measure non-radiative relaxation time of fluorophores with biomedical importance through photoacoustic effect. Non-radiative relaxation time was estimated through the frequency dependence of photoacoustic signal amplitude. Experiments were performed on solutions of new indocyanine green (IR-820), which is a near infrared dye and has biomedical applications, in two different solvents (water and dimethyl sulfoxide (DMSO)). A 1.5 times slower non-radiative relaxation for the solution of dye in DMSO was observed comparing with the aqueous solution. This result agrees well with general finding that non-radiative relaxation of molecules in triplet state depends on viscosity of solvents in which they are dissolved. Measurements of the non-radiative relaxation time can be used as a new source of contrast mechanism in photoacoustic imaging technique. The proposed method has potential applications such as imaging tissue oxygenation and mapping of other chemophysical differences in microenvironment of exogenous biomarkers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010).
    [CrossRef] [PubMed]
  2. Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
    [CrossRef] [PubMed]
  3. J.-M. I. Maarek, L. Marcu, M. C. Fishbein, and W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med.27(3), 241–254 (2000).
    [CrossRef] [PubMed]
  4. P. H. Carpentier, “Méthodes actuelles d’exploration clinique de la microcirculation,” J. Mal. Vasc.26(2), 142–147 (2001).
    [PubMed]
  5. S. Murata, P. Herman, H. J. Lin, and J. R. Lakowicz, “Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer,” Cytometry41(3), 178–185 (2000).
    [CrossRef] [PubMed]
  6. A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett.36(5), 769–771 (2011).
    [CrossRef] [PubMed]
  7. A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett.97(16), 163701 (2010).
    [CrossRef] [PubMed]
  8. S. Ashkenazi, S. W. Huang, T. Horvath, Y. E. L. Koo, and R. Kopelman, “Photoacoustic probing of fluorophore excited state lifetime with application to oxygen sensing,” J. Biomed. Opt.13(3), 034023 (2008).
    [CrossRef] [PubMed]
  9. K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt.13(2), 024006 (2008).
    [CrossRef] [PubMed]
  10. Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
    [CrossRef] [PubMed]
  11. M. Ouzafe, P. Poulet, and J. Chambron, “Photoacoustic detection of triplet state and singlet oxygen in highly absorbing samples,” Photochem. Photobiol.55(4), 491–503 (1992).
    [CrossRef] [PubMed]
  12. A. Mandelis, N. Baddour, Y. Cai, and R. G. Walmsley, “Laser-induced photothermoacoustic pressure-wave pulses in a polystyrene well and water system used for photomechanical drug delivery,” J. Opt. Soc. Am. B22(5), 1024–1036 (2005).
    [CrossRef]
  13. S. Boonsang and R. J. Dewhurst, “Pulsed photoacoustic signal characterization incorporating near- and far-field diffraction effects,” Meas. Sci. Technol.16(4), 885–899 (2005).
    [CrossRef]
  14. A. Mandelis, Y. C. Teng, and B. S. H. Royce, “Phase measurements in the frequency domain photoacoustic spectroscopy of solids,” J. Appl. Phys.50(11), 7138–7146 (1979).
    [CrossRef]
  15. X. Chen, K. Q. Schwarz, and K. J. Parker, “Acoustic coupling from a focused transducer to a flat plate and back to the transducer,” J. Acoust. Soc. Am.95(6), 3049–3054 (1994).
    [CrossRef] [PubMed]
  16. X. Chen, D. Phillips, K. Q. Schwarz, J. G. Mottley, and K. J. Parker, “The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(2), 515–525 (1997).
    [CrossRef] [PubMed]
  17. J. E. Mark, Polymer Data Handbook, 2nd ed. (Oxford University Press, 2009).
  18. H. Tohmyoh, T. Imaizumi, and M. Saka, “Acoustic resonant spectroscopy for characterization of thin polymer films,” Rev. Sci. Instrum.77(10), 104901 (2006).
    [CrossRef]
  19. P. K. Wong, P. C. W. Fung, and H. L. Tam, “Low thermal diffusivity measurements of thin films using mirage technique,” J. Appl. Phys.84(12), 6623–6627 (1998).
    [CrossRef]
  20. G. J. Diebold, “Theory of thin layer photoacoustic cells for determination of volume changes in solution,” J. Phys. Chem. B102(27), 5404–5408 (1998).
    [CrossRef]
  21. F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, and L. G. Arnaut, “Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions,” Photochem. Photobiol. Sci.9(6), 812–822 (2010).
    [CrossRef] [PubMed]
  22. T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette, and J. L. Daschbach, “A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility,” Rev. Sci. Instrum.69(6), 2246–2258 (1998).
    [CrossRef]
  23. F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am.73(4), 1366–1373 (1983).
    [CrossRef] [PubMed]
  24. M. Y. Berezin, L. Hyeran, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. J. Frechet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009 (2009), pp. 114–117.
  25. S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
    [PubMed]
  26. A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem.19(5), 983–987 (2008).
    [CrossRef] [PubMed]
  27. S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum.81(12), 124901 (2010).
    [CrossRef] [PubMed]
  28. G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,” Am. J. Physiol. Heart Circ. Physiol.289(5), H2048–H2058 (2005).
    [CrossRef] [PubMed]
  29. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
    [CrossRef] [PubMed]
  30. L. Nicolaides, C. Feng, A. Mandelis, and S. H. Abrams, “Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence,” Appl. Opt.41(4), 768–777 (2002).
    [CrossRef] [PubMed]
  31. E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B55(1), 27–36 (2000).
    [CrossRef] [PubMed]
  32. M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
    [CrossRef] [PubMed]
  33. S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt.15(4), 040501 (2010).
    [CrossRef] [PubMed]
  34. B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
    [CrossRef]
  35. C. Franco and J. Olmsted, “Photochemical determination of the solubility of oxygen in various media,” Talanta37(9), 905–909 (1990).
    [CrossRef] [PubMed]
  36. T. R. Rettich, R. Battino, and E. Wilhelm, “Solubility of gases in liquids. 22. High-precision determination of Henry's law constants of oxygen in liquid water from T = 274 K toT = 328 K,” J. Chem. Thermodyn.32(9), 1145–1156 (2000).
    [CrossRef]
  37. O. Abimbola and N. Tebello, “Solvent effects on the photophysicochemical properties of tetra (tert-butylphenoxy) phthalocyaninato zinc (II),” Acta Phys. Chim. Sin27(5), 1045-1052 (2011).
  38. H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem.128(1-3), 101–109 (1999).
    [CrossRef]
  39. H. Tian, “The influence on the triplet state in antenna rhodamine dyes of intramolecular energy transfer and charge transfer,” J. Photochem. Photobiol. Chem.91(2), 125–130 (1995).
    [CrossRef]
  40. S. Murphy, B. Sauerwein, H. G. Drickamer, and G. B. Schuster, “Spectroscopy of cyanine dyes in fluid solution at atmospheric and high-pressure—The effect of viscosity on nonradiative processes,” J. Phys. Chem.98(51), 13476–13480 (1994).
    [CrossRef]
  41. R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Reflection mode photoacoustic measurement of speed of sound,” Opt. Express15(6), 3291–3300 (2007).
    [CrossRef] [PubMed]

