Abstract

Light sheet microscopy became a powerful tool in life sciences. Often, however, the sheet geometry is fixed, whereas it would be advantageous to adjust the sheet geometry to specimens of different dimensions. Therefore we developed an afocal cylindrical zoom lens system comprising only 5 lenses and a total system length of less than 160 mm. Two movable optical elements were directly coupled, so that the zoom factor could be adjusted from 1x to 6.3x by a single motor. Using two different illumination objectives we achieved a light sheet thickness ranging from 2.4 µm to 36 µm corresponding to lateral fields of 54 µm to 12.3 mm, respectively. Polytene chromosomes of salivary gland cell nuclei of C.tentans larvae were imaged in vivo to demonstrate the advantages in image contrast by imaging with different light sheet dimensions.

© OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J 2(3), 143–155 (2008).
    [CrossRef] [PubMed]
  2. E. G. Reynaud, U. Krzic, K. Greger, and E. H. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
    [CrossRef] [PubMed]
  3. J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
    [CrossRef] [PubMed]
  4. N. Jährling, K. Becker, C. Schönbauer, F. Schnorrer, and H. U. Dodt, “Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy,” Front Syst Neurosci 4, 1 (2010).
    [PubMed]
  5. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
    [CrossRef] [PubMed]
  6. J. A. Buytaert and J. J. Dirckx, “Tomographic imaging of macroscopic biomedical objects in high resolution and three dimensions using orthogonal-plane fluorescence optical sectioning,” Appl. Opt. 48(5), 941–948 (2009).
    [CrossRef] [PubMed]
  7. J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
    [CrossRef] [PubMed]
  8. S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7(6), 418–419 (2010).
    [CrossRef] [PubMed]
  9. E. G. Reynaud and P. Tomancak, “Meeting report: first light sheet based fluorescence microscopy workshop,” Biotechnol. J. 5(8), 798–804 (2010).
    [CrossRef] [PubMed]
  10. T. Wohland, X. Shi, J. Sankaran, and E. H. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express 18(10), 10627–10641 (2010).
    [CrossRef] [PubMed]
  11. S. Saghafi, K. Becker, N. Jährling, M. Richter, E. R. Kramer, and H. U. Dodt, “Image enhancement in ultramicroscopy by improved laser light sheets,” J Biophotonics 3(10-11), 686–695 (2010).
    [CrossRef] [PubMed]
  12. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 2007).
  13. H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
    [CrossRef] [PubMed]
  14. J Winterot, P. Huettel, “Microscope with an afocal zoom system,” EP1544653A1 (2005).
  15. L. Wieslander, “The Balbiani ring multigene family: coding repetitive sequences and evolution of a tissue-specific cell function,” Prog. Nucleic Acid Res. Mol. Biol. 48, 275–313 (1994).
    [CrossRef] [PubMed]
  16. E. Wurtz-T, G. Kiseleva, A. Nacheva, A. Alzhanova-Ericcson, Rosén, and B. Daneholt, “Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles,” Mol. Cell. Biol. 16(4), 1425–1435 (1996).
    [PubMed]
  17. J. Huisken and D. Y. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
    [CrossRef] [PubMed]
  18. B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with combined wavelet--Fourier filtering,” Opt. Express 17(10), 8567–8591 (2009).
    [CrossRef] [PubMed]
  19. S. Kalchmair, N. Jährling, K. Becker, and H. U. Dodt, “Image contrast enhancement in confocal ultramicroscopy,” Opt. Lett. 35(1), 79–81 (2010).
    [CrossRef] [PubMed]
  20. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
    [CrossRef] [PubMed]
  21. X. Wang, T. Wohland, and V. Korzh, “Developing in vivo biophysics by fishing for single molecules,” Dev. Biol. 347(1), 1–8 (2010).
    [CrossRef] [PubMed]
  22. J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16(10), 7142–7152 (2008).
    [CrossRef] [PubMed]

2010 (9)

N. Jährling, K. Becker, C. Schönbauer, F. Schnorrer, and H. U. Dodt, “Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy,” Front Syst Neurosci 4, 1 (2010).
[PubMed]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[CrossRef] [PubMed]

