Abstract

Reconstruction algorithms are presented for two-step solutions of the bioluminescence tomography (BLT) and the fluorescence tomography (FT) problems. In the first step, a continuous wave (cw) diffuse optical tomography (DOT) algorithm is used to reconstruct the tissue optical properties assuming known anatomical information provided by x-ray computed tomography or other methods. Minimization problems are formed based on L1 norm objective functions, where normalized values for the light fluence rates and the corresponding Green’s functions are used. Then an iterative minimization solution shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. Throughout this process the permissible region shrinks from the entire object to just a few points. The optimum reconstructed bioluminescence and fluorescence distributions are chosen to be the results of the iteration corresponding to the permissible region where the objective function has its global minimum This provides efficient BLT and FT reconstruction algorithms without the need for a priori information about the bioluminescence sources or the fluorophore concentration. Multiple small sources and large distributed sources can be reconstructed with good accuracy for the location and the total source power for BLT and the total number of fluorophore molecules for the FT. For non-uniform distributed sources, the size and magnitude become degenerate due to the degrees of freedom available for possible solutions. However, increasing the number of data points by increasing the number of excitation sources can improve the accuracy of reconstruction for non-uniform fluorophore distributions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
    [CrossRef] [PubMed]
  2. R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219(2), 316–333 (2001).
    [PubMed]
  3. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
    [CrossRef] [PubMed]
  4. J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
    [CrossRef] [PubMed]
  5. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4(1), 235–260 (2002).
    [CrossRef] [PubMed]
  6. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007).
    [CrossRef] [PubMed]
  7. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004).
    [CrossRef] [PubMed]
  8. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
    [CrossRef] [PubMed]
  9. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921–3942 (2008).
    [CrossRef] [PubMed]
  10. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31(3), 365–367 (2006).
    [CrossRef] [PubMed]
  11. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005).
    [CrossRef] [PubMed]
  12. X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010).
    [CrossRef] [PubMed]
  13. H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010).
    [CrossRef]
  14. J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008).
    [CrossRef] [PubMed]
  15. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17(10), 8062–8080 (2009).
    [CrossRef] [PubMed]
  16. P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt. 46(10), 1679–1685 (2007).
    [CrossRef] [PubMed]
  17. N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15(21), 13695–13708 (2007).
    [CrossRef] [PubMed]
  18. M. A. Naser and M. S. Patterson, “Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties,” Biomed. Opt. Express 1(2), 512–526 (2010).
    [CrossRef]
  19. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
    [CrossRef] [PubMed]
  20. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
    [CrossRef] [PubMed]
  21. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37(22), 5337–5343 (1998).
    [CrossRef] [PubMed]
  22. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).
    [CrossRef] [PubMed]
  23. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, “Three-dimensional bioluminescence tomography with model-based reconstruction,” Opt. Express 12(17), 3996–4000 (2004).
    [CrossRef] [PubMed]
  24. N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).
    [CrossRef] [PubMed]
  25. D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantification of bioluminescence images of point source objects using diffusion theory models,” Phys. Med. Biol. 51(15), 3733–3746 (2006).
    [CrossRef] [PubMed]
  26. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
    [CrossRef] [PubMed]
  27. Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47(12), 2011–2016 (2008).
    [CrossRef] [PubMed]
  28. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
    [CrossRef] [PubMed]
  29. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42(16), 3081–3094 (2003).
    [CrossRef] [PubMed]
  30. M. Guven, B. Yazici, and V. Ntziachristos, “Fluorescence diffuse optical image reconstruction with a priori information,” Proc. SPIE 6431, 643107, 643107-15 (2007).
    [CrossRef]
  31. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
    [CrossRef] [PubMed]
  32. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007).
    [CrossRef] [PubMed]
  33. Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
    [CrossRef] [PubMed]
  34. A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
    [CrossRef] [PubMed]
  35. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 022 (1999).
    [CrossRef]
  36. A. D. Klose, “Transport-theory-based stochastic image reconstruction of bioluminescence sources,” J. Opt. Soc. Am. A 24(6), 1601–1608 (2007).
    [CrossRef]
  37. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6): 711–732 (0.2008).
  38. L. J. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics, (IEEE Press, New York, 1998).
  39. L. Cao, M. Breithaupt, and J. Peter, “Geometrical co-calibration of a tomographic optical system with CT for intrinsically co-registered imaging,” Phys. Med. Biol. 55(6), 1591–1606 (2010).
    [CrossRef] [PubMed]
  40. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
    [CrossRef] [PubMed]
  41. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51(8), 2045–2053 (2006).
    [CrossRef] [PubMed]
  42. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
    [CrossRef] [PubMed]
  43. S. A. Prahl, http://omlc.ogi.edu/spectra/index.html (Oregon Medical Laser Clinic) (2001).