2011 (3)

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett.36(5), 769–771 (2011).
[CrossRef] [PubMed]

O. Abimbola and N. Tebello, “Solvent effects on the photophysicochemical properties of tetra (tert-butylphenoxy) phthalocyaninato zinc (II),” Acta Phys. Chim. Sin27(5), 1045-1052 (2011).

B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
[CrossRef]

2010 (6)

S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum.81(12), 124901 (2010).
[CrossRef] [PubMed]

S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt.15(4), 040501 (2010).
[CrossRef] [PubMed]

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett.97(16), 163701 (2010).
[CrossRef] [PubMed]

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010).
[CrossRef] [PubMed]

Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
[CrossRef] [PubMed]

F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, and L. G. Arnaut, “Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions,” Photochem. Photobiol. Sci.9(6), 812–822 (2010).
[CrossRef] [PubMed]

2009 (1)

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

2008 (3)

A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem.19(5), 983–987 (2008).
[CrossRef] [PubMed]

S. Ashkenazi, S. W. Huang, T. Horvath, Y. E. L. Koo, and R. Kopelman, “Photoacoustic probing of fluorophore excited state lifetime with application to oxygen sensing,” J. Biomed. Opt.13(3), 034023 (2008).
[CrossRef] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt.13(2), 024006 (2008).
[CrossRef] [PubMed]

2007 (2)

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Reflection mode photoacoustic measurement of speed of sound,” Opt. Express15(6), 3291–3300 (2007).
[CrossRef] [PubMed]

2006 (1)

H. Tohmyoh, T. Imaizumi, and M. Saka, “Acoustic resonant spectroscopy for characterization of thin polymer films,” Rev. Sci. Instrum.77(10), 104901 (2006).
[CrossRef]

2005 (3)

A. Mandelis, N. Baddour, Y. Cai, and R. G. Walmsley, “Laser-induced photothermoacoustic pressure-wave pulses in a polystyrene well and water system used for photomechanical drug delivery,” J. Opt. Soc. Am. B22(5), 1024–1036 (2005).
[CrossRef]

S. Boonsang and R. J. Dewhurst, “Pulsed photoacoustic signal characterization incorporating near- and far-field diffraction effects,” Meas. Sci. Technol.16(4), 885–899 (2005).
[CrossRef]

G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,” Am. J. Physiol. Heart Circ. Physiol.289(5), H2048–H2058 (2005).
[CrossRef] [PubMed]

2004 (1)

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

P. H. Carpentier, “Méthodes actuelles d’exploration clinique de la microcirculation,” J. Mal. Vasc.26(2), 142–147 (2001).
[PubMed]

2000 (4)

S. Murata, P. Herman, H. J. Lin, and J. R. Lakowicz, “Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer,” Cytometry41(3), 178–185 (2000).
[CrossRef] [PubMed]

J.-M. I. Maarek, L. Marcu, M. C. Fishbein, and W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med.27(3), 241–254 (2000).
[CrossRef] [PubMed]

E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B55(1), 27–36 (2000).
[CrossRef] [PubMed]

T. R. Rettich, R. Battino, and E. Wilhelm, “Solubility of gases in liquids. 22. High-precision determination of Henry's law constants of oxygen in liquid water from T = 274 K toT = 328 K,” J. Chem. Thermodyn.32(9), 1145–1156 (2000).
[CrossRef]

1999 (1)

H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem.128(1-3), 101–109 (1999).
[CrossRef]

1998 (3)

P. K. Wong, P. C. W. Fung, and H. L. Tam, “Low thermal diffusivity measurements of thin films using mirage technique,” J. Appl. Phys.84(12), 6623–6627 (1998).
[CrossRef]

