Abstract

Ultrasound imaging (US) of the prostate has a low specificity to distinguish tumors from the surrounding tissues. This limitation leads to systematic biopsies. Fluorescent diffuse optical imaging may represent an innovative approach to guide biopsies to tumors marked with high specificity contrast agents and therefore enable an early detection of prostate cancer. This article describes a time-resolved optical system embedded in a transrectal US probe, as well as the fluorescence reconstruction method and its performance. Optical measurements were performed using a pulsed laser, optical fibers and a time-resolved detection system. A novel fast reconstruction method was derived and used to locate a 45 µL ICG fluorescent inclusion at a concentration of 10 µM, in a liquid prostate phantom. Very high location accuracy (0.15 cm) was achieved after reconstruction, for different positions of the inclusion, in the three directions of space. The repeatability, tested with ten sequential measurements, was of the same order of magnitude. Influence of the input parameters (optical properties and lifetime) is presented. These results confirm the feasibility of using optical imaging for prostate guided biopsies.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
    [CrossRef] [PubMed]
  2. P. T. Scardino, R. Weaver, and M. A. Hudson, “Early detection of prostate cancer,” Hum. Pathol. 23(3), 211–222 (1992).
    [CrossRef] [PubMed]
  3. G. D. Grossfeld and P. R. Carroll, “Prostate cancer early detection: a clinical perspective,” Epidemiol. Rev. 23(1), 173–180 (2001).
    [PubMed]
  4. V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, “Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature,” Eur. Urol. 52(5), 1309–1322 (2007).
    [CrossRef] [PubMed]
  5. B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
    [CrossRef] [PubMed]
  6. L. V. Rodríguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160(6 Pt 1), 2115–2120 (1998).
    [PubMed]
  7. F. Rabbani, N. Stroumbakis, B. R. Kava, M. S. Cookson, and W. R. Fair, “Incidence and clinical significance of false-negative sextant prostate biopsies,” J. Urol. 159(4), 1247–1250 (1998).
    [CrossRef] [PubMed]
  8. M. K. Terris, “Sensitivity and specificity of sextant biopsies in the detection of prostate cancer: preliminary report,” Urology 54(3), 486–489 (1999).
    [CrossRef] [PubMed]
  9. Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008).
    [CrossRef] [PubMed]
  10. Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
    [CrossRef] [PubMed]
  11. J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
    [CrossRef] [PubMed]
  12. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev. 18(1), 37–47 (2010).
    [CrossRef]
  13. F. Gao, J. Li, L. Zhang, P. Poulet, H. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt. 49(16), 3163–3172 (2010).
    [CrossRef] [PubMed]
  14. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
    [CrossRef] [PubMed]
  15. J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
    [CrossRef] [PubMed]
  16. J. Boutet, M. Debourdeau, A. Laidevant, L. Herve, and J. Dinten, “Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system,” Proc. SPIE 7548, 75481A, 75481A-8 (2010).
    [CrossRef]
  17. A. Laidevant, A. da Silva, M. Berger, and J. M. Dinten, “Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance,” Appl. Opt. 45(19), 4756–4764 (2006).
    [CrossRef] [PubMed]
  18. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
    [CrossRef] [PubMed]
  19. F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009).
    [CrossRef]
  20. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  21. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
    [CrossRef] [PubMed]
  22. A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46(11), 2131–2137 (2007).
    [CrossRef] [PubMed]
  23. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  24. M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J. 93(8), 2892–2899 (2007).
    [CrossRef] [PubMed]
  25. A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46(11), 2131–2137 (2007).
    [CrossRef] [PubMed]
  26. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009).
    [CrossRef] [PubMed]
  27. S. H. Han, S. Farshchi-Heydari, and D. J. Hall, “Analytical method for the fast time-domain reconstruction of fluorescent inclusions in vitro and in vivo,” Biophys. J. 98(2), 350–357 (2010).
    [CrossRef] [PubMed]
  28. B. Djavan, M. Susani, B. Bursa, A. Basharkhah, R. Simak, and M. Marberger, “Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen,” Tech. Urol. 5(3), 139–142 (1999).
    [CrossRef] [PubMed]
  29. L. Cheng, T. D. Jones, C. X. Pan, A. Barbarin, J. N. Eble, and M. O. Koch, “Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens,” Mod. Pathol. 18(8), 1022–1026 (2005).
    [CrossRef] [PubMed]
  30. A. M. Wise, T. A. Stamey, J. E. McNeal, and J. L. Clayton, “Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens,” Urology 60(2), 264–269 (2002).
    [CrossRef] [PubMed]