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7(6), 418–419 (2010).
[CrossRef] [PubMed]

E. G. Reynaud and P. Tomancak, “Meeting report: first light sheet based fluorescence microscopy workshop,” Biotechnol. J. 5(8), 798–804 (2010).
[CrossRef] [PubMed]

S. Saghafi, K. Becker, N. Jährling, M. Richter, E. R. Kramer, and H. U. Dodt, “Image enhancement in ultramicroscopy by improved laser light sheets,” J Biophotonics 3(10-11), 686–695 (2010).
[CrossRef] [PubMed]

X. Wang, T. Wohland, and V. Korzh, “Developing in vivo biophysics by fishing for single molecules,” Dev. Biol. 347(1), 1–8 (2010).
[CrossRef] [PubMed]

S. Kalchmair, N. Jährling, K. Becker, and H. U. Dodt, “Image contrast enhancement in confocal ultramicroscopy,” Opt. Lett. 35(1), 79–81 (2010).
[CrossRef] [PubMed]

T. Wohland, X. Shi, J. Sankaran, and E. H. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express 18(10), 10627–10641 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (4)

J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J 2(3), 143–155 (2008).
[CrossRef] [PubMed]

E. G. Reynaud, U. Krzic, K. Greger, and E. H. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16(10), 7142–7152 (2008).
[CrossRef] [PubMed]

2007 (2)

J. Huisken and D. Y. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
[CrossRef] [PubMed]

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

1996 (1)

E. Wurtz-T, G. Kiseleva, A. Nacheva, A. Alzhanova-Ericcson, Rosén, and B. Daneholt, “Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles,” Mol. Cell. Biol. 16(4), 1425–1435 (1996).
[PubMed]

1994 (1)

L. Wieslander, “The Balbiani ring multigene family: coding repetitive sequences and evolution of a tissue-specific cell function,” Prog. Nucleic Acid Res. Mol. Biol. 48, 275–313 (1994).
[CrossRef] [PubMed]

Alzhanova-Ericcson, A.

E. Wurtz-T, G. Kiseleva, A. Nacheva, A. Alzhanova-Ericcson, Rosén, and B. Daneholt, “Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles,” Mol. Cell. Biol. 16(4), 1425–1435 (1996).
[PubMed]

Bao, Z.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[CrossRef] [PubMed]

Becker, K.

N. Jährling, K. Becker, C. Schönbauer, F. Schnorrer, and H. U. Dodt, “Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy,” Front Syst Neurosci 4, 1 (2010).
[PubMed]

S. Saghafi, K. Becker, N. Jährling, M. Richter, E. R. Kramer, and H. U. Dodt, “Image enhancement in ultramicroscopy by improved laser light sheets,” J Biophotonics 3(10-11), 686–695 (2010).
[CrossRef] [PubMed]

S. Kalchmair, N. Jährling, K. Becker, and H. U. Dodt, “Image contrast enhancement in confocal ultramicroscopy,” Opt. Lett. 35(1), 79–81 (2010).
[CrossRef] [PubMed]

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Buytaert, J. A.

Daneholt, B.

E. Wurtz-T, G. Kiseleva, A. Nacheva, A. Alzhanova-Ericcson, Rosén, and B. Daneholt, “Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles,” Mol. Cell. Biol. 16(4), 1425–1435 (1996).
[PubMed]

Deininger, K.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Deussing, J. M.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Dirckx, J. J.

Dodt, H. U.

N. Jährling, K. Becker, C. Schönbauer, F. Schnorrer, and H. U. Dodt, “Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy,” Front Syst Neurosci 4, 1 (2010).
[PubMed]

S. Saghafi, K. Becker, N. Jährling, M. Richter, E. R. Kramer, and H. U. Dodt, “Image enhancement in ultramicroscopy by improved laser light sheets,” J Biophotonics 3(10-11), 686–695 (2010).
[CrossRef] [PubMed]

S. Kalchmair, N. Jährling, K. Becker, and H. U. Dodt, “Image contrast enhancement in confocal ultramicroscopy,” Opt. Lett. 35(1), 79–81 (2010).
[CrossRef] [PubMed]

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Eder, M.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J 2(3), 143–155 (2008).
[CrossRef] [PubMed]

Greger, K.