G. J. Diebold, “Theory of thin layer photoacoustic cells for determination of volume changes in solution,” J. Phys. Chem. B102(27), 5404–5408 (1998).
[CrossRef]

T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette, and J. L. Daschbach, “A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility,” Rev. Sci. Instrum.69(6), 2246–2258 (1998).
[CrossRef]

1997 (1)

X. Chen, D. Phillips, K. Q. Schwarz, J. G. Mottley, and K. J. Parker, “The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(2), 515–525 (1997).
[CrossRef] [PubMed]

1995 (1)

H. Tian, “The influence on the triplet state in antenna rhodamine dyes of intramolecular energy transfer and charge transfer,” J. Photochem. Photobiol. Chem.91(2), 125–130 (1995).
[CrossRef]

1994 (2)

S. Murphy, B. Sauerwein, H. G. Drickamer, and G. B. Schuster, “Spectroscopy of cyanine dyes in fluid solution at atmospheric and high-pressure—The effect of viscosity on nonradiative processes,” J. Phys. Chem.98(51), 13476–13480 (1994).
[CrossRef]

X. Chen, K. Q. Schwarz, and K. J. Parker, “Acoustic coupling from a focused transducer to a flat plate and back to the transducer,” J. Acoust. Soc. Am.95(6), 3049–3054 (1994).
[CrossRef] [PubMed]

1992 (2)

M. Ouzafe, P. Poulet, and J. Chambron, “Photoacoustic detection of triplet state and singlet oxygen in highly absorbing samples,” Photochem. Photobiol.55(4), 491–503 (1992).
[CrossRef] [PubMed]

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

1990 (1)

C. Franco and J. Olmsted, “Photochemical determination of the solubility of oxygen in various media,” Talanta37(9), 905–909 (1990).
[CrossRef] [PubMed]

1983 (1)

F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am.73(4), 1366–1373 (1983).
[CrossRef] [PubMed]

1979 (1)

A. Mandelis, Y. C. Teng, and B. S. H. Royce, “Phase measurements in the frequency domain photoacoustic spectroscopy of solids,” J. Appl. Phys.50(11), 7138–7146 (1979).
[CrossRef]

Abels, C.

H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem.128(1-3), 101–109 (1999).
[CrossRef]

Abimbola, O.

O. Abimbola and N. Tebello, “Solvent effects on the photophysicochemical properties of tetra (tert-butylphenoxy) phthalocyaninato zinc (II),” Acta Phys. Chim. Sin27(5), 1045-1052 (2011).

Abrams, S. H.

Achilefu, S.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010).
[CrossRef] [PubMed]

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Akers, W.

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Amonette, J. E.

T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette, and J. L. Daschbach, “A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility,” Rev. Sci. Instrum.69(6), 2246–2258 (1998).
[CrossRef]

Anderson, R. R.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Arnaut, L. G.

F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, and L. G. Arnaut, “Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions,” Photochem. Photobiol. Sci.9(6), 812–822 (2010).
[CrossRef] [PubMed]

Ashkenazi, S.

S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt.15(4), 040501 (2010).
[CrossRef] [PubMed]

S. Ashkenazi, S. W. Huang, T. Horvath, Y. E. L. Koo, and R. Kopelman, “Photoacoustic probing of fluorophore excited state lifetime with application to oxygen sensing,” J. Biomed. Opt.13(3), 034023 (2008).
[CrossRef] [PubMed]

Autrey, T.

T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette, and J. L. Daschbach, “A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility,” Rev. Sci. Instrum.69(6), 2246–2258 (1998).
[CrossRef]

Baddour, N.

Bahadur, A. N.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Barroso, M.

F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, and L. G. Arnaut, “Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions,” Photochem. Photobiol. Sci.9(6), 812–822 (2010).
[CrossRef] [PubMed]

Battino, R.

T. R. Rettich, R. Battino, and E. Wilhelm, “Solubility of gases in liquids. 22. High-precision determination of Henry's law constants of oxygen in liquid water from T = 274 K toT = 328 K,” J. Chem. Thermodyn.32(9), 1145–1156 (2000).
[CrossRef]

Bäumler, W.

H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem.128(1-3), 101–109 (1999).
[CrossRef]

Berezin, M. Y.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010).
[CrossRef] [PubMed]

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Boonsang, S.

S. Boonsang and R. J. Dewhurst, “Pulsed photoacoustic signal characterization incorporating near- and far-field diffraction effects,” Meas. Sci. Technol.16(4), 885–899 (2005).
[CrossRef]

Boschi, F.

A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem.19(5), 983–987 (2008).
[CrossRef] [PubMed]

Bruggemann, U.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Cai, Y.

Calderan, L.

A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem.19(5), 983–987 (2008).
[CrossRef] [PubMed]

Carpentier, P. H.

P. H. Carpentier, “Méthodes actuelles d’exploration clinique de la microcirculation,” J. Mal. Vasc.26(2), 142–147 (2001).
[PubMed]

Chambron, J.

M. Ouzafe, P. Poulet, and J. Chambron, “Photoacoustic detection of triplet state and singlet oxygen in highly absorbing samples,” Photochem. Photobiol.55(4), 491–503 (1992).
[CrossRef] [PubMed]

Chen, X.