2010 (4)

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev. 18(1), 37–47 (2010).
[CrossRef]

F. Gao, J. Li, L. Zhang, P. Poulet, H. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt. 49(16), 3163–3172 (2010).
[CrossRef] [PubMed]

J. Boutet, M. Debourdeau, A. Laidevant, L. Herve, and J. Dinten, “Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system,” Proc. SPIE 7548, 75481A, 75481A-8 (2010).
[CrossRef]

S. H. Han, S. Farshchi-Heydari, and D. J. Hall, “Analytical method for the fast time-domain reconstruction of fluorescent inclusions in vitro and in vivo,” Biophys. J. 98(2), 350–357 (2010).
[CrossRef] [PubMed]

2009 (4)

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009).
[CrossRef] [PubMed]

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009).
[CrossRef]

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
[CrossRef] [PubMed]

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008).
[CrossRef] [PubMed]

2007 (5)

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, “Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature,” Eur. Urol. 52(5), 1309–1322 (2007).
[CrossRef] [PubMed]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46(11), 2131–2137 (2007).
[CrossRef] [PubMed]

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J. 93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46(11), 2131–2137 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

L. Cheng, T. D. Jones, C. X. Pan, A. Barbarin, J. N. Eble, and M. O. Koch, “Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens,” Mod. Pathol. 18(8), 1022–1026 (2005).
[CrossRef] [PubMed]

2002 (1)

A. M. Wise, T. A. Stamey, J. E. McNeal, and J. L. Clayton, “Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens,” Urology 60(2), 264–269 (2002).
[CrossRef] [PubMed]

2001 (2)

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

G. D. Grossfeld and P. R. Carroll, “Prostate cancer early detection: a clinical perspective,” Epidemiol. Rev. 23(1), 173–180 (2001).
[PubMed]

1999 (2)

M. K. Terris, “Sensitivity and specificity of sextant biopsies in the detection of prostate cancer: preliminary report,” Urology 54(3), 486–489 (1999).
[CrossRef] [PubMed]

B. Djavan, M. Susani, B. Bursa, A. Basharkhah, R. Simak, and M. Marberger, “Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen,” Tech. Urol. 5(3), 139–142 (1999).
[CrossRef] [PubMed]

1998 (2)

L. V. Rodríguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160(6 Pt 1), 2115–2120 (1998).
[PubMed]

F. Rabbani, N. Stroumbakis, B. R. Kava, M. S. Cookson, and W. R. Fair, “Incidence and clinical significance of false-negative sextant prostate biopsies,” J. Urol. 159(4), 1247–1250 (1998).
[CrossRef] [PubMed]

1997 (1)

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
[CrossRef] [PubMed]

1996 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

1992 (2)

P. T. Scardino, R. Weaver, and M. A. Hudson, “Early detection of prostate cancer,” Hum. Pathol. 23(3), 211–222 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

1989 (1)

Achilefu, S.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009).
[CrossRef] [PubMed]

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J. 93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Akers, W.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009).
[CrossRef] [PubMed]

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J. 93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Andersson-Engels, S.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

Arridge, S. R.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Barbarin, A.

L. Cheng, T. D. Jones, C. X. Pan, A. Barbarin, J. N. Eble, and M. O. Koch, “Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens,” Mod. Pathol. 18(8), 1022–1026 (2005).
[CrossRef] [PubMed]

Bartels, K. E.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008).
[CrossRef] [PubMed]

Basharkhah, A.

B. Djavan, M. Susani, B. Bursa, A. Basharkhah, R. Simak, and M. Marberger, “Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen,” Tech. Urol. 5(3), 139–142 (1999).
[CrossRef] [PubMed]

Berezin, M. Y.

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J. 93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Berger, M.

Betz, T.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Boccara, A. C.

Boccon-Gibod, L.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

Borkowski, A.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

Bourayou, R.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Boutet, J.

J. Boutet, M. Debourdeau, A. Laidevant, L. Herve, and J. Dinten, “Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system,” Proc. SPIE 7548, 75481A, 75481A-8 (2010).
[CrossRef]

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
[CrossRef] [PubMed]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46(11), 2131–2137 (2007).
[CrossRef] [PubMed]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46(11), 2131–2137 (2007).
[CrossRef] [PubMed]

Bunting, C. F.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008).
[CrossRef] [PubMed]

Bursa, B.