2010 (5)

X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010).
[CrossRef] [PubMed]

H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010).
[CrossRef]

L. Cao, M. Breithaupt, and J. Peter, “Geometrical co-calibration of a tomographic optical system with CT for intrinsically co-registered imaging,” Phys. Med. Biol. 55(6), 1591–1606 (2010).
[CrossRef] [PubMed]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

M. A. Naser and M. S. Patterson, “Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties,” Biomed. Opt. Express 1(2), 512–526 (2010).
[CrossRef]

2009 (2)

2008 (6)

Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47(12), 2011–2016 (2008).
[CrossRef] [PubMed]

J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008).
[CrossRef] [PubMed]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[CrossRef] [PubMed]

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921–3942 (2008).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

2007 (8)

M. Guven, B. Yazici, and V. Ntziachristos, “Fluorescence diffuse optical image reconstruction with a priori information,” Proc. SPIE 6431, 643107, 643107-15 (2007).
[CrossRef]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt. 46(10), 1679–1685 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

A. D. Klose, “Transport-theory-based stochastic image reconstruction of bioluminescence sources,” J. Opt. Soc. Am. A 24(6), 1601–1608 (2007).
[CrossRef]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15(21), 13695–13708 (2007).
[CrossRef] [PubMed]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007).
[CrossRef] [PubMed]

2006 (4)

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31(3), 365–367 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51(8), 2045–2053 (2006).
[CrossRef] [PubMed]

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).
[CrossRef] [PubMed]

D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantification of bioluminescence images of point source objects using diffusion theory models,” Phys. Med. Biol. 51(15), 3733–3746 (2006).
[CrossRef] [PubMed]

2005 (4)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005).
[CrossRef] [PubMed]

2004 (3)

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

X. Gu, Q. Zhang, L. Larcom, and H. Jiang, “Three-dimensional bioluminescence tomography with model-based reconstruction,” Opt. Express 12(17), 3996–4000 (2004).
[CrossRef] [PubMed]

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4(1), 235–260 (2002).
[CrossRef] [PubMed]

2001 (1)

R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219(2), 316–333 (2001).
[PubMed]

1999 (2)

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 022 (1999).
[CrossRef]

1998 (1)

1995 (1)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Adibi, A.

Ahn, S.

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921–3942 (2008).
[CrossRef] [PubMed]

Ale, A.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51(8), 2045–2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Antich, P. P.

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 022 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Bachmann, M. H.

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4(1), 235–260 (2002).
[CrossRef] [PubMed]

Bading, J. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Bai, J.

Bao, S.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

Berger, M.

Boas, D. A.

Bouman, C. A.

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921–3942 (2008).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

Boutet, J.

Breithaupt, M.

L. Cao, M. Breithaupt, and J. Peter, “Geometrical co-calibration of a tomographic optical system with CT for intrinsically co-registered imaging,” Phys. Med. Biol. 55(6), 1591–1606 (2010).
[CrossRef] [PubMed]

Cao, L.

L. Cao, M. Breithaupt, and J. Peter, “Geometrical co-calibration of a tomographic optical system with CT for intrinsically co-registered imaging,” Phys. Med. Biol. 55(6), 1591–1606 (2010).
[CrossRef] [PubMed]

Cao, N.

Chan, T. F.

Chatziioannou, A. F.

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17(10), 8062–8080 (2009).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51(8), 2045–2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Chaudhari, A. J.

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921–3942 (2008).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Chen, N.

Chen, X.

H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010).
[CrossRef]

Cherry, S. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Comsa, D. C.