X. Chen, D. Phillips, K. Q. Schwarz, J. G. Mottley, and K. J. Parker, “The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(2), 515–525 (1997).
[CrossRef] [PubMed]

X. Chen, K. Q. Schwarz, and K. J. Parker, “Acoustic coupling from a focused transducer to a flat plate and back to the transducer,” J. Acoust. Soc. Am.95(6), 3049–3054 (1994).
[CrossRef] [PubMed]

Cheng, Y. Y.

B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
[CrossRef]

Chisholm, G. B.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Clady, R. G. C. R.

B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
[CrossRef]

Coleman, D. J.

F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am.73(4), 1366–1373 (1983).
[CrossRef] [PubMed]

Crossley, M. J.

B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
[CrossRef]

Danielli, A.

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett.36(5), 769–771 (2011).
[CrossRef] [PubMed]

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett.97(16), 163701 (2010).
[CrossRef] [PubMed]

Daschbach, J. L.

T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette, and J. L. Daschbach, “A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility,” Rev. Sci. Instrum.69(6), 2246–2258 (1998).
[CrossRef]

De Vos, D.

E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B55(1), 27–36 (2000).
[CrossRef] [PubMed]

de Witte, P.

E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B55(1), 27–36 (2000).
[CrossRef] [PubMed]

Delaey, E.

E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B55(1), 27–36 (2000).
[CrossRef] [PubMed]

Dewhurst, R. J.

S. Boonsang and R. J. Dewhurst, “Pulsed photoacoustic signal characterization incorporating near- and far-field diffraction effects,” Meas. Sci. Technol.16(4), 885–899 (2005).
[CrossRef]

Diebold, G. J.

G. J. Diebold, “Theory of thin layer photoacoustic cells for determination of volume changes in solution,” J. Phys. Chem. B102(27), 5404–5408 (1998).
[CrossRef]

Drickamer, H. G.

S. Murphy, B. Sauerwein, H. G. Drickamer, and G. B. Schuster, “Spectroscopy of cyanine dyes in fluid solution at atmospheric and high-pressure—The effect of viscosity on nonradiative processes,” J. Phys. Chem.98(51), 13476–13480 (1994).
[CrossRef]

Ekins-Daukes, N.

B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
[CrossRef]

Elbaum, M.

F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am.73(4), 1366–1373 (1983).
[CrossRef] [PubMed]

Elson, D. S.

Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
[CrossRef] [PubMed]

Fan, Y.

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

Favazza, C. P.

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett.36(5), 769–771 (2011).
[CrossRef] [PubMed]

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett.97(16), 163701 (2010).
[CrossRef] [PubMed]

Feleppa, E. J.

F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am.73(4), 1366–1373 (1983).
[CrossRef] [PubMed]

Feng, C.

Fishbein, M. C.

J.-M. I. Maarek, L. Marcu, M. C. Fishbein, and W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med.27(3), 241–254 (2000).
[CrossRef] [PubMed]

Foster, N. S.

T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette, and J. L. Daschbach, “A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility,” Rev. Sci. Instrum.69(6), 2246–2258 (1998).
[CrossRef]

Franco, C.

C. Franco and J. Olmsted, “Photochemical determination of the solubility of oxygen in various media,” Talanta37(9), 905–909 (1990).
[CrossRef] [PubMed]

Fückel, B.

B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
[CrossRef]

Fung, P. C. W.

P. K. Wong, P. C. W. Fung, and H. L. Tam, “Low thermal diffusivity measurements of thin films using mirage technique,” J. Appl. Phys.84(12), 6623–6627 (1998).
[CrossRef]

Gasser, C. T.

G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,” Am. J. Physiol. Heart Circ. Physiol.289(5), H2048–H2058 (2005).
[CrossRef] [PubMed]

Gorin, F.

Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
[CrossRef] [PubMed]

Gratz, H.

H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem.128(1-3), 101–109 (1999).
[CrossRef]

Greenebaum, M.

F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am.73(4), 1366–1373 (1983).
[CrossRef] [PubMed]

Grundfest, W. S.

J.-M. I. Maarek, L. Marcu, M. C. Fishbein, and W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med.27(3), 241–254 (2000).
[CrossRef] [PubMed]

Hatami, N.

Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
[CrossRef] [PubMed]

Herman, P.

S. Murata, P. Herman, H. J. Lin, and J. R. Lakowicz, “Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer,” Cytometry41(3), 178–185 (2000).
[CrossRef] [PubMed]

Holzapfel, G. A.

G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,” Am. J. Physiol. Heart Circ. Physiol.289(5), H2048–H2058 (2005).
[CrossRef] [PubMed]

Horvath, T.

S. Ashkenazi, S. W. Huang, T. Horvath, Y. E. L. Koo, and R. Kopelman, “Photoacoustic probing of fluorophore excited state lifetime with application to oxygen sensing,” J. Biomed. Opt.13(3), 034023 (2008).
[CrossRef] [PubMed]

Huang, S. W.

S. Ashkenazi, S. W. Huang, T. Horvath, Y. E. L. Koo, and R. Kopelman, “Photoacoustic probing of fluorophore excited state lifetime with application to oxygen sensing,” J. Biomed. Opt.13(3), 034023 (2008).
[CrossRef] [PubMed]

Imaizumi, T.

H. Tohmyoh, T. Imaizumi, and M. Saka, “Acoustic resonant spectroscopy for characterization of thin polymer films,” Rev. Sci. Instrum.77(10), 104901 (2006).
[CrossRef]

Jacobs, P.

E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B55(1), 27–36 (2000).
[CrossRef] [PubMed]

Kamuhabwa, A.