E. G. Reynaud, U. Krzic, K. Greger, and E. H. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef] [PubMed]

Huisken, J.

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

J. Huisken and D. Y. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
[CrossRef] [PubMed]

Jährling, N.

N. Jährling, K. Becker, C. Schönbauer, F. Schnorrer, and H. U. Dodt, “Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy,” Front Syst Neurosci 4, 1 (2010).
[PubMed]

S. Saghafi, K. Becker, N. Jährling, M. Richter, E. R. Kramer, and H. U. Dodt, “Image enhancement in ultramicroscopy by improved laser light sheets,” J Biophotonics 3(10-11), 686–695 (2010).
[CrossRef] [PubMed]

S. Kalchmair, N. Jährling, K. Becker, and H. U. Dodt, “Image contrast enhancement in confocal ultramicroscopy,” Opt. Lett. 35(1), 79–81 (2010).
[CrossRef] [PubMed]

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Kalchmair, S.

Keller, P. J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

Khairy, K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[CrossRef] [PubMed]

Kiseleva, G.

E. Wurtz-T, G. Kiseleva, A. Nacheva, A. Alzhanova-Ericcson, Rosén, and B. Daneholt, “Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles,” Mol. Cell. Biol. 16(4), 1425–1435 (1996).
[PubMed]

Korzh, V.

X. Wang, T. Wohland, and V. Korzh, “Developing in vivo biophysics by fishing for single molecules,” Dev. Biol. 347(1), 1–8 (2010).
[CrossRef] [PubMed]

Kramer, E. R.

S. Saghafi, K. Becker, N. Jährling, M. Richter, E. R. Kramer, and H. U. Dodt, “Image enhancement in ultramicroscopy by improved laser light sheets,” J Biophotonics 3(10-11), 686–695 (2010).
[CrossRef] [PubMed]

Krzic, U.

E. G. Reynaud, U. Krzic, K. Greger, and E. H. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef] [PubMed]

Kubitscheck, U.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16(10), 7142–7152 (2008).
[CrossRef] [PubMed]

Leischner, U.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Liebling, M.

J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J 2(3), 143–155 (2008).
[CrossRef] [PubMed]

Marone, F.

Mauch, C. P.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Münch, B.

Nacheva, A.

E. Wurtz-T, G. Kiseleva, A. Nacheva, A. Alzhanova-Ericcson, Rosén, and B. Daneholt, “Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles,” Mol. Cell. Biol. 16(4), 1425–1435 (1996).
[PubMed]

Preibisch, S.

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7(6), 418–419 (2010).
[CrossRef] [PubMed]

Reynaud, E. G.

E. G. Reynaud and P. Tomancak, “Meeting report: first light sheet based fluorescence microscopy workshop,” Biotechnol. J. 5(8), 798–804 (2010).
[CrossRef] [PubMed]

E. G. Reynaud, U. Krzic, K. Greger, and E. H. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef] [PubMed]

Richter, M.

S. Saghafi, K. Becker, N. Jährling, M. Richter, E. R. Kramer, and H. U. Dodt, “Image enhancement in ultramicroscopy by improved laser light sheets,” J Biophotonics 3(10-11), 686–695 (2010).
[CrossRef] [PubMed]

Ritter, J. G.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16(10), 7142–7152 (2008).
[CrossRef] [PubMed]

Rosén,

E. Wurtz-T, G. Kiseleva, A. Nacheva, A. Alzhanova-Ericcson, Rosén, and B. Daneholt, “Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles,” Mol. Cell. Biol. 16(4), 1425–1435 (1996).
[PubMed]

Saalfeld, S.

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7(6), 418–419 (2010).
[CrossRef] [PubMed]

Saghafi, S.

S. Saghafi, K. Becker, N. Jährling, M. Richter, E. R. Kramer, and H. U. Dodt, “Image enhancement in ultramicroscopy by improved laser light sheets,” J Biophotonics 3(10-11), 686–695 (2010).
[CrossRef] [PubMed]

Sankaran, J.