B. Djavan, M. Susani, B. Bursa, A. Basharkhah, R. Simak, and M. Marberger, “Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen,” Tech. Urol. 5(3), 139–142 (1999).
[CrossRef] [PubMed]

Carroll, P. R.

G. D. Grossfeld and P. R. Carroll, “Prostate cancer early detection: a clinical perspective,” Epidemiol. Rev. 23(1), 173–180 (2001).
[PubMed]

Chance, B.

Cheng, L.

L. Cheng, T. D. Jones, C. X. Pan, A. Barbarin, J. N. Eble, and M. O. Koch, “Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens,” Mod. Pathol. 18(8), 1022–1026 (2005).
[CrossRef] [PubMed]

Clayton, J. L.

A. M. Wise, T. A. Stamey, J. E. McNeal, and J. L. Clayton, “Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens,” Urology 60(2), 264–269 (2002).
[CrossRef] [PubMed]

Cookson, M. S.

F. Rabbani, N. Stroumbakis, B. R. Kava, M. S. Cookson, and W. R. Fair, “Incidence and clinical significance of false-negative sextant prostate biopsies,” J. Urol. 159(4), 1247–1250 (1998).
[CrossRef] [PubMed]

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

Culver, J. P.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009).
[CrossRef] [PubMed]

Da Silva, A.

Debourdeau, M.

J. Boutet, M. Debourdeau, A. Laidevant, L. Herve, and J. Dinten, “Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system,” Proc. SPIE 7548, 75481A, 75481A-8 (2010).
[CrossRef]

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
[CrossRef] [PubMed]

Delpy, D. T.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Dinten, J.

J. Boutet, M. Debourdeau, A. Laidevant, L. Herve, and J. Dinten, “Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system,” Proc. SPIE 7548, 75481A, 75481A-8 (2010).
[CrossRef]

Dinten, J. M.

Dirnagl, U.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Djavan, B.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

B. Djavan, M. Susani, B. Bursa, A. Basharkhah, R. Simak, and M. Marberger, “Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen,” Tech. Urol. 5(3), 139–142 (1999).
[CrossRef] [PubMed]

Duboeuf, F.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
[CrossRef] [PubMed]

Eble, J. N.

L. Cheng, T. D. Jones, C. X. Pan, A. Barbarin, J. N. Eble, and M. O. Koch, “Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens,” Mod. Pathol. 18(8), 1022–1026 (2005).
[CrossRef] [PubMed]

Einarsdóttír, M.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

Fair, W. R.

F. Rabbani, N. Stroumbakis, B. R. Kava, M. S. Cookson, and W. R. Fair, “Incidence and clinical significance of false-negative sextant prostate biopsies,” J. Urol. 159(4), 1247–1250 (1998).
[CrossRef] [PubMed]

Farshchi-Heydari, S.

S. H. Han, S. Farshchi-Heydari, and D. J. Hall, “Analytical method for the fast time-domain reconstruction of fluorescent inclusions in vitro and in vivo,” Biophys. J. 98(2), 350–357 (2010).
[CrossRef] [PubMed]

Gao, F.

Goutayer, M.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009).
[CrossRef]

Grossfeld, G. D.

G. D. Grossfeld and P. R. Carroll, “Prostate cancer early detection: a clinical perspective,” Epidemiol. Rev. 23(1), 173–180 (2001).
[PubMed]

Guillermet, S.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009).
[CrossRef]

Guyon, L.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
[CrossRef] [PubMed]

Hall, D. J.

S. H. Han, S. Farshchi-Heydari, and D. J. Hall, “Analytical method for the fast time-domain reconstruction of fluorescent inclusions in vitro and in vivo,” Biophys. J. 98(2), 350–357 (2010).
[CrossRef] [PubMed]

Han, S. H.

S. H. Han, S. Farshchi-Heydari, and D. J. Hall, “Analytical method for the fast time-domain reconstruction of fluorescent inclusions in vitro and in vivo,” Biophys. J. 98(2), 350–357 (2010).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
[CrossRef] [PubMed]

Herve, L.

J. Boutet, M. Debourdeau, A. Laidevant, L. Herve, and J. Dinten, “Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system,” Proc. SPIE 7548, 75481A, 75481A-8 (2010).
[CrossRef]

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
[CrossRef] [PubMed]

Holyoak, G. R.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008).
[CrossRef] [PubMed]

Hruby, S.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

Hudson, M. A.

P. T. Scardino, R. Weaver, and M. A. Hudson, “Early detection of prostate cancer,” Hum. Pathol. 23(3), 211–222 (1992).
[CrossRef] [PubMed]

Jiang, Z.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008).
[CrossRef] [PubMed]

Jones, T. D.