E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B55(1), 27–36 (2000).
[CrossRef] [PubMed]

Keller, C.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Klepzig, K.

T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette, and J. L. Daschbach, “A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility,” Rev. Sci. Instrum.69(6), 2246–2258 (1998).
[CrossRef]

Kolkman, R. G.

Koo, Y. E. L.

S. Ashkenazi, S. W. Huang, T. Horvath, Y. E. L. Koo, and R. Kopelman, “Photoacoustic probing of fluorophore excited state lifetime with application to oxygen sensing,” J. Biomed. Opt.13(3), 034023 (2008).
[CrossRef] [PubMed]

Kopelman, R.

S. Ashkenazi, S. W. Huang, T. Horvath, Y. E. L. Koo, and R. Kopelman, “Photoacoustic probing of fluorophore excited state lifetime with application to oxygen sensing,” J. Biomed. Opt.13(3), 034023 (2008).
[CrossRef] [PubMed]

Lakowicz, J. R.

S. Murata, P. Herman, H. J. Lin, and J. R. Lakowicz, “Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer,” Cytometry41(3), 178–185 (2000).
[CrossRef] [PubMed]

Landthaler, M.

H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem.128(1-3), 101–109 (1999).
[CrossRef]

Lechleiter, J. D.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Lee, H.

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Lin, H. J.

S. Murata, P. Herman, H. J. Lin, and J. R. Lakowicz, “Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer,” Cytometry41(3), 178–185 (2000).
[CrossRef] [PubMed]

Lizzi, F. L.

F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am.73(4), 1366–1373 (1983).
[CrossRef] [PubMed]

Maarek, J.-M. I.

J.-M. I. Maarek, L. Marcu, M. C. Fishbein, and W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med.27(3), 241–254 (2000).
[CrossRef] [PubMed]

Mandelis, A.

S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum.81(12), 124901 (2010).
[CrossRef] [PubMed]

A. Mandelis, N. Baddour, Y. Cai, and R. G. Walmsley, “Laser-induced photothermoacoustic pressure-wave pulses in a polystyrene well and water system used for photomechanical drug delivery,” J. Opt. Soc. Am. B22(5), 1024–1036 (2005).
[CrossRef]

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

L. Nicolaides, C. Feng, A. Mandelis, and S. H. Abrams, “Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence,” Appl. Opt.41(4), 768–777 (2002).
[CrossRef] [PubMed]

A. Mandelis, Y. C. Teng, and B. S. H. Royce, “Phase measurements in the frequency domain photoacoustic spectroscopy of solids,” J. Appl. Phys.50(11), 7138–7146 (1979).
[CrossRef]

Marcu, L.

Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
[CrossRef] [PubMed]

J.-M. I. Maarek, L. Marcu, M. C. Fishbein, and W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med.27(3), 241–254 (2000).
[CrossRef] [PubMed]

Martinez, C. O.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Maslov, K.

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett.36(5), 769–771 (2011).
[CrossRef] [PubMed]

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett.97(16), 163701 (2010).
[CrossRef] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt.13(2), 024006 (2008).
[CrossRef] [PubMed]

Masotti, A.

A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem.19(5), 983–987 (2008).
[CrossRef] [PubMed]

McManus, L. M.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Michalek, J. E.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Mottley, J. G.

X. Chen, D. Phillips, K. Q. Schwarz, J. G. Mottley, and K. J. Parker, “The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(2), 515–525 (1997).
[CrossRef] [PubMed]

Murata, S.

S. Murata, P. Herman, H. J. Lin, and J. R. Lakowicz, “Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer,” Cytometry41(3), 178–185 (2000).
[CrossRef] [PubMed]

Murphy, S.

S. Murphy, B. Sauerwein, H. G. Drickamer, and G. B. Schuster, “Spectroscopy of cyanine dyes in fluid solution at atmospheric and high-pressure—The effect of viscosity on nonradiative processes,” J. Phys. Chem.98(51), 13476–13480 (1994).
[CrossRef]

Nicolaides, L.

Nunes, R. M. D.

F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, and L. G. Arnaut, “Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions,” Photochem. Photobiol. Sci.9(6), 812–822 (2010).
[CrossRef] [PubMed]

Olmsted, J.

C. Franco and J. Olmsted, “Photochemical determination of the solubility of oxygen in various media,” Talanta37(9), 905–909 (1990).
[CrossRef] [PubMed]

Ortaggi, G.

A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem.19(5), 983–987 (2008).
[CrossRef] [PubMed]

Ouzafe, M.

M. Ouzafe, P. Poulet, and J. Chambron, “Photoacoustic detection of triplet state and singlet oxygen in highly absorbing samples,” Photochem. Photobiol.55(4), 491–503 (1992).
[CrossRef] [PubMed]

Parker, K. J.

X. Chen, D. Phillips, K. Q. Schwarz, J. G. Mottley, and K. J. Parker, “The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(2), 515–525 (1997).
[CrossRef] [PubMed]

X. Chen, K. Q. Schwarz, and K. J. Parker, “Acoustic coupling from a focused transducer to a flat plate and back to the transducer,” J. Acoust. Soc. Am.95(6), 3049–3054 (1994).
[CrossRef] [PubMed]

Penzkofer, A.

H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem.128(1-3), 101–109 (1999).
[CrossRef]

Phillips, D.

X. Chen, D. Phillips, K. Q. Schwarz, J. G. Mottley, and K. J. Parker, “The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(2), 515–525 (1997).
[CrossRef] [PubMed]

Phipps, J.

Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
[CrossRef] [PubMed]

Piper, R. B.

B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
[CrossRef]

Poulet, P.

M. Ouzafe, P. Poulet, and J. Chambron, “Photoacoustic detection of triplet state and singlet oxygen in highly absorbing samples,” Photochem. Photobiol.55(4), 491–503 (1992).
[CrossRef] [PubMed]

Prahl, S. A.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Prajapati, S. I.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Regitnig, P.

G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,” Am. J. Physiol. Heart Circ. Physiol.289(5), H2048–H2058 (2005).
[CrossRef] [PubMed]

Rettich, T. R.

T. R. Rettich, R. Battino, and E. Wilhelm, “Solubility of gases in liquids. 22. High-precision determination of Henry's law constants of oxygen in liquid water from T = 274 K toT = 328 K,” J. Chem. Thermodyn.32(9), 1145–1156 (2000).
[CrossRef]

Roberts, D. A.

B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
[CrossRef]

Royce, B. S. H.

A. Mandelis, Y. C. Teng, and B. S. H. Royce, “Phase measurements in the frequency domain photoacoustic spectroscopy of solids,” J. Appl. Phys.50(11), 7138–7146 (1979).
[CrossRef]

Saka, M.

H. Tohmyoh, T. Imaizumi, and M. Saka, “Acoustic resonant spectroscopy for characterization of thin polymer films,” Rev. Sci. Instrum.77(10), 104901 (2006).
[CrossRef]

Sauerwein, B.

S. Murphy, B. Sauerwein, H. G. Drickamer, and G. B. Schuster, “Spectroscopy of cyanine dyes in fluid solution at atmospheric and high-pressure—The effect of viscosity on nonradiative processes,” J. Phys. Chem.98(51), 13476–13480 (1994).
[CrossRef]

Sbarbati, A.

A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem.19(5), 983–987 (2008).
[CrossRef] [PubMed]

Schaberle, F. A.

F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, and L. G. Arnaut, “Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions,” Photochem. Photobiol. Sci.9(6), 812–822 (2010).
[CrossRef] [PubMed]

Schmidt, T. W.

B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
[CrossRef]

Schrot, R. J.

Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
[CrossRef] [PubMed]

Schuster, G. B.

S. Murphy, B. Sauerwein, H. G. Drickamer, and G. B. Schuster, “Spectroscopy of cyanine dyes in fluid solution at atmospheric and high-pressure—The effect of viscosity on nonradiative processes,” J. Phys. Chem.98(51), 13476–13480 (1994).
[CrossRef]

Schwarz, K. Q.

X. Chen, D. Phillips, K. Q. Schwarz, J. G. Mottley, and K. J. Parker, “The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(2), 515–525 (1997).
[CrossRef] [PubMed]

X. Chen, K. Q. Schwarz, and K. J. Parker, “Acoustic coupling from a focused transducer to a flat plate and back to the transducer,” J. Acoust. Soc. Am.95(6), 3049–3054 (1994).
[CrossRef] [PubMed]

Serpa, C.

F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, and L. G. Arnaut, “Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions,” Photochem. Photobiol. Sci.9(6), 812–822 (2010).
[CrossRef] [PubMed]

Shireman, P. K.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Sommer, G.

G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,” Am. J. Physiol. Heart Circ. Physiol.289(5), H2048–H2058 (2005).
[CrossRef] [PubMed]

Spirou, G.

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

Steenbergen, W.

Sun, Y. H.

Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
[CrossRef] [PubMed]

Szeimies, R. M.

H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem.128(1-3), 101–109 (1999).
[CrossRef]

Tam, H. L.

P. K. Wong, P. C. W. Fung, and H. L. Tam, “Low thermal diffusivity measurements of thin films using mirage technique,” J. Appl. Phys.84(12), 6623–6627 (1998).
[CrossRef]

Tebello, N.

O. Abimbola and N. Tebello, “Solvent effects on the photophysicochemical properties of tetra (tert-butylphenoxy) phthalocyaninato zinc (II),” Acta Phys. Chim. Sin27(5), 1045-1052 (2011).

Telenkov, S.

S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum.81(12), 124901 (2010).
[CrossRef] [PubMed]

Teng, Y. C.

A. Mandelis, Y. C. Teng, and B. S. H. Royce, “Phase measurements in the frequency domain photoacoustic spectroscopy of solids,” J. Appl. Phys.50(11), 7138–7146 (1979).
[CrossRef]

Tian, H.

H. Tian, “The influence on the triplet state in antenna rhodamine dyes of intramolecular energy transfer and charge transfer,” J. Photochem. Photobiol. Chem.91(2), 125–130 (1995).
[CrossRef]

Tohmyoh, H.

H. Tohmyoh, T. Imaizumi, and M. Saka, “Acoustic resonant spectroscopy for characterization of thin polymer films,” Rev. Sci. Instrum.77(10), 104901 (2006).
[CrossRef]

van Laar, F.

E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B55(1), 27–36 (2000).
[CrossRef] [PubMed]

van Leeuwen, T. G.

Vicennati, P.

A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem.19(5), 983–987 (2008).
[CrossRef] [PubMed]

Vitkin, I. A.

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Walmsley, R. G.

Wang, L. V.

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett.36(5), 769–771 (2011).
[CrossRef] [PubMed]

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett.97(16), 163701 (2010).
[CrossRef] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt.13(2), 024006 (2008).
[CrossRef] [PubMed]

Wilhelm, E.