D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantification of bioluminescence images of point source objects using diffusion theory models,” Phys. Med. Biol. 51(15), 3733–3746 (2006).
[CrossRef] [PubMed]

Cong, A.

Cong, W.

Contag, C. H.

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4(1), 235–260 (2002).
[CrossRef] [PubMed]

Conti, P. S.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Coquoz, O.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

Da Silva, A.

Darvas, F.

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921–3942 (2008).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Davis, S. C.

Dehghani, H.

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Dinkelborg, L. M.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[CrossRef] [PubMed]

Dinten, J. M.

Douraghy, A.

Eftekhar, A. A.

Eppstein, M. J.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Farrell, T. J.

D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantification of bioluminescence images of point source objects using diffusion theory models,” Phys. Med. Biol. 51(15), 3733–3746 (2006).
[CrossRef] [PubMed]

Feng, J.

Gambhir, S. S.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[CrossRef] [PubMed]

Gibbs-Strauss, S. L.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Godavarty, A.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Gu, X.

Gulsen, G.

Gurfinkel, M.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Guven, M.

M. Guven, B. Yazici, and V. Ntziachristos, “Fluorescence diffuse optical image reconstruction with a priori information,” Proc. SPIE 6431, 643107, 643107-15 (2007).
[CrossRef]

Hanson, K. M.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).
[CrossRef] [PubMed]

He, X.

H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010).
[CrossRef]

X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010).
[CrossRef] [PubMed]

Hervé, L.

Hielscher, A. H.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).
[CrossRef] [PubMed]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Hoffman, E. A.

Hou, Y.

X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010).
[CrossRef] [PubMed]

Huang, H.

X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010).
[CrossRef] [PubMed]

H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010).
[CrossRef]

Huang, J.

Jacobs, M.

Jia, K.

Jiang, H.

Jiang, M.

Jiang, S.

Jiang, S. S.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Klose, A. D.

A. D. Klose, “Transport-theory-based stochastic image reconstruction of bioluminescence sources,” J. Opt. Soc. Am. A 24(6), 1601–1608 (2007).
[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).
[CrossRef] [PubMed]

Koenig, A.

Kumar, D.

Kuo, C.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

Larcom, L.

Leahy, R. M.

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921–3942 (2008).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Leussler, C.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Lewis, M. A.

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).
[CrossRef] [PubMed]

Li, Y.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004).
[CrossRef] [PubMed]

Liang, J.

H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010).
[CrossRef]

X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010).
[CrossRef] [PubMed]

Liang, W.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

Lin, Y.

Liu, Y.

Lu, Y.

Lv, Y.

Mahmood, U.

R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219(2), 316–333 (2001).
[PubMed]

Mazurkewitz, P.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

McCray, P. B.

McLennan, G.

Millane, R. P.

Milstein, A. B.

Moats, R. A.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Mohajerani, P.

Nalcioglu, O.

Naser, M. A.

Nehorai, A.

Ntziachristos, V.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

M. Guven, B. Yazici, and V. Ntziachristos, “Fluorescence diffuse optical image reconstruction with a priori information,” Proc. SPIE 6431, 643107, 643107-15 (2007).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Oh, S.

Patterson, M. S.

Paulsen, K. D.

Peltié, P.

Peter, J.

L. Cao, M. Breithaupt, and J. Peter, “Geometrical co-calibration of a tomographic optical system with CT for intrinsically co-registered imaging,” Phys. Med. Biol. 55(6), 1591–1606 (2010).
[CrossRef] [PubMed]

Pogue, B. W.

Qin, C.

Qu, X.

X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010).
[CrossRef] [PubMed]

H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010).
[CrossRef]

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51(8), 2045–2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Rice, B. W.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

Richer, E.

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).
[CrossRef] [PubMed]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Rizo, P.

Roy, R.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Sarantopoulos, A.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

Schulz, R. B.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Slavine, N. V.

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).
[CrossRef] [PubMed]

Smith, D. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Song, X.

Springett, R.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Stout, D.

Tan, Y.

Thompson, A. B.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Tian, J.