Santella, A.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[CrossRef] [PubMed]

Schierloh, A.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Schindelin, J.

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7(6), 418–419 (2010).
[CrossRef] [PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

Schnorrer, F.

N. Jährling, K. Becker, C. Schönbauer, F. Schnorrer, and H. U. Dodt, “Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy,” Front Syst Neurosci 4, 1 (2010).
[PubMed]

Schönbauer, C.

N. Jährling, K. Becker, C. Schönbauer, F. Schnorrer, and H. U. Dodt, “Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy,” Front Syst Neurosci 4, 1 (2010).
[PubMed]

Shi, X.

Siebrasse, J. P.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16(10), 7142–7152 (2008).
[CrossRef] [PubMed]

Stainier, D. Y.

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

J. Huisken and D. Y. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
[CrossRef] [PubMed]

Stampanoni, M.

Stelzer, E. H.

T. Wohland, X. Shi, J. Sankaran, and E. H. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express 18(10), 10627–10641 (2010).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

E. G. Reynaud, U. Krzic, K. Greger, and E. H. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef] [PubMed]

Tomancak, P.

E. G. Reynaud and P. Tomancak, “Meeting report: first light sheet based fluorescence microscopy workshop,” Biotechnol. J. 5(8), 798–804 (2010).
[CrossRef] [PubMed]

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7(6), 418–419 (2010).
[CrossRef] [PubMed]

Trtik, P.

Veenendaal, A.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

Veith, R.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16(10), 7142–7152 (2008).
[CrossRef] [PubMed]

Vermot, J.

J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J 2(3), 143–155 (2008).
[CrossRef] [PubMed]

Wang, X.

X. Wang, T. Wohland, and V. Korzh, “Developing in vivo biophysics by fishing for single molecules,” Dev. Biol. 347(1), 1–8 (2010).
[CrossRef] [PubMed]

Wieslander, L.

L. Wieslander, “The Balbiani ring multigene family: coding repetitive sequences and evolution of a tissue-specific cell function,” Prog. Nucleic Acid Res. Mol. Biol. 48, 275–313 (1994).
[CrossRef] [PubMed]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

Wohland, T.

Wurtz-T, E.

E. Wurtz-T, G. Kiseleva, A. Nacheva, A. Alzhanova-Ericcson, Rosén, and B. Daneholt, “Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles,” Mol. Cell. Biol. 16(4), 1425–1435 (1996).
[PubMed]

Zieglgänsberger, W.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biotechnol. J. (1)

E. G. Reynaud and P. Tomancak, “Meeting report: first light sheet based fluorescence microscopy workshop,” Biotechnol. J. 5(8), 798–804 (2010).
[CrossRef] [PubMed]

Dev. Biol. (1)

X. Wang, T. Wohland, and V. Korzh, “Developing in vivo biophysics by fishing for single molecules,” Dev. Biol. 347(1), 1–8 (2010).
[CrossRef] [PubMed]

Development (1)

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

Front Syst Neurosci (1)

N. Jährling, K. Becker, C. Schönbauer, F. Schnorrer, and H. U. Dodt, “Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy,” Front Syst Neurosci 4, 1 (2010).
[PubMed]

HFSP J (2)

J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J 2(3), 143–155 (2008).
[CrossRef] [PubMed]

E. G. Reynaud, U. Krzic, K. Greger, and E. H. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef] [PubMed]

J Biophotonics (1)

S. Saghafi, K. Becker, N. Jährling, M. Richter, E. R. Kramer, and H. U. Dodt, “Image enhancement in ultramicroscopy by improved laser light sheets,” J Biophotonics 3(10-11), 686–695 (2010).
[CrossRef] [PubMed]

Mol. Cell. Biol. (1)

E. Wurtz-T, G. Kiseleva, A. Nacheva, A. Alzhanova-Ericcson, Rosén, and B. Daneholt, “Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles,” Mol. Cell. Biol. 16(4), 1425–1435 (1996).
[PubMed]

Nat. Methods (3)

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods 7(6), 418–419 (2010).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

PLoS ONE (1)

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[CrossRef] [PubMed]

Prog. Nucleic Acid Res. Mol. Biol. (1)

L. Wieslander, “The Balbiani ring multigene family: coding repetitive sequences and evolution of a tissue-specific cell function,” Prog. Nucleic Acid Res. Mol. Biol. 48, 275–313 (1994).
[CrossRef] [PubMed]

Science (1)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

Other (2)

J Winterot, P. Huettel, “Microscope with an afocal zoom system,” EP1544653A1 (2005).