L. Cheng, T. D. Jones, C. X. Pan, A. Barbarin, J. N. Eble, and M. O. Koch, “Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens,” Mod. Pathol. 18(8), 1022–1026 (2005).
[CrossRef] [PubMed]

Josserand, V.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009).
[CrossRef]

Kacprzak, M.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev. 18(1), 37–47 (2010).
[CrossRef]

Kava, B. R.

F. Rabbani, N. Stroumbakis, B. R. Kava, M. S. Cookson, and W. R. Fair, “Incidence and clinical significance of false-negative sextant prostate biopsies,” J. Urol. 159(4), 1247–1250 (1998).
[CrossRef] [PubMed]

Klohs, J.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Koch, M. O.

L. Cheng, T. D. Jones, C. X. Pan, A. Barbarin, J. N. Eble, and M. O. Koch, “Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens,” Mod. Pathol. 18(8), 1022–1026 (2005).
[CrossRef] [PubMed]

Krasinski, J. S.

Laidevant, A.

Lee, H.

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J. 93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Li, J.

Liebert, A.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev. 18(1), 37–47 (2010).
[CrossRef]

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Lindauer, U.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Macdonald, R.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Maniewski, R.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev. 18(1), 37–47 (2010).
[CrossRef]

Marberger, M.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

B. Djavan, M. Susani, B. Bursa, A. Basharkhah, R. Simak, and M. Marberger, “Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen,” Tech. Urol. 5(3), 139–142 (1999).
[CrossRef] [PubMed]

Mazal, P.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

McNeal, J. E.

A. M. Wise, T. A. Stamey, J. E. McNeal, and J. L. Clayton, “Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens,” Urology 60(2), 264–269 (2002).
[CrossRef] [PubMed]

Milej, D.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev. 18(1), 37–47 (2010).
[CrossRef]

Montironi, R.

V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, “Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature,” Eur. Urol. 52(5), 1309–1322 (2007).
[CrossRef] [PubMed]

Montorsi, F.

V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, “Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature,” Eur. Urol. 52(5), 1309–1322 (2007).
[CrossRef] [PubMed]

Navarro, F. P.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009).
[CrossRef]

Nothdurft, R. E.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009).
[CrossRef] [PubMed]

Obrig, H.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Pan, C. X.

L. Cheng, T. D. Jones, C. X. Pan, A. Barbarin, J. N. Eble, and M. O. Koch, “Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens,” Mod. Pathol. 18(8), 1022–1026 (2005).
[CrossRef] [PubMed]

Patterson, M. S.

Patwardhan, S. V.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009).
[CrossRef] [PubMed]

Peltie, P.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
[CrossRef] [PubMed]

Piao, D.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008).
[CrossRef] [PubMed]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

Poulet, P.

Rabbani, F.

F. Rabbani, N. Stroumbakis, B. R. Kava, M. S. Cookson, and W. R. Fair, “Incidence and clinical significance of false-negative sextant prostate biopsies,” J. Urol. 159(4), 1247–1250 (1998).
[CrossRef] [PubMed]

Ravery, V.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

Remzi, M.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

Rigatti, P.

V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, “Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature,” Eur. Urol. 52(5), 1309–1322 (2007).
[CrossRef] [PubMed]

Ritchey, J. W.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008).
[CrossRef] [PubMed]

Rizo, P.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009).
[CrossRef]

Rodríguez, L. V.

L. V. Rodríguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160(6 Pt 1), 2115–2120 (1998).
[PubMed]

Saroul, L.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
[CrossRef] [PubMed]

Sawosz, P.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev. 18(1), 37–47 (2010).
[CrossRef]

Scardino, P. T.

P. T. Scardino, R. Weaver, and M. A. Hudson, “Early detection of prostate cancer,” Hum. Pathol. 23(3), 211–222 (1992).
[CrossRef] [PubMed]

Scattoni, V.

V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, “Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature,” Eur. Urol. 52(5), 1309–1322 (2007).
[CrossRef] [PubMed]

Schulman, C.

V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, “Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature,” Eur. Urol. 52(5), 1309–1322 (2007).
[CrossRef] [PubMed]

Schulman, C. C.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

Simak, R.

B. Djavan, M. Susani, B. Bursa, A. Basharkhah, R. Simak, and M. Marberger, “Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen,” Tech. Urol. 5(3), 139–142 (1999).
[CrossRef] [PubMed]

Slobodov, G.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008).
[CrossRef] [PubMed]

Stamey, T. A.