X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010).
[CrossRef] [PubMed]

H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010).
[CrossRef]

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17(10), 8062–8080 (2009).
[CrossRef] [PubMed]

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008).
[CrossRef] [PubMed]

Troy, T. L.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

Tuttle, S. B.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

van Bruggen, N.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[CrossRef] [PubMed]

Wang, D.

Wang, G.

Wang, H.

Wang, J.

Wang, L. V.

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Webb, K. J.

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219(2), 316–333 (2001).
[PubMed]

Willmann, J. K.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[CrossRef] [PubMed]

Xu, H.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

Yan, G.

Yan, H.

Yan, X. P.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

Yang, D.

H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010).
[CrossRef]

Yang, X.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

Yazici, B.

M. Guven, B. Yazici, and V. Ntziachristos, “Fluorescence diffuse optical image reconstruction with a priori information,” Proc. SPIE 6431, 643107, 643107-15 (2007).
[CrossRef]

Zabner, J.

Zhang, C.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Zhang, Q.

Zhang, X.

Zhu, S.

Annu. Rev. Biomed. Eng. (1)

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4(1), 235–260 (2002).
[CrossRef] [PubMed]

Appl. Opt. (6)

Biomed. Opt. Express (1)

IEEE Eng. Med. Biol. Mag. (1)

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).
[CrossRef] [PubMed]

Int. J. Biomed. Imaging (1)

X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), 022 (1999).
[CrossRef]

J. Biomed. Opt. (2)

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

J. Comput. Phys. (1)

H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Med. Phys. (5)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys. 33(1), 61–68 (2006).
[CrossRef] [PubMed]

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004).
[CrossRef] [PubMed]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Nat. Rev. Drug Discov. (1)

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[CrossRef] [PubMed]

Opt. Express (7)

N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15(21), 13695–13708 (2007).
[CrossRef] [PubMed]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

X. Gu, Q. Zhang, L. Larcom, and H. Jiang, “Three-dimensional bioluminescence tomography with model-based reconstruction,” Opt. Express 12(17), 3996–4000 (2004).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005).
[CrossRef] [PubMed]

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17(10), 8062–8080 (2009).
[CrossRef] [PubMed]

J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (6)

L. Cao, M. Breithaupt, and J. Peter, “Geometrical co-calibration of a tomographic optical system with CT for intrinsically co-registered imaging,” Phys. Med. Biol. 55(6), 1591–1606 (2010).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51(8), 2045–2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921–3942 (2008).
[CrossRef] [PubMed]

D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantification of bioluminescence images of point source objects using diffusion theory models,” Phys. Med. Biol. 51(15), 3733–3746 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Guven, B. Yazici, and V. Ntziachristos, “Fluorescence diffuse optical image reconstruction with a priori information,” Proc. SPIE 6431, 643107, 643107-15 (2007).
[CrossRef]

Radiology (1)

R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219(2), 316–333 (2001).
[PubMed]

Rev. Sci. Instrum. (1)

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Other (3)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6): 711–732 (0.2008).

L. J. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics, (IEEE Press, New York, 1998).

S. A. Prahl, http://omlc.ogi.edu/spectra/index.html (Oregon Medical Laser Clinic) (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the object used in the simulation illustrating 6 different regions: E1 is the skin, E2 is the bowel, E3 and E4 are the kidneys, E5 is bone and E6 is adipose tissue. The source-detectors setup is also shown in the figure; 5 sources indicated by the star uniformly distributed in a field of view of 90°. 121 detectors forming an approximately 270° of view; the total number of data readings is 5x121 = 605 for DOT and FT. The total number of reading used for BLT is 3 (wavelengths) x121 which is 363.

Fig. 2
Fig. 2

The objective function as a function of the number of reconstructed BL source points in the permissible region for the true source distribution of Fig. 3(a).

Fig. 3
Fig. 3

BLT reconstruction of two uniform bioluminescence sources localized in the left and right kidneys. The actual sources in (a) are 3mm in diameter with magnitude 1 nW/mm. The reconstructed sources are shown in (d). The actual sources in (b) are 3mm in diameter with magnitude 0.5 nW/mm2 for the left source and 1 nW/mm2 for the right source. The reconstructed sources shown in (e) have total powers within 20% of the true value but the size and magnitude are not accurately estimated. In (c) the left source is 2 mm diameter with magnitude 1 nW/mm2 and the right source is the same magnitude with diameter 3 mm. The reconstructed sources in (f) have total powers within 10% and the size and magnitude are also recovered with comparable accuracy.

