Abstract

A flexible and coherent bundle of hollow optical fibers was fabricated for infrared thermal imaging. For acquisition of thermal images, differences in the transmission efficiency among the fibers were numerically compensated to obtain high temperature resolution of 1°C for measuring body temperature. In a lens system with 10-fold magnification and hollow fibers of 320-μm inner diameter, the spatial resolution is around 3 mm. The hollow-fiber bundle enables observation of the surface temperature of inner organs and blood flow of the surfaces when the bundle is introduced into the human body with an endoscope.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Diakides, and J. D. Bronzino, Medical Infrared Imaging (CRC Press, Boca Raton, 2008).
  2. D. A. Kennedy, T. Lee, and D. Seely, “A comparative review of thermography as a breast cancer screening technique,” Integr. Cancer Ther. 8(1), 9–16 (2009).
    [CrossRef] [PubMed]
  3. M. Saito, M. Takizawa, S. Sakuragi, and F. Tanei, “Infrared image guide with bundled As-S glass fibers,” Appl. Opt. 24(15), 2304–2309 (1985).
    [CrossRef] [PubMed]
  4. J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
    [CrossRef]
  5. I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61(12), 1384–1386 (1992).
    [CrossRef]
  6. Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).
    [CrossRef]
  7. V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
    [CrossRef]
  8. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
    [CrossRef]
  9. Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6(3), 423–427 (1989).
    [CrossRef]
  10. Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, and M. Miyagi, “Polymer-coated hollow fiber for CO(2) laser delivery,” Opt. Lett. 23(2), 89–90 (1998).
    [CrossRef] [PubMed]

2009 (1)

D. A. Kennedy, T. Lee, and D. Seely, “A comparative review of thermography as a breast cancer screening technique,” Integr. Cancer Ther. 8(1), 9–16 (2009).
[CrossRef] [PubMed]

2005 (1)

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).
[CrossRef]

2004 (1)

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[CrossRef]

1998 (1)

1992 (1)

I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61(12), 1384–1386 (1992).
[CrossRef]

1991 (1)

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[CrossRef]

1989 (1)

1985 (1)

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[CrossRef]

Abe, Y.

Gannot, I.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[CrossRef]

Gopal, V.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[CrossRef]

Goren, A.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[CrossRef]

Harrington, J. A.

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[CrossRef]

Hongo, A.

Katzir, A.

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).
[CrossRef]

I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61(12), 1384–1386 (1992).
[CrossRef]

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[CrossRef]

Kennedy, D. A.

D. A. Kennedy, T. Lee, and D. Seely, “A comparative review of thermography as a breast cancer screening technique,” Integr. Cancer Ther. 8(1), 9–16 (2009).
[CrossRef] [PubMed]

Lavi, Y.

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).
[CrossRef]

Lee, T.

D. A. Kennedy, T. Lee, and D. Seely, “A comparative review of thermography as a breast cancer screening technique,” Integr. Cancer Ther. 8(1), 9–16 (2009).
[CrossRef] [PubMed]

Matsuura, Y.

Millo, A.

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).
[CrossRef]

Miyagi, M.

Nishii, J.

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[CrossRef]

Paiss, I.

I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61(12), 1384–1386 (1992).
[CrossRef]

Saito, M.

Sakuragi, S.

Seely, D.

D. A. Kennedy, T. Lee, and D. Seely, “A comparative review of thermography as a breast cancer screening technique,” Integr. Cancer Ther. 8(1), 9–16 (2009).
[CrossRef] [PubMed]

Shi, Y. W.

Sone, H.

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[CrossRef]

Takizawa, M.

Tanaka, C.

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[CrossRef]

Tanei, F.

Uyama, H.

Wang, Y.

Yamagishi, T.

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[CrossRef]

Yamashita, T.

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59(21), 2639–2641 (1991).
[CrossRef]

I. Paiss and A. Katzir, “Thermal imaging by ordered bundles of silver halide crystalline fibers,” Appl. Phys. Lett. 61(12), 1384–1386 (1992).
[CrossRef]

Y. Lavi, A. Millo, and A. Katzir, “Thin ordered bundles of infrared transmitting silver halide fibers,” Appl. Phys. Lett. 87(24), 241122 (2005).
[CrossRef]

Integr. Cancer Ther. (1)

D. A. Kennedy, T. Lee, and D. Seely, “A comparative review of thermography as a breast cancer screening technique,” Integr. Cancer Ther. 8(1), 9–16 (2009).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

V. Gopal, J. A. Harrington, A. Goren, and I. Gannot, “Coherent hollow-core waveguide bundles for infrared imaging,” Opt. Eng. 43(5), 1195–1199 (2004).
[CrossRef]

Opt. Lett. (1)

Other (1)

N. A. Diakides, and J. D. Bronzino, Medical Infrared Imaging (CRC Press, Boca Raton, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Theoretical transmission losses of dielectric-coated metal hollow fiber with 320-μm inner diameter and 500-mm length. Black-body radiation spectrum of 37°C is also shown.

Fig. 2
Fig. 2

Measured loss spectra of COP-coated Ag hollow optical fibers with 320-μm inner diameter and 480-mm length. Bent fiber has loop with 50-mm bending radius at center of fiber.

Fig. 3
Fig. 3

Appearance of bundled hollow fibers.

Fig. 4
Fig. 4

Distal end of bundled hollow fibers. Other end of bundle lighted with fluorescent lamp.

Fig. 5
Fig. 5

Raw image of 70°C hot plate transmitted through hollow fiber bundle.

Fig. 6
Fig. 6

Observed thermal image of fingertip (right) after numerical image processing, and picture of observed region (left).

Fig. 7
Fig. 7

Thermal images of dorsal hand vein observed through hollow fiber bundle (right) and directly by thermographic camera (left).

Metrics