A. M. Wise, T. A. Stamey, J. E. McNeal, and J. L. Clayton, “Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens,” Urology 60(2), 264–269 (2002).
[CrossRef] [PubMed]

Steinbrink, J.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Stroumbakis, N.

F. Rabbani, N. Stroumbakis, B. R. Kava, M. S. Cookson, and W. R. Fair, “Incidence and clinical significance of false-negative sextant prostate biopsies,” J. Urol. 159(4), 1247–1250 (1998).
[CrossRef] [PubMed]

Susani, M.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

B. Djavan, M. Susani, B. Bursa, A. Basharkhah, R. Simak, and M. Marberger, “Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen,” Tech. Urol. 5(3), 139–142 (1999).
[CrossRef] [PubMed]

Svanberg, K.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

Svensson, T.

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

Terris, M. K.

M. K. Terris, “Sensitivity and specificity of sextant biopsies in the detection of prostate cancer: preliminary report,” Urology 54(3), 486–489 (1999).
[CrossRef] [PubMed]

L. V. Rodríguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160(6 Pt 1), 2115–2120 (1998).
[PubMed]

Texier, I.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009).
[CrossRef]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

Villringer, A.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Vinet, F.

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009).
[CrossRef]

Vray, D.

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
[CrossRef] [PubMed]

Wabnitz, H.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Wammack, R.

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

Weaver, R.

P. T. Scardino, R. Weaver, and M. A. Hudson, “Early detection of prostate cancer,” Hum. Pathol. 23(3), 211–222 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Wise, A. M.

A. M. Wise, T. A. Stamey, J. E. McNeal, and J. L. Clayton, “Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens,” Urology 60(2), 264–269 (2002).
[CrossRef] [PubMed]

Wunder, A.

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Xu, G.

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
[CrossRef] [PubMed]

Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008).
[CrossRef] [PubMed]

Yamada, Y.

Ye, Y.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009).
[CrossRef] [PubMed]

Zhang, L.

Zhao, H.

Zlotta, A.

V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, “Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature,” Eur. Urol. 52(5), 1309–1322 (2007).
[CrossRef] [PubMed]

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

Zolek, N.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev. 18(1), 37–47 (2010).
[CrossRef]

Appl. Opt. (5)

Biophys. J. (2)

S. H. Han, S. Farshchi-Heydari, and D. J. Hall, “Analytical method for the fast time-domain reconstruction of fluorescent inclusions in vitro and in vivo,” Biophys. J. 98(2), 350–357 (2010).
[CrossRef] [PubMed]

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J. 93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Epidemiol. Rev. (1)

G. D. Grossfeld and P. R. Carroll, “Prostate cancer early detection: a clinical perspective,” Epidemiol. Rev. 23(1), 173–180 (2001).
[PubMed]

Eur. Urol. (1)

V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, “Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature,” Eur. Urol. 52(5), 1309–1322 (2007).
[CrossRef] [PubMed]

Hum. Pathol. (1)

P. T. Scardino, R. Weaver, and M. A. Hudson, “Early detection of prostate cancer,” Hum. Pathol. 23(3), 211–222 (1992).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009).
[CrossRef] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009).
[CrossRef] [PubMed]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009).
[CrossRef] [PubMed]

J. Urol. (2)

L. V. Rodríguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160(6 Pt 1), 2115–2120 (1998).
[PubMed]

F. Rabbani, N. Stroumbakis, B. R. Kava, M. S. Cookson, and W. R. Fair, “Incidence and clinical significance of false-negative sextant prostate biopsies,” J. Urol. 159(4), 1247–1250 (1998).
[CrossRef] [PubMed]

Med. Phys. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

Mod. Pathol. (1)

L. Cheng, T. D. Jones, C. X. Pan, A. Barbarin, J. N. Eble, and M. O. Koch, “Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens,” Mod. Pathol. 18(8), 1022–1026 (2005).
[CrossRef] [PubMed]

Neurodegener. Dis. (1)

J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opto-Electron. Rev. (1)

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev. 18(1), 37–47 (2010).
[CrossRef]

Phys. Med. Biol. (2)

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Proc. SPIE (2)

F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009).
[CrossRef]

J. Boutet, M. Debourdeau, A. Laidevant, L. Herve, and J. Dinten, “Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system,” Proc. SPIE 7548, 75481A, 75481A-8 (2010).
[CrossRef]

Prostate (1)

B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001).
[CrossRef] [PubMed]