T. R. Rettich, R. Battino, and E. Wilhelm, “Solubility of gases in liquids. 22. High-precision determination of Henry's law constants of oxygen in liquid water from T = 274 K toT = 328 K,” J. Chem. Thermodyn.32(9), 1145–1156 (2000).
[CrossRef]

Wilson, B. C.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Wong, P. K.

P. K. Wong, P. C. W. Fung, and H. L. Tam, “Low thermal diffusivity measurements of thin films using mirage technique,” J. Appl. Phys.84(12), 6623–6627 (1998).
[CrossRef]

Wu, I. Q.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Yee, M.

Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
[CrossRef] [PubMed]

Zheng, W.

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Acta Phys. Chim. Sin (1)

O. Abimbola and N. Tebello, “Solvent effects on the photophysicochemical properties of tetra (tert-butylphenoxy) phthalocyaninato zinc (II),” Acta Phys. Chim. Sin27(5), 1045-1052 (2011).

Am. J. Physiol. Heart Circ. Physiol. (1)

G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,” Am. J. Physiol. Heart Circ. Physiol.289(5), H2048–H2058 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett.97(16), 163701 (2010).
[CrossRef] [PubMed]

Bioconjug. Chem. (1)

A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem.19(5), 983–987 (2008).
[CrossRef] [PubMed]

Biophys. J. (1)

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Chem. Rev. (1)

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010).
[CrossRef] [PubMed]

Cytometry (1)

S. Murata, P. Herman, H. J. Lin, and J. R. Lakowicz, “Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer,” Cytometry41(3), 178–185 (2000).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

X. Chen, D. Phillips, K. Q. Schwarz, J. G. Mottley, and K. J. Parker, “The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(2), 515–525 (1997).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (3)

X. Chen, K. Q. Schwarz, and K. J. Parker, “Acoustic coupling from a focused transducer to a flat plate and back to the transducer,” J. Acoust. Soc. Am.95(6), 3049–3054 (1994).
[CrossRef] [PubMed]

Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004).
[CrossRef] [PubMed]

F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am.73(4), 1366–1373 (1983).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

P. K. Wong, P. C. W. Fung, and H. L. Tam, “Low thermal diffusivity measurements of thin films using mirage technique,” J. Appl. Phys.84(12), 6623–6627 (1998).
[CrossRef]

A. Mandelis, Y. C. Teng, and B. S. H. Royce, “Phase measurements in the frequency domain photoacoustic spectroscopy of solids,” J. Appl. Phys.50(11), 7138–7146 (1979).
[CrossRef]

J. Biomed. Opt. (4)

S. Ashkenazi, S. W. Huang, T. Horvath, Y. E. L. Koo, and R. Kopelman, “Photoacoustic probing of fluorophore excited state lifetime with application to oxygen sensing,” J. Biomed. Opt.13(3), 034023 (2008).
[CrossRef] [PubMed]

K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt.13(2), 024006 (2008).
[CrossRef] [PubMed]

Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010).
[CrossRef] [PubMed]

S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt.15(4), 040501 (2010).
[CrossRef] [PubMed]

J. Chem. Thermodyn. (1)

T. R. Rettich, R. Battino, and E. Wilhelm, “Solubility of gases in liquids. 22. High-precision determination of Henry's law constants of oxygen in liquid water from T = 274 K toT = 328 K,” J. Chem. Thermodyn.32(9), 1145–1156 (2000).
[CrossRef]

J. Mal. Vasc. (1)

P. H. Carpentier, “Méthodes actuelles d’exploration clinique de la microcirculation,” J. Mal. Vasc.26(2), 142–147 (2001).
[PubMed]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. B (1)

E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B55(1), 27–36 (2000).
[CrossRef] [PubMed]

J. Photochem. Photobiol. Chem. (2)

H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem.128(1-3), 101–109 (1999).
[CrossRef]

H. Tian, “The influence on the triplet state in antenna rhodamine dyes of intramolecular energy transfer and charge transfer,” J. Photochem. Photobiol. Chem.91(2), 125–130 (1995).
[CrossRef]

J. Phys. Chem. (1)

S. Murphy, B. Sauerwein, H. G. Drickamer, and G. B. Schuster, “Spectroscopy of cyanine dyes in fluid solution at atmospheric and high-pressure—The effect of viscosity on nonradiative processes,” J. Phys. Chem.98(51), 13476–13480 (1994).
[CrossRef]

J. Phys. Chem. B (1)

G. J. Diebold, “Theory of thin layer photoacoustic cells for determination of volume changes in solution,” J. Phys. Chem. B102(27), 5404–5408 (1998).
[CrossRef]

J. Phys. Chem. Lett. (1)

B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011).
[CrossRef]

Lasers Surg. Med. (1)

J.-M. I. Maarek, L. Marcu, M. C. Fishbein, and W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med.27(3), 241–254 (2000).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

S. Boonsang and R. J. Dewhurst, “Pulsed photoacoustic signal characterization incorporating near- and far-field diffraction effects,” Meas. Sci. Technol.16(4), 885–899 (2005).
[CrossRef]

Mol. Imaging (1)

S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009).
[PubMed]

Opt. Express (1)

Opt. Lett. (1)

Photochem. Photobiol. (1)

M. Ouzafe, P. Poulet, and J. Chambron, “Photoacoustic detection of triplet state and singlet oxygen in highly absorbing samples,” Photochem. Photobiol.55(4), 491–503 (1992).
[CrossRef] [PubMed]