B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Light sheet microscope setup. Laser light (L1 - L3) was guided into the illumination beam path via dichroic beam splitters (D1 and D2), an optical fiber and mirrors. Laser wavelength and intensity was controlled by an acousto-optical-tunable-filter (AOTF). The two achromatic lenses L1 and L2 (f = 30 mm) and the pinhole P formed a spatial filter. The cylindrical zoom unit consisted of five lenses (C1 - C5). A further cylindrical lens (C6) oriented perpendicular to the zoom lens unit focused the beam into the back-focal-plane of the illumination objective, which focused the light sheet into the sample chamber. A vertical slit (VS) was used to control the width of the light sheet. The sample could be moved by a three-axis motorized sample scanner and the illumination objective was motorized along the optical axis. The detection unit comprised the detection objective, small bandwidth notch filters (NF), tube lens (T) and CCD-camera.

Fig. 2
Fig. 2

Cylindrical zoom beam expander. The configurations for a large zoom (a) and a small zoom (b) are shown. For a large zoom the beam diameter incident at the illumination objective is large in z-direction and hence the optical sectioning thickness is decreased compared to a small zoom. Lenses C2 and C4 are coupled and mounted together on a micrometer stage (not shown), so that a single motion readjusts the zoom factor. (c, top view) The incident beam diameter along y-direction is limited by a vertical slit aperture (VS), which defines the lateral width of the light sheet. The beam is focused into the back-focal-plane (BF) of the illumination objective by cylindrical lens C6. Exemplary images of the produced light sheets were shown on the right hand side (see section 2.3).

Fig. 3
Fig. 3

Measured zoom range of the cylindrical zoom lens and corresponding light sheet thickness. (a) Beam cross section behind the zoom unit Scale bar 100 µm. (b) Intensity profile along the central horizontal pixel line in the intensity profile shown in (a). The red line shows the Gaussian fit to the measured data. (c) The zoom factor was calculated for different stage positions of the movable zoom lenses by comparing output to input beam diameter. Standard deviation, 3% (error bars). The red line shows the expected result obtained by ray tracing calculations. (d) Measured optical sectioning thickness for an achromatic NA 0.28 (blue squares) and an NA 0.11 (full red dots) illumination objective lens. Standard deviation, 5% (error bars).

Fig. 4
Fig. 4

Live imaging with different zoom configurations. Polytene chromosomes of C. tentans larvae salivary gland cell nuclei imaged at different zoom factors. (a) Overview image at zoom 1.0x of the complete nucleus to locate the fluorescently labeled polytene chromosomes. Scale bar, 20 µm. (b) Intensity plots along the yellow lines in (c) and (d) demonstrated the improved contrast for a higher zoom factor yielding a smaller optical sectioning thickness. (c) and (d) Magnified views of the marked region in (a) at different zoom factors. The FWHM optical sectioning thickness along z was indicated above the images. The field-of-view in (d) was limited in comparison to (a) and (c), but the image contrast was increased revealing structures, which were hidden before. The typical band structures of the polytene chromosomes as well as the Balbiani Ring transcription site (yellow arrow) became well discernible. Scale bar 10 µm. Images were taken with 20x, 0.5 NA Nikon CFI Planfluor and imaged by a iXon EMCCD-camera with a 2.5x magnifier resulting in an effective pixel size of 320 nm.

Tables (2)

Tables Icon

Table 1 Cylindrical lenses of the zoom unit

Tables Icon

Table 2 Lens to lens distance for three different zoom factors

Metrics