Tech. Urol. (1)

B. Djavan, M. Susani, B. Bursa, A. Basharkhah, R. Simak, and M. Marberger, “Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen,” Tech. Urol. 5(3), 139–142 (1999).
[CrossRef] [PubMed]

Urology (2)

A. M. Wise, T. A. Stamey, J. E. McNeal, and J. L. Clayton, “Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens,” Urology 60(2), 264–269 (2002).
[CrossRef] [PubMed]

M. K. Terris, “Sensitivity and specificity of sextant biopsies in the detection of prostate cancer: preliminary report,” Urology 54(3), 486–489 (1999).
[CrossRef] [PubMed]

Other (1)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the experimental setup.

Fig. 2
Fig. 2

(a) Optical fibers configuration at the end of the probe (b) Position of the probe and axis representation (the basis is clockwise).

Fig. 3
Fig. 3

Results of the reconstruction (diamonds) for different true depths of the inclusion under the probe (square). The real locations of the inclusion are represented with squares, from 14 to 26 mm with a 3 mm step. (a) in the (y,z) plane (b) z calculated as a function of z true.

Fig. 4
Fig. 4

Results of the reconstruction (diamonds) for different lateral positions of the inclusion (constant depth). The inclusion was moved perpendicularly to the lines of sources and detectors. The real locations of the inclusion are represented with squares, from −0.8 to 0.8 mm with a 4 mm step. (a) in the (x,y) plane (b) x calculated as a function of x true.

Fig. 5
Fig. 5

Results of the reconstruction (diamonds) for different lateral positions of the inclusion (constant depth). The inclusion was moved parallel to the lines of sources and detectors. The real locations of the inclusion are represented with squares, from −0.8 to 0.8 mm with a 4 mm step. (a) in the (x,y) plane (b) y calculated as a function of y true.

Fig. 6
Fig. 6

Calculated depth (z) as a function of theoretical depth (a) for different absorption coefficients around μ a = 0.3 cm−1 ± 10% and ± 20% (b) for different diffusion coefficients around μ s ' = 12 cm−1 ± 10% and ± 20%.

Fig. 7
Fig. 7

Calculated depth (z) as a function of theoretical depth for different lifetime around τ = 0.55 ns ± 10% and ± 20%.

Tables (1)

Tables Icon

Table 1 The median, the standard deviation and the maximum absolute deviation from the residual of the reconstructed values for x, y and z, for the three displacements

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

1 c G s ( r , t ) t ( D ( r ) G s ( r , t ) ) + μ a ( r ) ​  G s ( r , t ) = δ ( r r s , t )
f ( n ) = + f ( t ) t n d t
( D G s ( n ) ) + μ a G s ( n ) = δ ( r r s , n ) + n G s ( n 1 ) c
U s d x ( t ) = I R F s d ( t ) U ^ s d x ( t )      = I R F s d ( t ) G s ( r d , t )
U s d m ( t ) = I R F s d ( t ) U ^ s d m ( t )               = I R F s d ( t ) ( Ω G s ( r , t ) F ( r , t ) G d ( r , t ) d r )
I ( S s d ) = I ( U s d m ) I ( U s d x ) = I ( U ^ s d m ) I ( U ^ s d x )
t ( S s d ) = t ( U s d m ) t ( U s d x ) = t ( U ^ s d m ) t ( U ^ s d x )
I s d , m = I ( U ^ s d m ) I ( U ^ s d x ) = G s ( 0 ) ( r m ) . F m . G d ( 0 ) ( r m ) G s ( 0 ) ( r d )
t s d , m = t ( U ^ s d m ) t ( U ^ s d x ) = G s ( 1 ) ( r m ) G s ( 0 ) ( r m ) + τ + G d ( 1 ) ( r m ) G d ( 0 ) ( r m ) G s ( 1 ) ( r d ) G s ( 0 ) ( r d )
F m ( r m ) = arg ( min ( χ 1 m 2 ) )
χ 1 m 2 = s , d ( I ( S s d ) I ( S ^ s d ) ) 2 var ( I ( S s d ) )
χ 2 m 2 = 1 2 s , d ( I ( S s d ) I ( S ^ s d ) ) 2 var ( I ( S s d ) ) + 1 2 s , d ( t ( S s d ) t ( S ^ s d ) ) 2 var ( t ( S s d ) )
r i = calculated  v a l u e  true  v a l u e
δ m e d = median ( | r i | )
δ r m s = 1 N i = 1 N r i 2
δ max = max ( | r i | )

Metrics