Photochem. Photobiol. Sci. (1)

F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, and L. G. Arnaut, “Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions,” Photochem. Photobiol. Sci.9(6), 812–822 (2010).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette, and J. L. Daschbach, “A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility,” Rev. Sci. Instrum.69(6), 2246–2258 (1998).
[CrossRef]

S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum.81(12), 124901 (2010).
[CrossRef] [PubMed]

H. Tohmyoh, T. Imaizumi, and M. Saka, “Acoustic resonant spectroscopy for characterization of thin polymer films,” Rev. Sci. Instrum.77(10), 104901 (2006).
[CrossRef]

Talanta (1)

C. Franco and J. Olmsted, “Photochemical determination of the solubility of oxygen in various media,” Talanta37(9), 905–909 (1990).
[CrossRef] [PubMed]

Other (2)

M. Y. Berezin, L. Hyeran, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. J. Frechet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009 (2009), pp. 114–117.

J. E. Mark, Polymer Data Handbook, 2nd ed. (Oxford University Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry used for formulating model of frequency dependent PA signal from a laser target illuminated by CW laser beam.

Fig. 2
Fig. 2

Prediction of the theoretical model developed in this work on frequency dependence of the PA amplitude for targets with different non-radiative relaxation times. Physical properties of the target are those of PVC film listed in Table 1. The thickness of target is assumed to be 1 mm and its optical absorption coefficient is μa = 100 cm−1. The induced photoacoustic pressure is detected 2.54 cm far from the target surface and on the z-axis.

Fig. 3
Fig. 3

Time domain simulation of the PA signal for a configuration commonly used in time-resolved calorimetry for ultrasound transducer with central frequency of (a) 15 MHz, (b) 2.25 MHz.

Fig. 4
Fig. 4

Block diagram of experimental setup used in CW intensity-modulated laser-induced PA measurements.

Fig. 5
Fig. 5

Photoacoustic signals induced in phantom #1 made of silicone elastomer mixed with black ink after its illumination by tone-burst modulated laser light at 808 nm (a,b) and the result of matched filtering by the reference signal on them (c,d) for light modulation frequencies of 2.25 MHz (a,c) and 5.25 MHz. (b,d).

Fig. 6
Fig. 6

Experimental and best-fit for PA amplitude versus laser intensity modulation frequency from the silicone phantoms #1 (a) and the phantom #2 (b). The best fits for the phantoms 1 and 2 are found for μa = 2300 m−1 and μa = 7100 m−1 respectively. The physical properties used for fitting are listed in Table 1.

Fig. 7
Fig. 7

Experimental and best-fit for PA amplitude versus laser intensity modulation frequency from solution of IR820 in two different solvents. (a) IR820 in water; the fitting parameters are μa = 9.15 × 105 m−1, τ = 21.5 ns (b) IR820 in DMSO; the fitting parameters are μa = 1 × 106 m−1, τ = 3.29 ns. The physical properties used for the target and the surrounding water are listed in Table 1.

Tables (2)

Tables Icon

Table 1 Physical properties used in the mathematical model of frequency domain photoacoustic effect

Tables Icon

Table 2 Obtained parameters through fitting the theoretical model with experimental PA data and their comparison with values measured by other methods

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

2 z 2 θ( z,ω )( iω α t ) θ t ( z,ω )= 1 λ t H( z,ω ),
H(z,ω)= μ a I 0 e μ a (L+z)+iωt .
H(z,ω)= μ a I 0 ( 1+iωτ ) e μ a (L+z)+iωt .
2 z 2 θ f (z,ω)( iω α f ) θ f (z,ω)=0,   <zL,0z<,
θ f (L,ω)= θ t (L,ω), λ t z θ t = λ f z θ f | z=L ,
U t (z,ω)= z ϕ t (z,ω).
2 z 2 ϕ t (z,ω)+ k t 2 ϕ t (z,ω)=( K t β t ρ t c t 2 ) θ t (z,ω),
2 z 2 ψ fi (z,ω)+ k f 2 ψ fi (z,ω)=0,
P(z,ω)=iω ρ f ψ fi (z,ω).
P(ω)= μ a I 0 K t β t ρ f c f λ t ( 1+iωτ )( σ t 2 + k t 2 )( σ t 2 μ a 2 )[ ( ρ t c t + ρ f c f ) 2 e i k t L ( ρ t c t ρ f c f ) 2 e i k t L ] ×{ ( ρ t c t + ρ f c f )( μ a 2 k t 2 σ t 2 +i k t μ a ) e ( i k t μ a )L +( ρ t c t ρ f c f )( μ a 2 k t 2 σ t 2 i k t μ a ) e ( i k t + μ a )L +( ρ t c t ρ f c f )( k t +i σ t ) k t b tf e ( i k t + σ t )L +( ρ t c t + ρ f c f )( k t i σ t ) k t b tf e ( i k t σ t )L +2[ ω k t ρ t ( b tf 1)+ ρ t c t ( μ a 2 σ t 2 )i k t ρ f c f ( μ a + b tf σ t ) ] } e i k f z ,
b tf = ( λ t μ a + λ f σ f ) ( λ f σ f + λ t σ t ) ,
σ t 2 = iω α t , σ f 2 = iω α f .
D(ω)={ 1 e i G p [ J 0 ( G p )i J 1 ( G p ) ] },

Metrics