Fig. 4
Fig. 4

BLT reconstruction of a large distributed source that fill the gut region. The magnitude of the actual sources in (a) is 1 nW/mm2, and the reconstructed source is shown in (c). For the nonuniform source in (b), the reconstructed source in (d) shows almost uniform magnitude and smaller size than the true source.

Fig. 5
Fig. 5

FT reconstruction of two uniform fluorophore sources localized in the left and right kidneys. The actual sources in (a) are 3 mm in diameter with concentration 1 µmol/mm2. The reconstructed sources are shown in (d) and they have total number of molecules within 10% of the true value. The actual sources in (b) are 3mm in diameter with concentration 0.5 µmol/mm2 for the left source and 1 µmol/mm2 for the right source. The reconstructed sources shown in (e) have total number of molecules within 15% of the true value but the size and magnitude are not accurately estimated. In (c) the left source is 2 mm diameter with concentration 1 µmol /mm2 and the right source is the same concentration with diameter 3 mm. The reconstructed sources in (f) have total number of molecules within 10% and the size and magnitude are also recovered with comparable accuracy.

Fig. 6
Fig. 6

FT reconstruction of a large distributed fluorophore source that fills the gut region. The concentration of the actual sources in (a) is 1 µmol/mm2, and the reconstructed source is shown in (c). For the nonuniform source in (b), the reconstructed source in (d) shows almost uniform magnitude and smaller size than the true source.

Fig. 7
Fig. 7

(a) The actual fluorophore concentration (same as Fig. 6(b)). (b) The reconstructed fluorophore concentration using 16 excitation sources uniformly distributed around the object; associated with every source are 121 detectors uniformly distributed in a field of view of 270 degree.

Tables (4)

Tables Icon

Table 1 Algorithm description for BLT

Tables Icon

Table 2 Algorithm description for FT

Tables Icon

Table 3 Scattering coefficients for each region in the heterogeneous object calculated at five different wavelengths. The values of the scattering coefficients are given in (mm−1).

Tables Icon

Table 4 Absorption coefficients for each region in the heterogeneous object calculated at five different wavelengths. The values of the absorption coefficients are given in (mm−1).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

[ ( x κ ( x , y ; λ ) x + y κ ( x , y ; λ ) y ) + μ a ( x , y ; λ ) ] φ ( x , y ; λ ) = s ( x , y ; λ ) ,
κ ( x , y ; λ ) = 1 3 ( μ a ( x , y ; λ ) + μ s ( x , y ; λ ) ) ,
φ ( x , y ; λ ; ω ) + 2 κ ( x , y ; λ ) A n ^ ( x , y ) φ ( x , y ; λ ; ω ) = 0 ,
A = ( 2 / ( 1 R 0 ) ) 1 + | cos θ c | 3 1 | cos θ c | 2 ,
[ K ] N × N φ N × 1 = [ A s s ] N × N s N × 1 ,
φ = [ K ] 1 [ A s s ] s = G s
G = [ K ] 1 [ A s s ]
φ d = G d s
f =min λ G ˜ ( d , R ; λ ) s ( R ) φ ˜ ( d ; λ ) 1 s . t .     0 s s max s . t .      R Permissible Region
[ ( x κ x ( x , y ) x + y κ x ( x , y ) y ) + μ a x ( x , y ) ] φ x ( x , y ) = s ( x , y ) ,
[ ( x κ m ( x , y ) x + y κ m ( x , y ) y ) + μ a m ( x , y ) ] φ m ( x , y ) = φ x ( x , y ) η μ a f ( x , y ) ,
φ x = [ K x ] 1 [ A s s ] s
G m = [ K m ] 1 [ A s s ]
φ m = G m φ x η μ a f = G m φ x η ln ( 10 ) ε C
f =min i = 1 N s ( ln ( 10 ) ε η ) G ˜ m ( d i , R ) φ x i ( R ) C ( R ) φ ˜ m ( d i ) 1 s . t .     0 C C max s . t .      R Permissible Region

Metrics